
Error-Correcting Codes for Rank Modulation
Anxiao (Andrew) Jiang

Computer Science Department
Texas A&M University

College Station, TX 77843, U.S.A.
ajiang@cs.tamu.edu

Moshe Schwartz
Electrical and Computer Engineering

Ben-Gurion University
Beer Sheva 84105, Israel
schwartz@ee.bgu.ac.il

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125, U.S.A.
bruck@paradise.caltech.edu

Abstract—We investigate error-correcting codes for a novel
storage technology for flash memories, the rank-modulation
scheme. In this scheme, a set of n cells stores information in
the permutation induced by the different charge levels of the
individual cells. The resulting scheme eliminates the need for
discrete cell levels, overcomes overshoot errors when program-
ming cells (a serious problem that reduces the writing speed),
and mitigates the problem of asymmetric errors.
In this paper, we study the properties of error correction in

rank modulation codes. We show that the adjacency graph of
permutations is a subgraph of a multi-dimensional array of a
special size, a property that enables code designs based on Lee-
metric codes. We present a one-error-correcting code whose size
is at least half of the optimal size. We also present additional
error-correcting codes and some related bounds.

I. INTRODUCTION

Flash memory is an electronic non-volatile memory (NVM)
that uses floating-gate cells to store information [2]. In the
standard technology, every flash cell has q discrete states –
state 0, 1, · · · , q − 1 – and therefore can store log2 q bits.
The flash memory changes the state of a cell by injecting or
removing charge into/from the cell. To increase a cell from
a lower state to a higher state, charge (e.g., electrons for
nFETs) is injected into the cell and is trapped there. This
operation is called cell programming. To decrease a cell’s
state, charge is removed from the cell, which is called cell
erasing. Flash memory is widely used in mobile, embedded,
and mass-storage systems because of its physical robustness,
high density, and good performance [2]. To expand its storage
capacity, research on multi-level cells with large values of q
is actively underway.

For flash memories, writing is more time- and energy-
consuming than reading [2]. The main factor is the iter-
ative cell-programming procedure designed to avoid over-
programming [1] (raising the cell’s charge level above its
target level). In flash memories, cells are organized into blocks,
where each block has a large number (≈ 105) of cells [2].
Cells can be programmed individually, but to decrease the state
of a cell, the whole block has to be erased to the lowest state
and then re-programmed. Since over-programming can only
be corrected by the block erasure, in practice a conservative
procedure is used for programming a cell, where charge is
injected into the cell over quite a few rounds [1]. After every
round, the charge level of the cell is measured and the next-
round injection is configured. The charge level of the cell is
made to gradually approach the target state until it achieves
the desired accuracy. The iterative-programming approach is

costly in time and energy.
A second challenge for flash memory is data reliability. The

stored data can be lost due to charge leakage, a long-term
factor that causes the data retention problem. The data can also
be affected by other mechanisms, including read disturbance,
write disturbance [2], etc. Many of the error mechanisms have
an asymmetric property: they make the numerous cells’ charge
levels drift in one direction. (For example, charge leakage
makes the cell levels drift down.) Such a drift of cell charge
levels causes errors in aging devices.

In this paper, we propose and study a new scheme for
storing data in flash memories, the rank-modulation scheme.
It aims at eliminating the risk of cell over-programming, and
reducing the effect of asymmetric errors. Given a set of n
cells with distinct charge levels, the rank of a cell indicates
the relative position of its own charge level, and the ranks of
the n cells induces a permutation of {1, 2, . . . , n}. The rank
modulation scheme uses this permutation to store information.
To write data into the n cells, we first program the cell with
the lowest rank, then the cell with the second lowest rank, and
finally the cell with the highest rank. While programming the
cell with rank i (1 < i � n), the only requirement is to make
its charge level be above that of the cell with rank i − 1.

The rank-modulation scheme eliminates the need to use the
absolute values of cell levels to store information. Instead,
the relative ranks are used. Since there is no risk of over-
programming and the cell charge levels can take continuous
values, a substantially less conservative cell programming
method can be used and the writing speed can be improved.
In addition, asymmetric errors become less serious, because
when cell levels drift in the same direction, their ranks are not
affected as much as their absolute values. This way both the
writing speed and the data reliability can be improved.

In this paper, we study error-correcting codes for rank
modulation. Even though asymmetric drifts of cell levels are
tolerated better by rank modulation, errors can still happen
because the cell levels do not necessarily drift at the same
rate. A companion paper [6] studies Gray codes and encod-
ing/decoding algorithms for the rank modulation scheme.

We explore the properties associated with error-correcting
rank-modulation codes. We show that the adjacency graph
of permutations for n cells, which is induced by the error
model, is a subgraph of a 2 × 3 × · · · × n linear array.
This observation establishes a general method for design-
ing error-correcting rank-modulation codes using Lee-metric
error-correcting codes. We present a single-error-correcting

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1736978-1-4244-2571-6/08/$25.00 ©2008 IEEE

code whose size is at least half of the maximum size. We
also present results on additional error-correcting codes and
some related bounds.

The rest of the paper is organized as follows. In Section
II some notations are defined. We continue in Section III, to
investigate properties associated with permutations and error
correction. In Section IV some code constructions are pre-
sented, and in Section V, more results on codes are presented.
In Section VI, the paper is concluded.

II. DEFINITIONS AND NOTATION

Let n flash memory cells be denoted by 1, 2, . . . , n. For
1 � i � n, let ci ∈R denote the charge level of cell i. The
ranks of the n cells is a permutation of {1, 2, . . . , n}. If the
permutation is [a1, a2, . . . , an], then ca1 > ca2 > · · · > can .
Here the cell a1 has the highest rank and the cell an has the
lowest rank.

A rank-modulation scheme uses the ranks (i.e, the per-
mutation) to store information. Let Sn denote the set of n!
permutations. Let Q = {1, 2, . . . , q} denote the alphabet of
the symbol stored in the n cells. The rank-modulation scheme
defines a decoding function, D : Sn → Q which maps
permutations (induced by the relative charge levels of the cells)
to symbols from the user alphabet.

Given a permutation, an adjacent transposition is the
local exchange of two adjacent elements in the per-
mutation: [a1, . . . , ai−1, ai , ai+1, ai+2, . . . , an] is changed to
[a1, . . . , ai−1, ai+1, ai , ai+2, . . . , an].

In this model of representation, the minimal change to a
permutation caused by charge-level drift is a single adjacent
transposition. We measure the number of errors by the mini-
mum number of adjacent transpositions needed to change the
permutation from its original value to its erroneous value. For
example, if the errors change the permutation from [2, 1, 3, 4]
to [2, 3, 4, 1], the number of errors is two, because at least
two adjacent transpositions are needed to change one into the
other: [2, 1, 3, 4] → [2, 3, 1, 4] → [2, 3, 4, 1].

For two permutations A and B, define their distance,
d(A, B), as the minimal number of adjacent transpositions
needed to change A into B. This distance measure is called
the Kendall Tau Distance in the statistics and machine-learning
community [7], and it induces a metric over Sn. If d(A, B) =
1, A and B are called adjacent. Any two permutations of
Sn are at distance at most n(n−1)

2 from each other. Two
permutations of maximum distance are a reverse of each other.

III. PROPERTIES AND BOUNDS

In this section, we study the distance between permutations
and the coordinate representation of permutations. We then
study the sizes of balls, and derive an upper bound on the
cardinality of error-correcting rank-modulation codes.
Theorem 1. Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn]
be two permutations of length n. Suppose that bp = an
for some 1 � p � n. Let A′ = [a1, a2, . . . , an−1] and
B′ = [b1, . . . , bp−1, bp+1, . . . , bn]. Then,

d(A, B) = d(A′, B′) + n − p.

Proof: Let T be a sequence of d(A, B) adjacent transposi-
tions that change A into B. Divide T into two subsequences T1
and T2, such that T1 contains those adjacent transpositions that
involve an, and T2 contains those adjacent transpositions that
do not involve an. (For instance, let us use t(ai , a j) to denote
an adjacent transposition that exchanges the two numbers ai
and a j. Suppose, for example, A = [2, 3, 1, 4], B = [3, 4, 1, 2],
and the minimum number of adjacent transpositions change
A into B as [2, 3, 1, 4] → [3, 2, 1, 4] → [3, 2, 4, 1] →
[3, 4, 2, 1] → [3, 4, 1, 2]. Then T is t(2, 3), t(1, 4), t(2, 4),
t(2, 1), T1 is t(2, 3), t(2, 1), and T2 is t(1, 4), t(2, 4).) Let
|T|, |T1| and |T2| denote the number of adjacent transpositions
in T, T1 and T2, respectively. Clearly, |T| = |T1|+ |T2|.

It is not hard to see that T2 can also change A′ into B′.
That is because for any ai �= an and a j �= an, an adjacent
transposition in T1, which involves an, does not change the
relative positions of ai and a j in A′ (and its changed version).
Meanwhile, an adjacent transposition t(ai , a j) in T2 changes
the relative positions of ai and a j the same way for A and A′
(and their changed versions). Therefore, |T2| � d(A′, B′). It
can also be seen that |T1| � n − p, because every adjacent
transposition moves an forward in the permutation by one
position, and from A to B an has moved n − p positions.
So d(A, B) = |T| = |T1| + |T2| � d(A′, B′) + n − p.

Now we show that d(A, B) � d(A′, B′) + n − p. Consider
such a sequence of d(A′, B′) + n − p adjacent transpositions:
the first d(A′, B′) of them change A = [A′, an] into [B′, an],
and the next n − p of them keep moving an forward and thus
change [B′, an] into B. So d(A, B) � d(A′, B′) + n − p. It
follows that d(A, B) = d(A′, B′) + n − p.

The above theorem shows a recursive algorithm for com-
puting the distance between two permutations. Let A =
[a1, a2, . . . , an] and B = [b1, b2, . . . , bn] be two permutations.
For 1 � i � n, let Ai denote [a1, a2, . . . , ai], let Bi denote
the subsequence of B that contains only those numbers in
Ai, and let pi denote the position of ai in Bi. Then, since
d(A1, B1) = 0 and d(Ai , Bi) = d(Ai−1, Bi−1) + i − pi , for
i = 2, 3, . . . , n, we get

d(A, B) = d(An, Bn) =
(n − 1)(n + 2)

2
−

n

∑
i=2

pi .

We now define a coordinate system for permutations. We fix
A = [1, 2, . . . , n]. For every permutation B = [b1, b2, . . . , bn],
we define its coordinates as XB = (2 − p2, 3 − p3, . . . , n −
pn). Here pi is defined as above for 2 � i � n. Clearly, if
XB = (x1, x2, . . . , xn−1), then 0 � xi � i for 1 � i � n − 1.

Example 2. Let A = [1, 2, 3, 4, 5]. Then XA = (0, 0, 0, 0). If
B = [3, 4, 2, 1, 5], then XB = (1, 2, 2, 0). If B = [5, 4, 3, 2, 1],
then XB = (1, 2, 3, 4). The full set of coordinates for n = 3
and n = 4 are shown in Fig. 1 (a) and (c), respectively. �

The coordinate system is equivalent to a form of Lehmer
code (or Lucas-Lehmer code, inversion table) [9]. It is easy
to see that two permutations are identical if and only if they
have the same coordinates, and any vector (y1, y2, . . . , yn−1),
0 � yi � i for 1 � i � n − 1, is the coordinates of some

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1737

permutation in Sn. So there is a one-to-one correspondence
between the coordinates and the permutations.

Let A∈ Sn be a permutation. For any 0 � r � n(n−1)
2 ,

the set Br(A) = {B∈ Sn | d(A, B) � r} is a ball of radius
r centered at A. A simple relabeling argument suffices to
show that the size of a ball does not depend on the choice of
center. We use |Br| to denote |Br(A)| for any A∈ S. We are
interested in finding the value of |Br|. The following theorem
presents a way to compute the size of a ball using polynomial
multiplication.

Theorem 3. For 0 � r � n(n−1)
2 , let er denote the coefficient

of xr in the polynomial ∏n−1
i=1

xi+1−1
x−1 . Then |Br| = ∑r

i=0 er.

Proof: Let A = [1, 2, . . . , n]. Let B = [b1, b2, . . . , bn]
be a generic permutation. Let XB = (y1, y2, . . . , yn−1) be
the coordinates of B. By the definition of coordinates, we get
d(A, B) = ∑n−1

i=1 yi. The number of permutations at distance r
from A equals the number of integer solutions to ∑n−1

i=1 yi = r
such that 0 � yi � i. That is equal to the coefficient of xr in
the polynomial ∏n−1

i=1 (xi + xi−1 + · · · + 1) = ∏n−1
i=1

xi+1−1
x−1 .

Thus, there are exactly er permutations at distance r from A,
and |Br| = ∑r

i=0 ei.
Polynomial multiplication is a well-studied area, and effi-

cient algorithms exist. Theorem 3 induces an upper bound for
the sizes of error-correcting rank-modulation codes. By the
sphere-packing principle, for such a code that can correct r
errors, its size cannot exceed n!/ |Br|.

IV. ERROR-CORRECTING RANK-MODULATION CODES

In this section, we first study the topology of permutations,
and use the result to derive a general construction for error-
correcting rank-modulation codes based on Lee-metric codes.
Next, we present a family of one-error-correcting codes whose
size is at least half of the optimal size.

A. Embedding of Permutation Adjacency Graph
Define the adjacency graph of permutations, G = (V, E), as

follows. The graph G has |V| = n! vertices, which represent
the n! permutations. Two vertices u, v∈V are adjacent if and
only if d(u, v) = 1. G is a regular undirected graph with
degree n − 1 and diameter n(n−1)

2 . To study the topology of
G, we begin with the follow theorem.

Theorem 4. For two permutations A = [a1, a2, . . . , an]
and B = [b1, b2, . . . , bn], let their coordinates be XA =
(x1, x2, . . . , xn−1) and XB = (y1, y2, . . . , yn−1). A and B are
adjacent if and only if they satisfy the following two conditions:

• Condition 1: ∑n−1
i=1 |xi − yi| = 1.

• Condition 2: There do not exist i, j∈ {1, 2, . . . , n}, where
i < j − 1, such that (1) ai = bj, a j = bi; (2) for any k
where k �= i and k �= j, ak = bk; (3) for any k where
i < k < j, ak > bi and ak > bj.

Proof: The proof is by induction. When n = 2, the
theorem is easily true. That serves as the base case.

Now assume that the theorem is true for n = 2, 3, . . . , N −
1. We will prove that it is also true when n = N. First,

we will show that if the two permutations are adjacent, then
∑N−1

i=1 |xi − yi| = 1.
Suppose A and B are adjacent. Consider the two integers

z1, z2 such that the z1-th element in A and the z2-th element
in B are both N. There are two cases. Case 1: z1 = z2.
In this case, xN−1 = yN−1 by definition. Since the two
permutations are adjacent, which means that we can change
one into the other by switching two numbers in adjacent
positions, those two positions cannot include z1 = z2. So
if we remove the number N from the two permutations A, B,
the two shorter permutations are also adjacent. The coordi-
nates of those shorter permutations are (x1, x2, . . . , xN−2)
and (y1, y2, . . . , yN−2). By induction, ∑N−2

i=1 |xi − yi| = 1.
Since |xN−1 − yN−1| = 0, we get ∑N−1

i=1 |xi − yi| = 1.
Case 2: z1 �= z2. In this case, since A, B are adjacent,
A can be changed into B by switching the z1-th number
and the z2-th number. Then |z1 − z2| = 1, and therefore,
|xN−1 − yN−1| = 1, and for any z �= z1, z2, we have xz =
yz. So ∑N−1

i=1 |xi − yi| = 1. Thus, if the two permutations A
and B are adjacent, Condition 1 is true.

If A and B are adjacent, then Condition 2 is also true, for
the following simple reason: if the two integers i, j described
in Condition 2 exist, then there would be no way to switch ai
and a j with only one adjacent transposition in order to change
A into B. That would be a contradiction.

Now we prove the other direction: if the two conditions
are true, then A and B are adjacent. Assume that the two
conditions are true. Then, since ∑N−1

i=1 |xi − yi| = 1, there
are two cases. Case 1: |xN−1 − yN−1| = 1 and for any z <
N − 1, xz = yz. In this case, by switching the number N
and a number beside it in the permutation A, we can get
the permutation B. Hence, the two permutations are adjacent.
Case 2: |xN−1 − yN−1| = 0 and ∑N−2

i=1 |xi − yi| = 1. In
this case, if we take away the number N from A and B, we
get two shorter permutations satisfying the two conditions,
so by induction, the two shorter permutations are adjacent.
Assume that we can switch the k-th number and the (k + 1)-
th number in the first short permutation to get the second short
permutation. For both A and B, since Condition 2 is true, the
number N cannot be between those switched numbers. So we
can still switch those two numbers as an adjacent transposition
to change A into B. Thus A, B are adjacent, and the other
direction of the conclusion is also true.

Let Ln = (VL, EL) denote a 2 × 3 × · · · × n linear array
graph. Ln has n! vertices VL. Each vertex is assigned integer
coordinates (x1, x2, . . . , xn−1), where 0 � xi � i for 1 � i �
n − 1. The distance between vertices of Ln is the L1 distance,
and two vertices are adjacent (i.e., have an edge between them)
if and only if their distance is one.

We now build a bijective map P : V → VL. Here V is the
vertex set of the adjacency graph of permutations G = (V, E).
For any u∈V and v∈VL, P(u) = v if and only if u, v have
the same coordinates. By Theorem 4, if two permutations are
adjacent, their coordinates are adjacent in Ln, and we get:

Theorem 5. The adjacency graph of permutations is a subgraph

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1738

of the 2 × 3 × · · · × n linear array.

We show some examples of the embedding in Fig. 1. It
can be seen that while each permutation has n − 1 adjacent
permutations, a vertex in the array can have a varied degree
from n − 1 to 2n − 3. Some edges of the array do not exist
in the adjacency graph of permutations because they violate
condition 2 in Theorem 4.

Proposition 6 If two vertices are adjacent in the array Ln, their
distance in the adjacency graph of permutations, G, is at most
2n − 3, and this bound is tight.

Proof: Let A and B be two permutations such that XA and
XB are adjacent in Ln. If they are not adjacent permutations,
then they must violate condition 2 in Theorem 4. Without loss
of generality, assume

A = [a1, . . . , ai−1, ai , ai+1, . . . , a j−1, a j, a j+1, . . . , an],
B = [a1, . . . , ai−1, a j, ai+1, . . . , a j−1, ai , a j+1, . . . , an].

Clearly, a minimum of (j− i) + (j− i− 1) = 2 j− 2i− 1 ad-
jacency transpositions are needed to switch ai and a j in order
to change A into B. When i = 1, j = n, 2 j − 2i − 1 reaches
the maximum value 2n − 3. Hence, d(A, B) � 2n − 3. To
see that the bound is tight, consider A = [1, 3, 4, . . . , n, 2]
and B = [2, 3, 4, . . . , n, 1].

The observation that the permutations’ adjacency graph is a
subgraph of a linear array shows an approach to design error-
correcting rank-modulation codes based on Lee-metric codes.
We skip its proof due to its simplicity.

Theorem 7. Let C be a Lee-metric error-correcting code of
length n − 1, alphabet size no less than n, and minimum
distance d. Let C′ be the subset of codewords of C that are
contained in the array Ln. Then C′ is an error-correcting rank-
modulation code with minimum distance at least d.

B. Single-error-correcting Rank-Modulation Code

We now present a family of rank-modulation codes that
can correct one error. The code is based on the perfect sphere
packing in the Lee-metric space [4]. The code construction is
as follows.

Construction 8. (Single-error-correcting rank-modulation
code) Let C1, C2 denote two rank-modulation codes con-
structed as follows. Let A be a general permutation whose
coordinates are (x1, x2, . . . , xn−1). Then A is a codeword in
C1 if and only if the following equation is satisfied:

n−1

∑
i=1

ixi ≡ 0 (mod 2n − 1).

A is a codeword in C2 if and only if the following equation
is satisfied:

n−2

∑
i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1).

Between C1 and C2, choose the code with more codewords
as the final output. �

We analyze the code size of Construction 8.

Lemma 9. The rank-modulation code built in Construction 8
has a minimum cardinality of (n−1)!

2 .

Proof: Let H = (VH , EH) be a 2 × 3 × · · · × (n − 1)×
(2n − 1) linear array. Every vertex in H has integer coordi-
nates (x1, x2, . . . , xn−1), where 0 � xi � i for 1 � i � n− 2,
and −n + 1 � xn−1 � n − 1.

Given any choice of (x1, x2, . . . , xn−2) of the coordinates,
we would like to see if there is a solution to xn−1 (note that
−n + 1 � xn−1 � n− 1) that satisfies the following equation:

n−1

∑
i=1

ixi ≡ 0 (mod 2n − 1).

Since ∑n−1
i=1 ixi = (n − 1)xn−1 + ∑n−2

i=1 ixi, and n −
1 and 2n − 1 are co-prime integers, there is exactly
one solution to xn−1 that satisfies the above equation.
If xn−1 � 0, clearly (x1, x2, . . . , xn−1) are the coordi-
nates of a codeword in the code C1. If xn−1 � 0, then
∑n−2

i=1 ixi + (n − 1) · [−(−xn−1)] ≡ 0 (mod 2n − 1), so
(x1, x2, . . . , xn−2,−xn−1) are the coordinates of a codeword
in the code C2.

Since 0 � xi � i for 1 � i � n− 2, there are (n− 1)! ways
to choose x1, x2, . . . , xn−2. Each choice generates a codeword
that belongs either to C1 or C2. Therefore, at least one of C1
and C2 has cardinality no less than (n−1)!

2 .

Lemma 10. The rank-modulation code built in Construction 8
can correct one error.

Proof: It has been shown in [4] that for an infinite k-
dimensional array, vertices whose coordinates (x1, x2, . . . , xk)
satisfy the condition ∑k

i=1 ixi ≡ 0 (mod 2k + 1) have a
minimum L1 distance of 3. Let k = n − 1. Note that in
Construction 8, the codewords of C1 are a subset of the
above vertices, while the codewords in C2 are a subset of the
mirrored image of the above vertices, where the last coordinate
xn−1 is mapped to −xn−1. Since the permutations’ adjacency
graph is a subgraph of the array, the minimum distance of C1
and C2 is at least 3. Hence, the code built in Construction 8
can correct one error.

Theorem 11. The code built in Construction 8 is a single-error-
correcting rank-modulation code whose cardinality is at least
half of optimal.

Proof: Every permutation has n − 1 adjacent permuta-
tions, so the size of a radius-1 ball, |B1|, is n. By the sphere
packing bound, a single-error-correcting rank-modulation code
can have at most n!

n = (n − 1)! codewords. The code in
Construction 8 has at least (n − 1)!/2 codewords.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1739

(0,0,0)

(0,0,1)

(0,0,2)

(0,0,3)

(1,0,0)

(1,1,0)

(1,2,0)

(1,2,1)

(1,2,2)

(1,2,3)

(0,1,3)

(0,2,3)1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(0,0,2)

(0,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(1,0,2)

(1,1,2)2 4 3 1

(c) (d)(b)

(0,1)

(0,0) (1,0)

(1,1)

(0,2) (1,2)

(0,0,3)

(0,1,3)

(1,0,3)

(0,2,3)

(1,1,3)

(1,2,3)

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4 1 3 2

(1,2,2)

CoordinatesPermutation

(1,2)

(0,2)

(1,1)

(1,0)

(0,1)

(0,0)1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1
(a)

(0,2,0)

(0,2,1)

(1,2,0)

(1,2,1)

(0,2,2)

4 2 1 3

4 3 1 2

4 2 3 1

4 3 2 1

CoordinatesPermutation CoordinatesPermutation

Figure 1. Coordinates of permutations, and embedding the adjacency graph of permutations, G, in the 2 × 3 × · · · × n array, Ln. In the two arrays, the solid
lines are the edges in both G and Ln, and the dotted lines are the edges only in Ln. (a) Coordinates of permutations for n = 3. (b) Embedding G in Ln for
n = 3. (c) Coordinates of permutations for n = 4. (d) Embedding G in Ln for n = 4.

V. MORE CODES AND BOUNDS

It has been shown that the single-error-correcting code built
by Construction 8 has a size within half of optimal. There exist
code constructions that can build larger codes in many cases.
We report here some error-correcting codes built using ad
hoc constructions, and compare them with the sphere-packing
upper bound and the half-optimal code:

• When n = 3, a single-error-correcting code with two
codewords – [1, 2, 3] and [3, 2, 1] – can be easily found.
The same code is built by Construction 8, and the size
meets the sphere-packing upper bound.

• When n = 4, an ad hoc construction generates a single-
error-correcting code with five codewords: [1, 2, 4, 3],
[3, 1, 4, 2], [3, 2, 4, 1], [4, 1, 3, 2] and [4, 2, 3, 1]. The code
output by Construction 8 has size 4. The sphere-packing
bound is 6. It can be shown that the code of size 5 is
optimal.

• When n = 5, 6, 7, an ad hoc construction generates
single-error-correcting codes with 18, 90, and 526 code-
words, respectively. The codes output by Construction 8
have size 14, 66, and 388, respectively. The sphere-
packing upper bound is 24, 120, and 720, respectively.

• When n = 5, 6, 7, there exist two-error-correcting codes
of size 6, 23, and 110, three-error-correcting codes of size
2, 10, 34, and four error-correcting codes of size 2, 4, and
14, respectively. All the above codes have a size that is
at least one half of the optimal size.

VI. CONCLUSION

In this paper, we propose a novel data storage scheme for
flash memories, the rank-modulation scheme. It can elim-
inate cell over-programming and also be more robust to
asymmetric errors. A rank-modulation scheme uses a new
tool – the permutation of cell ranks – to represent data.
Consequently, new error-correcting techniques suitable for
permutations are needed. We study the properties associated
with error-correcting rank-modulation codes, and show that the

permutation adjacency graph, which describes the topology of
permutations, is a subgraph of a multi-dimensional linear ar-
ray. As a result, the error-correcting codes for rank modulation
can be designed using Lee-metric codes. We present a family
of one-error-correcting codes whose size is within half of the
optimal size, and also show the results of some other (more
ad hoc) code constructions.

It will be interesting to extend the code construction in this
paper to design codes that correct two or more errors, by
using new Lee-metric codes or suitable lattice interleavers.
The codes can also be improved by a better utilization of
the sphere packing in the permutation adjacency graph, which
is sparser than the array Ln. Alternative embedding of the
permutations, known as permutohedron, can be explored [3],
[8]. (For example, the permutation adjacency graph for four
numbers can be embedded as a truncated octahedron.) In
addition, it will be interesting to combine the error-correcting
codes with data rewriting schemes as in [5].

REFERENCES

[1] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 2148–2151, 2005.

[2] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash memories. Kluwer
Academic Publishers, 1999.

[3] P. Gaiha and S. K. Gupta, “Adjacent vertices on a permutohedron,” in
SIAM J. Appl. Math., vol. 32, no. 2, pp. 323-327, 1977.

[4] S. W. Golomb and L. R. Welch, “Perfect codes in the Lee metric and
the packing of polyominoes,” SIAM J. Appl. Math., vol. 18, no. 2, pp.
302–317, Jan. 1970.

[5] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” in Proc. IEEE Int. Symp.
Information Theory, Nice, France, pp. 1166–1170, 2007.

[6] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” in Proc. IEEE Int. Symp. Informationo Theory, 2008.

[7] M. Kendall and J. D. Gibbons, Rank correlation methods. Oxford
University Press, NY, 1990.

[8] D. E. Knuth, The art of computer programming, vol. 3, 2nd Ed., Addison-
Wesley, 1998.

[9] D. H. Lehmer, “Teaching combinatorial tricks to a computer,” in Proc.
Sympos. Appl. Math. Combinatorial Analysis, vol. 10, Amer. Math. Soc.,
Providence, R.I., pp. 179-193, 1960.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1740

