ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Universal Rewriting in Constrained Memories

Anxiao (Andrew) Jiang Michael Langberg Moshe Schwartz Jehoshua Bruck
Computer Science DepartmentComputer Science Divisioklectrical and Computer Eng. EE & CNS Dept.
Texas A&M University Open University of Israel  Ben-Gurion University Caltech
College Station, TX 77843, U.S.A. Raanana 43107, Israel Beer Sheva 84105, Israel Pasadena, CA 91125, U.S.A.
ajiang@cs.tamu.edu mikel@openu.ac.il schwartz@ee.bgu.ac.il bruck@paradise.caltech.edu

Abstract—A constrained memory is a storage device whose (c1,¢3,...,¢,) tO (c’l,c’z,. ..,ch) iff there exists exactly one

elements change their states under some constraints. A typical jndexi € {1,...,n} such that! = c; + 1 while ¢\ = c; for
example is flash memories, in which cell levels are easy to increase: __ 1 i—1li+1 n ! / ]
but hard to decrease. In a general rewriting model, the stored J =Ly ’ s

data changes with some pattern determined by the application. In Definition 3. (GENERALIZED REWRITING) The stored data is
a constrained memory, an appropriate representation is needed represented by a directed graph= (Vp, Ep). The vertices

for the stored data to enable efficient rewriting. .
In this paper, we define the general rewriting problem using Vp represent all the values that the data can take. There is a

a graph model. This model generalizes many known rewriting directed edgéu,v) fromu € Vp tov € Vp, v # u, iffa
models such as floating codes, WOM codes, buffer codes, etc. Werewriting operation may change the stored data from valte

present a novel rewriting scheme for the flash-memory model and valuev. The graplD is called thedata grapland the number of
prove it is asymptotically optimal in a wide range of scenarios. s \ertices, corresponding to the input-alphabet size, is denoted

We further study randomization and probability distributions _
to data rewriting and study the expected performance. We by L = |Vp|. Throughout the paper we assume all data graphs

present a randomized code forall rewriting sequences and a !0 be strongly connected.
deterministic code for rewriting following any i.i.d. distribution.
Both codes are shown to be optimal asymptotically. Exa”?p'e & (RE\_NRITING IN FLOATI.NG CODE.S[Q]) The dala
consists ok variables, each of which takes its value from the
I. INTRODUCTION alphabef0,1, ...,¢ —1}. Every rewrite changes the value of

Many storage media have constraints on their state tran@fle variable. Hence, the data graphhasL = (* vertices,
tions. A typical example is flash memory, the most widely use®fch of incoming and outgoing degrie¢ — 1). The floating
type of non-volatile electronic memory [4]. A multi-level flashcode model reduces to the write-once memory (WOM) code
memory cell hag levels:0,1,...,q— 1. Itis easy to increase a model [15] wherk = 1. It can be seen that the data grdphs
cell level but very costly to decrease it because to decrease &@eneralized hypercube bidimensions. Whek = 1, itis a
level of asinglecell, a whole block of~ 10° cells needs to be complete graph of order

erased and reprogrammed [4]. Other storage media, includipgfinition 5. (CODE FOR REWRITING) A code for rewriting
magnetic recording, optical recording and some new memdi4s adecoding functionF; and anupdate functionF,. The
materials, have constraints on state transitions as well. decoding functiorE; : Vyy — Vp maps a memory statec
A storage medium needs to change its state when the, to the stored dath,(s) € Vp. The update function (which
stored data changes its value. Depending on the applicatiogresents a rewriting operatio), : Vi x Vp — Vg, maps
the data often changes under some constrained patterns. hgrcurrent memory statec Vy, and the new data € Vp
example, the data may change altogether or have its individygla memory staté, (s,v) € Vy such thatr;(F,(s,v)) = v.

components rewritten asynchronously [9]. In another examplgjearly, there should be a directed path froto F, (s, v) in the
when the data represents an information stream, it changesriemory graph\.

a sliding window fashion [2]. Thus, an appropriate represen- ¢ . . h
tation is needed for the data to enable efficient rewriting. A Seduence of rewrites is a sequer(eg, v1, vz ... ) suc

We present the general model of constrained memories éHat thei-th rewrite changes th'e. stored data from; to v;.
rewriting using graph notation. Given a storage code for rewriting, we denote by (C) the

number of rewrites thaf guarantees to support for all rewrite
Definition 1. (CONSTRAINED MEMORY) A constrained mem- sequences. Thug(C) is a worst-case performance measure
ory is represented by a directed graph = (Va, Em). The  of the code. The cod€ is said to beoptimal if #(C) is
verticesV, represent all the memory states. There is a directaghximized. On the other side, if a probabilistic model for
edge(u,v) fromu € Vi tov € Vy iff the memory can rewriting or randomization for code construction is used, the
change from state to statev without going through any other expected rewriting performance can be defined accordingly.
intermediate states\1 is called thememory graph In this paper, we study general rewriting for the flash-

Example 2. (FLASH MEMORY MODEL) For a flash mem- memory model We present a novel code construction, the
ory with n cells of q levels each, the memory grapht trajectory code based on tracing the changes of data in the

hasq" vertices. Every vertex can be represented by a vec; _ ! .
. . The codes here are more suitable for NOR flash memories, which allow
tor (cy,c,...,cn), Wherec; € {0,1,...,q—1} is thei-th

h . . random access of cells. NAND flash memories have much more restricted
cell level, fori = 1,...,n. There is a directed edge fromaccess modes for cell pages, which limit usable coding schemes on rewriting.

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1219



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

. . . TABLE |
data graphD. The code is .asymptotlcally opt_lmal (Up t0 A SUMMARY OF THE CODES FOR REWRITING WITH ASYMPTOTICALLY
constant factors) for a very wide range of scenarios. It include®PTIMAL PERFORMANCE(UP TO CONSTANT FACTOR$. HERE 1, k, £, L

floating codes, WOM codes, and buffer codes as special cases, ARE AS DEFINED IN EXAMPLES 2, 4.
and is a substantial improvement compared to known results.

We further study randomization and probability distributiong TYPE [ ASYMPTOTIC OPTIMALITY [ REF ]
to data rewriting and study the expected performance. A codeWOM code QO is | (C) is asymptotically optimal | [15]
is calledstrongly robusif its asymptotic expected performance | @ complete graph) _ ] ]
is optimal forall rewriting sequences. It is calledeakly robust | WOM code @ is [ £(C) is asymptotically optimal | [6]
if the asymptotic expected performance is optimal for rewriting— complete graph)| when’ — O(1) .

! ASYMPLOMC expected pe P . floating code D t(C) is asymptotically optimal | [9]
following any i.i.d. distribution. We present a randomized| js a hypercube) | whenk = ®(1) and¢ = ©(1) | [10]
construction for strongly robust code and a deterministi¢ floating code D t(C) is asymptotically optimal | [9]
construction for weakly robust code. is a hypercube) | whenn = Q(klogk) and¢ = | [10]

Both our codes for general rewriting and our robust code i o) i i
are optimal up to constant factors (factors independent of the!°2ing code © | H(C) is asymptotically optimal | [19]
problem parameters). Namely, for a constart 1, we present suzeﬁyf:égum) whenn = Q(k’) and £ = ©(1)

. . . ; Dis | t(C) is asymptotically optimal | [2]
codesC for which £(C) is at leastr times that of the optimal | 4 de Bruijn graph)| whenn = Q(k) and? = ©(1) | [18]
code. We would like to note that for our robust codes the floating code P | weakly robust codes [71
constant involved is arbitrarily close to 1. is a hypercube) | whenk = ©(1) and?¢ =2

Due to the space limitation, we skip some details in multiple WOM code O is | #(C) is asymptotically optimal | this
places. Interested readers are referred to [11]. a complete graph)| whenn = Q(log” () . paper

more general t(C) is asymptotically optimal | this
Il. OVERVIEW OF RELATED RESULTS coding (D has when;; =Q(L), or thlr(l)ﬂn: paper

There has been distinguished theoretical study on con.m®mum out- | O(log”L) andAZ: o 10ggL_ )
strained memories. They include defective memories [12], ﬁgg{i‘:‘?&oﬁgs Z\ég%]pﬁoﬁcgl(yl/ogpt%é f(iﬁ) 1S
write once memory (WOM) [15],.vv.r|te unidirectional memory A= Kk(l— 1).)’ the worst case sense (worst
(WUM) [16], [17], and write efficient memory [1]. Among case over all data grapi).
them, WOM is the most related to the flash memory model robust coding Strongly robust codes when | this
studied in this paper. In a WOM, a cell’s state can change from L?log L = o(gn). Weakly paper
0 to 1 but not from 1 to 0. This model was later generalized robust codes whed = O(1).

with more cell states in [6], [8]. The objective of WOM codes
is to maximize the number of times that the stored data can
be rewritten. A number of very interesting WOM codes hav/g
been presented over the years [5] [6] [14] [15]. (For a more
detailed survey, please see [11].) In all the above works, thelLet ng,ny,n,...,1n; be d 41 positive integers and let
rewriting model assumes no constraints on the data, namely; Z‘fl:o n;, wheren denotes the number of flash cells, each
the data graplD is a complete graph. of g levels. We partition the: cells intod + 1 groups, each

With the increasing importance of flash memories, the flag¥ith ng, 11, ..., n,; cells, respectively. We call themegisters
memory model was proposed and studied recently in [2], [Ho, S1,- - -, Sa, respectively.

The rewriting schemes include floating codes [9], [10] and Our encoding uses the following basic scheme: we start by
buffer codes [2]. Both types of codes use the joint coding ofing registeiSy, called theanchor, to record the value of the
multiple variables for better rewriting capability. Their datanitial datavy € Vp. For the nextl rewrite operations we use
graphsD are generalized hypercubes and de Bruijn grapls differential scheme: denote hy, ..., v; € Vp the nextd
respectively. Multiple floating codes have been presentedilues of the rewritten data. In thieh rewrite,1 <i < d, we
including the code constructions in [9], [10], the flash codestore in registeiS; the identity of the edg€v; 1,v;) € Ep.

in [13], [19], and the constructions based on Gray codes in [We do not require a unique label for all edges globally, but
that optimize the expected rewriting performance. rather require thabcally, for each vertex in/p, its out-going

Compared to existing codes, the codes in this paper @dges have unique labels frofi,..., A}, whereA denotes
not only for a more general rewriting model, but also pradhe maximal out-degree in the data greph
vide asymptotically-optimal performance for a wider range Intuitively, the firstd rewrite operations are achieved by
of cases. This can be seen clearly from Table |, where thacoding thetrajectory taken by the input sequence starting
asymptotically-optimal codes are summarized. with the anchor data. Afted such rewrites, we repeat the
process by rewriting the next input froif, in the ancholS,
and then continuing withl edge labels ir64,...,S;.

We use the flash memory model of Example 2 and thelet us assume a sequence sofewrites have been stored
generalized rewriting model of Definition 3 in the rest of thishus far. To decode the last stored value all we need to know
paper. We first present a novel code constructionfridjectory is s mod (d + 1). This is easily achieved by usinf/q]
code then show its asymptotically-optimal performance.  more cells (not specified in the previodis- 1 registers), where

Trajectory Code Outline

I1l. TRAJECTORYCODE

1220



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

t is the total number of rewrite operations we would like to We now extend the above codeno> L cells. We divide
guarantee. For thege/q] cells we employ a simple encodingthen cells intob = |n/L] groups of sizd. (some cells may
scheme: in every rewrite operation we arbitrarily choose omemain unused). We first apply the code above to the first group
of those cells and raise its level by one. Thus, the total levef L cells, then to the second group, and so on.

In _';_r;]esedcellz_equam takes th | £ 1h Theorem 7. Let2 < L < n. The codeC in Construction6
e decoding process takes the value of the anchor guarantees(C) = n(q — 1)/8 = ©(ng) rewrites.

and then follows(s —1) mod (d + 1) edges which are read

consecutively fromSy,S,,.... Notice that this scheme is Proof: First assume: = L. When cell levely —1 andj
appealing in cases where the maximum out-degre®dé are used to store data (fgr=1,...,9 — 1), by the analysis
significantly lower than the state spatg. in [15], even if only one or two cells increase their levels with

Note that each registe;, fori = 0,...,d, can be seen as aeach rewrite, at leagt. + 4) /4 rewrites can be supported. So
smaller rewriting codevhose data graph is @mplete graph the L cells can support at Ieaéw rewrites. Now let
of either L vertices (forSy) or A vertices (forSy,...,S;). We n > L. Whenb = |n/L], it is easy to see thatL > n/2.
letd = 0 if D is a complete graph, and describe how todsetThe b groups of cells can guaranteéC) = % >
whenD is not a complete graph in section IlI-C. The encoding(g-1) _ @(nq) rewrites. -

used by each register is described in the next section. 2) The Case of Largd: We now consider the typical

setting in whichL is larger thann. The rewriting code we
present reduces the general case to that of the gaselL
In this section we present an efficiently encodable argudied above. We start by assuming that L < 2V". We
decodable code that enables us to store and rewrite symhwil$ address the general case at the end of this section.
from an input alphabeVp of size L > 2, and whereD is a Let b be the smallest positive integer value that satisfies
complete graph. The information is storedrirflash cells of Ul/be > L.
q levels each. (To use the code for regis$emwith i > 0, we ) .
just need to replacé by A.) Claim 8. For16 < n < L < 2V™ it holds thath <
We first state a scheme that allows approximatedy’ 8
rewrites in the case in which < L < n. We then extend it to
hold for generallL. andn. We present the quality of our code
constructions (namely the number of possible rewrites th .
perform) using the®(f) notation. Here, for functiong and etlis withq states each.

¢, we say thag — O(f) if ¢ is asymptotically bounded both 'Forz =1,2,...,b, letv; be a symbol from an alphabet of

1/b ho
above and below by up to a constant factor independent of2¢ n/b] > L. We may represent any sym k Vp as
) a vector of symbol$vy, vy, ... ,vy). Partition then flash cells
the variables off andg.

. . : into b groups, each withn/b| cells (some cells may remain
1) The Cas& < L < n: In this section we present a COOIeunused). Encoding the symbuolinto n cells is equivalent to
for small values ofL. The code we present is essentially th

i the encoding of eacty, into the corresponding group pfi /b
one presented in [15]. cells. As the alphabet size of eaghequals the number of cells
Construction 6. Let 2 < L < n. This construction is an t1S to be encoded into, we can use Constructdo storev;.

efficiently encodable and decodable rewriting calldor a Theorem10 Let16 < n < L < 2V". The codeC in
complete data grap with L states, and flash memory withConstructiord guarantees
n cells withq states each.

Let us first assume = L. Denote ther cell levels byt = HC) = ng—1logn _ o (”qlog”)
(co,c1,...,c1—1), wherec; € {0,1,...,q — 1} is the level of 16log L log L
thei-th cell fori = 0,1,...,L — 1. Denote the alphabet of rqyyrites.
data byVp = {0,1,...,L —1}. We first use only cell levels ) ] ]
0 and 1, and the data stored in the cellﬂg‘ol ic; (mod L). Eroof: Using Construction 9, the numper of reyvrltes
With each rewrite, we increase the minimum number of cdlPSSible is bounded by the number of rewrites possible for
levels from 0 to 1 so that the new cell state represents the rig@¢h of theb Cf‘ll groups. nBy The(irlem 7 arld 1§|2|m 8, thisis
data. (Clearlycy remains untouched as 0.) When the code c& least| %] - qT = (ﬁ - 1) qT =0 (%) . u
no longer support rewriting, we increase all cells (includig
from Oto 1, and start using cell levels 1 and 2 to store data in tﬁe
same way as above, except that the data stored in the cells us¥¥e now return to the outline of the trajectory code from
the formulay_-~}' i(c; — 1) (mod L). This process is repeatedSection llI-A and apply it in full detail using the codes from
q — 1 times in total. The general decoding function is therefo@ection 111-B2 to the case of data grapBswith bounded out-

B. Analysis for a Complete Data Graph

2log L
logn -

Construction9. Letn < L < 2V This construction is
an efficiently encodable and decodable rewriting cBder a
complete data graph with L states, and flash memory with

Analysis for a Bounded Out-Degree Data Graph

defined as degreeA. We refer to such graphs dsrestricted. To simplify
L1 our presentation, in the theorems below we will again use
Fy(@) = Y i(ci—co) (mod L). the ®(f) notation freely, however, as opposed to the previous

i section we will no longer state or make an attempt to optimize

1221



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

the constants involved in our calculations. We assume ti@flogn). Notice that the two expressions above are equal.

n < L < 2V". Notice that forL. < n, Construction 6 can be Thus, as in Theorem 12, we conclude that the total number of

used to obtain optimal codes (up to constant factors). rewrites in the scheme outlined in Section Ill-Adst 1 times
Using the notation of Section IlI-A, to realize the trajectoryhe bound for each registéf, and sot(C) = © ("lq;gi”). [ ]

code we need to specify the sizesand the value ofl. We

consider two cases: the case in whishs small compared to D. Optimality of the Schemes

n, and the case in which is large. We describe upper bounds on the number of rewrites in

Construction 11. Let A < nlognJ. We build an efficiently general rewriting schemes to complement the lower bounds

2log L _ induced by our constructions. We first note that any rewriting
encodable and decodable rewriting cddtor any A-restricted code C that stores symbols from some data graBhin 1

data graphD with L vertices anch flash cells ofg levels as g, celis of q levels supports at mos{(C) < n(q —1) =

follows. For the trajectory code, let = [logL/logn| = ) rewrites (as each rewrite increases at least 1 cell state
O(log L/ logn). Set the size of the +1 registers tong = ot jeast 1). For large values ¢f we can improve the

[n/2] andn; = [n/(2d)] > Afori=1,...d. (We obviously \\nner hound. First, let denote the largest integer such that
havez n; < n.) (VJrYl*l) <L-1.

The update and decoding functions of the trajectory abde* "
are defined as follows: Consider using the encoding sche®gim 15. Foralll < n < L — 1, it holds thatr > {bg(L—l)J
specified in Constructio® for the encoding of symbols from THogn
Vp in theny flash cells ofS, corresponding to the anchor, andheorem 16 Whenn < L —1, any rewriting cod€ that stores
using the scheme specified in Constructfofor the encoding Symbols from some data grafh in n flash cells ofy levels
of one of {1,...,A} in the flash cells of; (i = 1,...,d). supports at mog(C) = O (”?{};’%”) rewrites.
Notice that the latter is possibleas> A fori =1,...d.

. Proof: Let us examine some stateof the n flash cells,
Theorem 12 Let A < glggz . The codeC of Construc- currently storing some value € Vp, i.e., F;(s) = v. Having
tion 11 guarantees(C) = ®(nq) rewrites. no constraint on the input transition graph, the next symbol

__we want to store may be any of tHe— 1 symbolsv’ € Vp,
Proof: By Theorems 10 and 7, the number of rewrites, £ 0. y y y P

possible inS is equal (up to constant factors) to that Hf If we allow ourselves operations of increasing a single cell

(> 1): level of then flash cells (perhaps, operating on the same cell
o noqlogng\ o nqlogny o (™ _om more than once), we may reaQ{ﬁ*:’l) distinct new states.
logL ) logL ) (7) = O (nig) However, by our choicg™"’~!) < L —1 and so we need at

L . leastr + 1 such operations in the worst case. Since we have
Thus the total number of rewrites in the scheme outlined N tal of n cells with g levels each. the number of rewrite
Section Ill-A isd + 1 times the bound for each regist8y, q '

operations is upper bounded by

and sot(C) = O(ng). [ |
n(g—1 n(g—1 nglogn
Construction 13. Let |M%8" | < A < L. We build an  t(C) < g1 < (qﬁ ) _p(malosn)
. 2log L ” r+1 {bg(L 1)J 11 logL
efficiently encodable and decodable rewriting c@édéor any T+logn
A-restricted data grapt® with L vertices andn flash cells -

of q levels as follows. For the trajectory code, Igt = nlog _ _

llogL/logA| = ®(logL/logA). Set the size of the reg- Theorem 17. Let A > { 210§ LJ . There exist\-restricted data

isters tong = |n/2] andn; = |n/(2d)] fori =1,...d. graphsD over a vertex set of sizE, such that any rewriting
The update and decoding functions of the trajectory @bdecodeC that allows the representation of the corresponding

are defined as follows: Consider using the encoding schenestricted data im flash cells ofq levels supports at most

specified in Constructiof for both the encoding of symbolst(c) -0 (”ﬁ)loi ”) rewrites.

from Vp in theny flash cells o5y corresponding to the anchor, &

and the encoding of one dfi,...,A}in the flash cells o8; The proof of Theorem 17 appears in [11]. To prove our
(i=1,...,4). theorem we usé-restricted graph® whose diameted is at
mostO Gggi) (see, e.g., Chapter 10 of [3]).

Theorem 14 Let Hllgg’” < A < L. The code& of Construc-

tion 13 guarantees(C) = © (”?Olgi”) rewrites. IV. RosusT CobE
In this section, we study codes that optimize the expected
rewriting performance. As before, we focus on the flash

Proof: By Theorem 10, the number of rewrites possi

; . noqlogn nqlogn L
ble in Sp is: © (“LE) = ®( bgr) Similarly the memory model, where: cells of 4 levels are used to store
number of rewrites possible if; (i > 1): ® nilqloim) — the data from a data grapP of L vertices. We define a
: o

nqlogn nglogn strongly robust codéo be a randomized code that maximizes
© ( dlog A ) =0 ( Tog [ ) - Here we use the fact that @s<  the expected number of supported rewritesefeeryrewriting
log L it holds thatd = o(n) andlogn; = ©(logn —logd) = sequence. In this section, we present a code such that for every

1222



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

rewriting sequence, the expected number of supported rewritegie andL?logL = o(c?), ¢ = o(qn). By the Chernoff
isn(g—1)—o(ng). It is clearly strongly robust. bound, the probability that a fixed bin contains more tfgr
We define aweakly robust code¢o be a code that maxi- 1) . | %] balls is less tham—Q(c*/L%) By the union bound, the
mizes the expected number of supported rewritesefaery robability that any bin is full is is less thabhe—Q(?/1%) —
rewriting model that follows an i.i.d. distribution, specifiecg(l)' Sincen(q —1) — cy/n(g —1) = n(q — 1) — o(ng), we

as follows. Let{0,1,...,L — 1} dg_note the glphabet of theget the conclusion. -
data. Letpg, p1, ..., pL—1 be L positiveprobabilities such that
Yo pi = 1. Assume that events happen only at discrefd Weak Robustness

timesty, o, t3,..., and at time; (for j = 1,2,3,...), the data Construction 20. (WEAKLY RoBuUsT CODE) Given a cell
follows an i.i.d. distribution: it has valugwith probability p;, statef = (c1,¢2,...,¢cn), F4(C) = Zle ih; + Z?’:(g)*li mod
fori=0,1,...,L —1. Ifattimet;, the data changes to a valueL. The rewrite method is the same as in Constructién

_different from that of time/;_1, Fhen thereis a r_ewrit_e. Clearly, Theorem 21 Let L > 3 be a constant and let be a multiple
if at some moment the data isthe next rewrite will change ¢ 1 For g code of Construction20, for any i.i.d. rewriting
it to j # i with probability p;/ Y keqo....i-1,i+1,...-1} Pk- N model with a positive probability setpg, p1, - .., p1_1), the

this section, we present deterministiccode such that for expected number of rewrites it supportsi(g — 1) — o(nq).
any positive probability setpo, p1,...,pr-1). the expected

number of supported rewrites ifq — 1) — o(ng). This code
is clearly weakly robust.
In the trajectory code, the basic building block is a co

The proof of the above theorem is presented in [11]. Also
in [11], a more general construction of robust codes is shown
d%nd its properties are analyzed.

whose data grapl® is a complete graph and where> L. ACKNOWLEDGMENT
In this section, we focus on robust codes with> L. There  Thjs work was supported in part by the NSF CAREER
is no restriction on their data graphs. Award CCF-0747415, the NSF grant ECCS-0802107, the

Let (c1,¢2,...,cn) denote then cell levels in the flash |SE grant 480/08, the GIF grant 2179-1785.10/2007, and the

memory model. Giver' = (c1, ¢, ..., ¢x), define itsweight  cajtech Lee Center for Advanced Networking.
w(¢) asw(c) = Y1 4 ¢;. Clearly,0 < w(c) < (g —1)n. R

Assumen > L. Fori = 1,2,...,L, defineg, = EFERENCES

H < i< =1 if — — [1] R. Ahlswede and Z. Zhang, “On multiuser write-efficient memorid€EE
{] [ 1< jsmnj=i(mod L)}. For example, ifn = 8, L Trans. on Inform. Theotol. 40, no. 3, pp. 674—686, 1994.
3, then g1 = {1,4, 7},g2 = {2, 5,8},g3 = {3,6}. Also [2] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric multi-

i J— . . . i level memory,” in Proceedings of the 2007 IEEE International Symposium on
defme, hl 21681‘ C]’ where Cj IS thEJ th cell level. In the Information Theory (ISIT2007), Nice, Francéun. 2007, pp. 1186—1190.
following constructions, the cells in the same getwork as (3] B. Bollobas, Random Graphs (2nd Edition) Cambridge University Press, 2001.
a “super cell.” [4] P. Cappelletti, C. Golla, P. Olivo, and E. Zanofilash memories Kluwer
’ Academic Publishers, 1999.

[5] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-once
A. Strongly Robust Code memories,”IEEE Trans. on Inform. Theoryol. IT-32, no. 5, pp. 697-700, Sep.
. 1986.
Construction 18. (STRONGLY- RoBUST CODE) For all0 < 6] A. Fiat and A. Shamir, “Generalized “write-once” memorietfEE Trans. on

i < n(q—1) —1, choose the parameterindependently and Inform. Theory vol. IT-30, no. 3, pp. 470-480, May 1984.
; o i [7]1 H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating codes for expected
unlformly at randonfrom {0' L...,L 1}' Given a cell state performance,” inProc. of the Annual Allerton Conferenc2008.

C = (C1/ €2y, Cn), seth(E') = ZE ih; + ZW(C)71 a; mod [8] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once memory
!/ K —i=1"" i=0 _,l with state transitions described by an arbitrary directed acyclic grapHEHRE
L. For every rewrite, Qfe‘?dlly minimize the We’gbtc)- Trans. Information Theoryvol. 45, no. 1, pp. 308-313, 1999.
. . FIJ A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint information
The above code has a randomized construction that uses the siorage in write asymmetric memories,” #roc. IEEE Intemnational Symposium
random numbemo A1, ey py(g—1)—1- These random numbers on Information Theory (ISIT2007)2 Nice, Franciin. 2007, pp. 1166—1179.
. s 7%n(q-1) Elo A. Jiang and J. Bruck, “Joint coding for flash memory storage,Pinceedings
are stored in separate cells from the code, and are unrelated of the 2008 IEEE International Symposium on Information Theory (ISIT2008),

(that is, unknown) to the rewriting sequences. They are genT%r]l- Toronto, CanadaJul. 2008, pp. 1741-1745.

. A. Jiang, M. Langberg, M. Schwartz and J. Bruck, “Universal rewrit-
ated only once and can be used by many codes with the sa ing in constrained memories,” Caltech Technical Report, onlihetp

construction, so their cost can be omitted. / [www.paradise.caltech.edu/etr.html. o _
[12] A. V. Kuznetsov anq B. S. Tsy?akov, “Coding for memories with defective cells,”
Theorem 19 Let L2 logL = o(qn), and® mLOd L _ o(1). For Problemy Peredachi Informatsivol. 10, no. 2, pp. 5260, 1974.

: . [13] H. Mahdavifar, P. H. Siegel, A. Vardy, J. K. Wolf, and E. Yaakobi, “A nearly
a codeC of Constructionl8, for every rewriting sequence, the™ ~ optimal construction of flash codes,” Proc. IEEE International Symposium on

i i _ _ Information Theory (ISIT)Seoul, Korea, June-July 2009.
expected number of rewrites it supp Oft$l(.ﬂ 1) O(nq)' [14] F. Merkx, “WOM codes constructed with projective geometrieE@itment du

. H Signal vol. 1, no. 2-2, pp. 227-231, 1984.
Proof: We present a sketch of prOOf' For detalils, pleas[%] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memotwform. and

see [11]. By Construction 18, if we increalseby one, the data Control, vol. 55, pp. 1-19, 1982.

il i ; R i i i [16] G. Simonyi, “On write-unidirectional memory codefZEE Trans. on Inform. The-
will increase byl_ + () (modquL_). Sinceay, g is uniformly ory, vol. 35, no. 3, pp. 663-667, May 1989.
random, a rewrite will randomly increase someby one (for [17] F'M. J. Willems and A. J. Vinck, “Repeated recording for an optical disk,” in
i=1 L) See thel, super cells ad. bins each of which Proc. 7th Symp. Inform. Theory in the Beneltdday 1986, Delft Univ. Press, pp.
s 49-53.

can Contain@ balls . Each rewrite simulates the act ofi18] E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Buffer codes for multi-level flash mem-
: : : : : ory,” in Proceedings of the 2008 IEEE International Symposium on Information

throwing a ball uniformly at random into one of the bins, until ¢\ (1s1T2008), Toronto, Canadaoos, poster.

some hin is full. Suppose thﬂ(q — l) —Cy/ n(q — 1) balls are [19] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional flash codes,”

uniformly randomly thrown intd. bins. Herec is sufficiently in Proc. of the Annual Allerton Conferenc2008.

1223



