
Constant-Weight Gray Codes for
Local Rank Modulation

Moshe Schwartz
Electrical and Computer Engineering

Ben-Gurion University
Beer Sheva 84105, Israel

schwartz@ee.bgu.ac.il

Abstract—We consider the local rank-modulation scheme in
which a sliding window going over a sequence of real-valued
variables induces a sequence of permutations. The local rank-
modulation, as a generalization of the rank-modulation scheme,
has been recently suggested as a way of storing information in
flash memory.

We study constant-weight Gray codes for the local rank-
modulation scheme in order to simulate conventional multi-level
flash cells while retaining the benefits of rank modulation. We
provide necessary conditions for the existence of cyclic and cyclic
optimal Gray codes. We then specifically study codes of weight
2 and upper bound their efficiency, thus proving that there
are no such asymptotically-optimal cyclic codes. In contrast, we
study codes of weight 3 and efficiently construct codes which are
asymptotically-optimal.

I. INTRODUCTION

In a recent series of papers [16], [17], [21], [23], the
rank-modulation scheme was suggested as a way of storing
information in flash-memory devices. Basically, instead of a
conventional multi-level flash cell in which the charge level of
a single cell is measured and quantized to a symbol from the
input alphabet, in the rank-modulation scheme the permutation
induced by the relative charge levels of several cells is the
stored information. The scheme, first described in [16] in the
context of flash memory, works in conjunction with a simple
cell-programming operation called “push-to-the-top”, which
raises the charge level of a single cell above the rest of the
cells. It was suggested in [16] that this scheme eliminates
the over-programming problem in flash memories, reduces
corruption due to retention, and speeds up cell programming.

This is certainly not the first time permutations have been
used for modulation purposes. Permutations have been used
as codewords as early as the works of Slepian [20] (later
extended in [1]), in which permutations were used to digitize
vectors from a time-discrete memoryless Gaussian source, and
Chadwick and Kurz [6], in which permutations were used
in the context of signal detection over channels with non-
Gaussian noise (especially impulse noise). Further early stud-
ies include works such as [1]–[3], [5], [7], [8]. More recently,
permutations were used for communicating over powerlines
(for example, see [22]), and for modulation schemes for flash
memory [16], [17], [21], [23].

An important application for rank-modulation in the context
of flash memory was described in [16]. A set of n cells,
over which the rank-modulation scheme is applied, is used

to simulate a single conventional multi-level flash cell with n!
levels corresponding to the alphabet {0, 1, . . . , n!− 1}. The
simulated cell supports an operation which raises its value by
1 modulo n!. This is the only required operation in many
rewriting schemes for flash memories (see [4], [13]–[15],
[24]). This operation is realized by a Gray code traversing the
n! states where, physically, the transition between two adjacent
states in the Gray code is achieved by using a single “push-
to-the-top” operation.

Most generally, a gray code is a sequence of distinct
elements from an ambient space such that adjacent elements
in the sequence are “similar”. Ever since their original pub-
lication by Gray [11], the use of Gray codes has reached a
wide variety of areas. For a survey on Gray codes the reader
is referred to [18].

A drawback to the rank-modulation scheme is the need
for a large number of comparisons when reading the induced
permutation from a set of n cell-charge levels. Instead, in a
recent work [23] the n cells are partially viewed through a
sliding window resulting in a sequence of small permutations.
We call this the local rank-modulation scheme. The aim of
this work is to study Gray codes for the local rank-modulation
scheme. The paper is organized as follows: In Section II the
exact setting, notation, and definitions are presented. We study,
in Section III, necessary conditions for the existence of Gray
codes for our setting. In Section IV we give constructions
for Gray codes of low weight and study their efficiency. We
conclude in Section V with a summary of the results. Due
to space limitations, all proofs have been omitted, though the
statements of supporting lemmas provide a sketch of the proof
procedure for the main results.

II. DEFINITIONS AND NOTATION

A. Local Rank Modulation

Let us consider a sequence of t real-valued variables,
c = (c0, c1, . . . , ct−1), ci ∈ R, where we further assume
ci �= cj for all i �= j. The t variables induce a permutation
fc ∈ St, where St denotes the set of all permutations over
[t] = {1, 2, . . . , t}. The permutation fc is uniquely defined by
the constraints c fc(i)−1 > c fc(j)−1 for all i < j, i.e., if we sort c
in descending order, cj1 > cj2 > · · · > cjt then fc(i) = ji + 1
for all 1 � i � t.

Given a sequence of n variables, c = (c0, c1, . . . , cn−1),
we define a window of size t at position p to be cp,t =

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

869978-1-4244-7891-0/10/$26.00 ©2010 IEEE ISIT 2010

(cp, cp+1, . . . , cp+t−1), where the indices are taken modulo
n, and also 0 � p � n− 1, and 1 � t � n.

We now define the (s,t,n)-local rank-modulation (LRM)
scheme, which we do by defining the demodulation process.
Let s � t � n be positive integers, with s|n. Given a sequence
of n distinct real-valued variables, c = (c0, c1, . . . , cn−1), the
demodulation maps c to the sequence of n/s permutations
from St as follows: fc = (fc0,t , fcs,t , fc2s,t , . . . , fcn−s,t).

In the context of flash memory we shall consider the
n variables, c = (c0, c1, . . . , cn−1), to be the charge-level
readings from n flash cells. The demodulated sequence, fc,
will stand for the original information which was stored in
the n cells. This approach will serve as the main motivation
for this paper, as it was also for [16], [17], [21], [23].

We say a sequence f of n/s permutations over St is (s, t, n)-
LRM realizable if there exists c ∈ R

n such that f = fc, i.e.,
it is the demodulated sequence of c under the (s, t, n)-LRM
scheme. Except for the degenerate case of s = t, not every
sequence is realizable.

When s = t = n, the (n, n, n)-LRM scheme degenerates
into a single permutation from Sn. This was the case in
most of the previous works using permutations for modulation
purposes. A slightly more general case, s = t < n was
discussed by Ferriera et al. [10] in the context of permutation
trellis codes. Finally, the most general case was defined by
Wang et al. [23] (though in a slightly different manner where
indices are not taken modulo n, i.e., with no wrap-around).
In [23], the sequence of permutations was studied under a
charge-difference constraint called bounded rank-modulation,
and mostly with parameters s = t− 1, i.e., an overlap of one
position between adjacent windows.

Finding out the induced permutation from a sequence of t
real-valued readings requires at least Ω(t log t) comparisons.
Thus, to get the simplest hardware implementation we will
consider the case of t = 2 throughout the paper. The only
non-trivial case to consider is therefore s = 1, i.e., a (1, 2, n)-
LRM scheme. Demodulated sequences of permutations in
this scheme contain only the permutations [1, 2] and [2, 1],
and a single comparison between the charge levels of two
adjacent flash memory cells is required to find the permutation.
We will conveniently associate the logical value 1 with the
permutation [1, 2], and 0 with [2, 1], thus forming a simple
mapping between length n binary sequences and permutation
sequences from the (1, 2, n)-LRM scheme. It is easily seen
that the only two binary sequences not mapped to (1, 2, n)-
LRM sequences are the all-ones and all-zeros sequences.

B. Gray Codes for (1, 2, n)-LRM

Generally speaking, a Gray code, G, is a sequence of
distinct states (codewords), G = g0, g1, . . . , gN−1, from an
ambient state space, gi ∈ S, such that adjacent states in
the sequence differ by a “small” change. What constitutes a
“small” change usually depends on the code’s application.

Since we are interested in building Gray codes for flash
memory devices with the (1, 2, n)-LRM scheme, our ambient
space, which we denote as S(n), is the set of all realizable

sequences under (1, 2, n)-LRM. This is simply the set of all
the binary sequences of length n, excluding the all-ones and
all-zeros sequences, i.e.,

S = S(n) = {0, 1}n − {0n, 1n} .

Each of the codewords, gi ∈ G, is a string of n bits which
we shall denote as gi = gi,0, gi,1, . . . , gi,n−1. Throughout the
paper we will assume the index j in gi,j is taken modulo n,
and when appropriate, the index i is taken modulo N.

The transition between adjacent states in the Gray code is
directly motivated by the flash memory application, and was
previously described and used in [16]. This transition is the
“push-to-the-top” operation, which takes a single flash cell and
raises its charge level above all others.

In our case, however, since we are considering a local rank-
modulation scheme, the “push-to-the-top” operation merely
raises the charge level of the selected cell above those cells
which are comparable with it. As the window size is t = 2,
these cells are the ones directly before and after the se-
lected cell. Thus, we define the set of allowed transitions
as T = {τ0, τ1, . . . , τn−1}, which is a set of functions,
τj : S → S, where τj represents a “push-to-the-top” operation
performed on the j-th cell. If v = v0v1 . . . vn−1 ∈ S(n), then
v′ = v′0v′1 . . . v′n−1 = τj(v) if

v′k =

⎧⎪⎨
⎪⎩

0 k = j
1 k ≡ j + 1 (mod n)

vk otherwise.

Definition 1. A Gray code, G, for (1, 2, n)-LRM is a sequence
of distinct length-n binary codewords, G = g0, g1, . . . , gN−1,
where gi ∈ S(n). For all 0 � i � N − 2, we further require
that gi+1 = τj(gi) for some j. If g0 = τj(gN−1) for some j,
then we say the code is cyclic. We call N the size of the code,
and say G is optimal if N = 2n − 2.

When we perform a “push-to-the-top” operation on the j-th
cell, let us denote its initial charge level as cj, and its resulting
charge level as c′j. We set c′j to max

{
cj−1, cj+1

}
+ δ, where

δ > 0. Two important issues of concern are the difference in
charge levels involved in a “push-to-the-top” operation, and
cell saturation. In the former, the higher c′j − cj is, the more
risk of disturbing neighboring cells, while in the latter, the
higher we set c′j, the less number of updates to the cell before
it saturates. Both concerns benefit from a value of δ as low
as possible. Let us assume that a limited resolution exists and
thus δ is bounded from below by a constant, which w.l.o.g.,
we can assume is 1 (after a proper scaling).

Let us now assume an optimal setting in which a
“push-to-the-top” operation on the j-th cell sets c′j =

max
{

cj−1, cj+1
}

+ 1. A general Gray code for (1, 2, n)-LRM
may result in c′j− cj to be exponential in n, for some transition
from gi to gi+1. The same motivation in the case of (n, n, n)-
LRM was discussed in [16], where a balanced variant of Gray
codes was constructed to avoid the problem. We present a
different variant of Gray codes to address the same issue.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

870

First, for any binary string v = v0v1 . . . vn−1, we call the
number of 1’s in v the weight of v and denote it as wt(v).
We also denote by S(n, w) the set of length-n binary strings
of weight w. We now define our variant of Gray codes:

Definition 2. A constant-weight Gray code for (1, 2, n)-LRM,
G = g0, g1, . . . , gN−1, is a Gray code for (1, 2, n)-LRM for
which gi ∈ S(n, w) for all i.

Definition 3. Let G be a constant-weight Gray code for
(1, 2, n)-LRM with weight w and size N. The efficiency of G
is defined as Eff(G) = N/(n

w). If Eff(G) = 1 then we say G is
optimal. If Eff(G) = 1− o(1), where o(1) denotes a function
that tends to 0 as n → ∞, then we say G is asymptotically
optimal.

The transitions between adjacent states in the constant-
weight variant have a very simple form: a size-2 window
in gi which contains 10 is transformed in gi+1 into 01, i.e.,
“pushing” a 1 to the right. Since we are interested in creating
cyclic counters, we will be interested in cyclic Gray codes.
It should be noted that Gray codes with a weaker restriction,
allowing 1 to be pushed in either direction, have been studied
in the past (see [12] and references therein). It can shown
that under the constant-weight restriction, for any “push-to-
the-top” operation, c′j − cj �

⌈
max{w,n−w}
min{w,n−w}

⌉
.

III. NECESSARY CONDITIONS

We first present a simple necessary condition for the exis-
tence of a cyclic Gray code, and then expand it in the case of
cyclic optimal codes.

Theorem 4. Let G be a cyclic constant-weight Gray code of
size N for (1, 2, n)-LRM. Then n|N.

Proof: We prove the claim using a first-moment coloring
argument. For any v = v0v1 . . . vn−1 ∈ S(n, w), we define
the color of v as

χ(v) =

(
n−1

∑
j=0

j · vj

)
mod n.

If v, v′ ∈ S(n, w) and v′ = τj(v) for some j, then it follows
that χ(v′) ≡ χ(v) + 1 (mod n).

Let us now denote G = g0, g1, . . . , gN−1. By the previous
argument, i ≡ i′ (mod n) if an only if χ(gi) = χ(gi′). Since
the code is cyclic, it follows that N ≡ 0 (mod n).

We can use Theorem 4 to rule out the existence of cyclic
optimal codes in certain cases.

Theorem 5. If w is a prime, then there are no cyclic op-
timal weight-w Gray codes for (1, 2, n)-LRM for which
gcd(n, w) �= 1.

The divisibility condition set in Theorem 4 is not strong
enough. For example, if we take n = 12 and w = 6, then
indeed 12|(12

6), and the possible existence of a cyclic optimal
code with these parameters is not ruled out. However, by the
conditions described in the following theorem it is ruled out.

Theorem 6. If a cyclic optimal constant-weight Gray code for
(1, 2, n)-LRM exists, then there are exactly (n

w)/n strings of
each color in S(n, w).

The following theorem may be thought of as an extension
of Theorem 5 to the case of w not a prime.

Theorem 7. For any fixed weight w, there are at most a finite
a number of cyclic optimal weight-w Gray codes for (1, 2, n)-
LRM for which gcd(n, w) �= 1.

IV. LOW-WEIGHT ANALYSIS AND CONSTRUCTIONS

In this section we study constant-weight Gray codes for
(1, 2, n)-LRM having low weight, w � 3 (and by flipping bits
and reversing strings, for all w � n− 3). In the first trivial
case of w = 1, there exists a cyclic optimal code for all n.
As we shall later see, the next two cases w = 2, 3 behave
radically different: for w = 2 we will show that even cyclic
asymptotically-optimal codes do not exist, while for w = 3
we will construct cyclic asymptotically-optimal codes.

A. The Case of w = 2
For the case of w = 2 a brute-force approach will suffice.

For all n � 2, let us define the graph Gn whose vertex set is
S(n, 2) and an edge v → v′ exists iff v′ = τj(v) for some
0 � j � n− 1.

For convenience, we index the vertices in the following way:
vk,�, where 1 � k � (n− 1)/2 and 0 � � � n− 1, denotes
the vertex corresponding to the string having 1’s in positions
� and � + k. We shall conveniently refer to the first index as
the row index, and the second index as the column index.

Using this indexing method the graph Gn takes on a simple
form for odd n � 5 (the case n = 3 is more degenerate):
• A vertex of the form v1,� has a single outgoing edge to

v2,�.
• A vertex of the form vk,�, 1 < k < (n− 1)/2, has two

outgoing edges to vk+1,� and vk−1,�+1.
• A vertex of the form v(n−1)/2,� has two outgoing edges

to v(n−3)/2,�+1 and v(n−1)/2,�+(n+1)/2.
It is now evident that there is a one-to-one correspondence

between simple paths in Gn and Gray codes. A simple con-
struction for an optimal code which is (in general) not cyclic
is the following.

Construction 1. Let n � 3 be an odd integer. We construct the
following code G = g0, g1, . . . , gN−1. We first set g0 = v1,0,
and then set gi+1 as a function of gi = vk,� according to the
following rules:
• If k is odd and k < (n− 1)/2, then gi+1 = vk+1,�.
• If k is odd and k = (n− 1)/2, then gi+1 = vk,�+(n+1)/2.
• If k is even and � < n− k/2, then gi+1 = vk−1,�+1.
• If k is even and � = n− k/2, then gi+1 = vk+1,�.

Theorem 8. The code from Construction 1 is an optimal
constant-weight Gray code for (1, 2, n)-LRM with w = 2.

Theorem 9. Let G be a cyclic constant-weight Gray code for
(1, 2, n)-LRM with w = 2, n � 7. Then Eff(G) � 3

4 + o(1).

While the upper bound on the efficiency presented in
Theorem 9 is 3

4 + o(1), we conjecture that it actually is o(1).

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

871

B. The Case of w = 3

In this section we turn to constructing asymptotically-
optimal cyclic constant-weight Gray codes for (1, 2, n)-LRM
with w = 3. The construction will use a method originally
used for constructing single-track Gray codes in [9] and later
in [19]. In fact, the resulting codes will have the single-track
property as well.

If v = v0v1 . . . vn−1 is a length n word over some alphabet,
let E denote the cyclic-shift operator defined as:

Ev = vn−1v0v1 . . . vn−2.

The orbits under E are called necklaces. They are said to be
full period if the smallest positive integer i such that Eiv = v
is i = n. A full-period necklace contains n distinct strings.

We say a Gray code G = g0, g1, . . . , gN−1 has the single-
track property if in the matrix whose i-th row is gi, all the
columns are cyclic shifts of each other. A variant of the
following method was suggested in [9] for constructing single-
track Gray codes, and it applies equally-well to our set of
allowed transitions.

Lemma 10. Let G′ = g′0, g′1, . . . , g′N′−1 be a Gray code for
(1, 2, n)-LRM where g′i+1 = τji(g′i) for all 0 � i � N′ − 2.
If the strings in G′ are representatives of distinct full-period
necklaces, and E�g′0 = τjN′−1

g′N′−1, gcd(�, n) = 1, then the
following is a cyclic single-track Gray code:

G = G′, E�G′, E2�G′, . . . , E(n−1)�G′,

where EjG′ = Ejg′0, . . . , Ejg′N′−1.

We define the mapping ψ : S(n, 3) → Z
3
n as follows: for a

binary string v of length n and weight 3 with 1’s in positions
0 � i0 < i1 < i2 � n− 1, let

ψ(v) = (i1 − i0, i2 − i1, i0 − i2)

where subtraction is made modulo n. The set
{ψ(v) | v ∈ S(n, 3)} is the set of points (d0, d1, d2) ∈ Z

3

that are on the hyperplane d0 + d1 + d2 = n restricted to
1 � d0, d1, d2 � n− 2. We call ψ(v) the configuration of v.
We note that if gcd(n, 3) = 1, then S(n, 3) contains only
full-period strings, and otherwise, all strings are full-period
except those with configuration (n/3, n/3, n/3). We denote
by S∗(n, 3) the set of full-period strings from S(n, 3).

Since ψ(v), Eψ(v), and E2ψ(v), (corresponding to a cyclic
rotation of the axes of Z

3), represent strings from the same
necklace, for any v ∈ S∗(n, 3), let ψ′(v) stand for the unique
(d0, d1, d2) ∈

{
ψ(v), Eψ(v), E2ψ(v)

}
for which d1 � �n/3	

and d2 > �n/3	. Thus, there is a simple one-to-one mapping
from {ψ′(v) | v ∈ S∗(n, 3)} to the set of full-period neck-
laces. We call ψ′(v) the canonical configuration of v.

Simple counting reveals that there are a total of (n−1)(n−2)
2

configurations. When gcd(n, 3) = 1 there are (n−1)(n−2)
6 =

1
n (n

3) canonical configurations which is exactly the number of
weight-3 full-period necklaces. When gcd(n, 3) �= 1, there
are (n−1)(n−2)−2

6 canonical configurations.

Lemma 11. Let Δ = (d0, d1, d2) be a canonical configuration,
and assume Δ′ ∈ {(d0 + 1, d1 − 1, d2), (d0, d1 + 1, d2 −
1), (d0− 1, d1, d2 + 1)} is also a canonical configuration. Then
for any v ∈ S∗(n, 3) such that ψ′(v) = Δ there exists
v′ ∈ S∗(n, 3) such that ψ′(v′) = Δ′ and v′ = τj(v) for some
0 � j � n− 1.

We now intend to find a long cycle over canonical config-
urations which, by Lemma 11, will result in a Gray code of
representatives of distinct full-period necklaces. The latter will
be used with Lemma 10 to generate a cyclic constant-weight
Gray code for (1, 2, n)-LRM.

Construction 2. Let n � 9 be an integer. We construct
the following sequence of canonical configurations Γ =
Δ0, Δ1, . . . , ΔN′−1. We first set Δ0 = (1, 1, n− 2), and then
set Δi+1 as a function of Δi = (d0, d1, d2) according to the
following rules:
• If d0 = 1 and d1 < 3 ��n/3	 /3	, then set Δi+1 =

(d0, d1 + 1, d2 − 1).
• Else, if d1 ≡ 0 (mod 3), then set Δi+1 = (d0 + 1, d1 −

1, d2).
• Else, if d1 ≡ 2 (mod 3) and d2 > �n/3	+ 1, then set

Δi+1 = (d0, d1 + 1, d2− 1).
• Else, if d1 ≡ 2 (mod 3) and d2 = �n/3	+ 1 and d1 >

1, then set Δi+1 = (d0 + 1, d1 − 1, d2).
• Else, if d1 ≡ 1 (mod 3) and d0 > 2, then set Δi+1 =

(d0 − 1, d1, d2 + 1).
• To complete the cycle, if Δi = (1, 2, n − 3), then set

Δi+1 = (1, 1, n− 2).

Figure 1 shows an illustration of Construction 2.

Lemma 12. The path from Construction 2 visits only canonical
configurations, each visited no more than once, and has length
N′ given by

N′(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2−5n+18
6 n ≡ 0 (mod 9)

n2−5n+22
6 n ≡ 1 (mod 9)

n2−5n+24
6 n ≡ 2 (mod 9)

n2−7n+30
6 n ≡ 3 (mod 9)

n2−7n+30
6 n ≡ 4 (mod 9)

n2−7n+28
6 n ≡ 5 (mod 9)

n2−9n+36
6 n ≡ 6 (mod 9)

n2−9n+32
6 n ≡ 7 (mod 9)

n2−9n+26
6 n ≡ 8 (mod 9)

(1)

Lemma 13. Let G′ = g′0, g′1, . . . , g′N′−1 be a list of strings
from S∗(n, 3) (whose existence is guaranteed by Lemma 11)
such that Γ = ψ′(g′0), ψ′(g′1), . . . , ψ′(g′N′−1) is the cyclic path
from Construction 2. Let g∗ be the string (whose existence is
guaranteed by Lemma 11) such that ψ′(g∗) = ψ′(g′0) and
g∗ = τj(g′N′−1). Then g∗ = EN′/3g′0.

Theorem 14. For all n � 9 such that gcd(n, N′(n)/3) = 1,
where N′(n) is given by (1), there exists a cyclic constant-
weight Gray code for (1, 2, n)-LRM with w = 3 and size
N = n · N′(n), which is also single-track.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

872

Figure 1. The path from Construction 2 over the canonical configurations
for n = 22. The unvisited configurations are surrounded by a thick frame.

Lemma 15. There are infinite values of n ∈ N for which
gcd(n, N′(n)/3) = 1. More specifically, it suffices that n
satisfies one of the following:

• n ≡ 7, 11 (mod 18)
• n ≡ 13, 31, 49, 67 (mod 90)
• n ≡ 5, 23, 41, 59, 95, 113 (mod 126)
• n ≡ 1, 19, 37, 73, 91, 109, 127, 145, 163, 181 (mod 198)
• n ≡ 17, 35, 53, 71, 89, 107, 125, 161, 179, 197, 215, 233

(mod 234)

We note that the conditions described in Lemma 15 are not
the only cases in which gcd(n, N′(n)/3) = 1, but are just
the ones easy to derive. For instance, when n = 27, we have
gcd(n, N′(n)/3) = gcd(27, 34) = 1.

Corollary 16. There exists an infinite family {Gi} of constant-
weight Gray codes for (1, 2, ni)-LRM with w = 3, ni+1 > ni,
for which Eff(Gi) = 1− o(1).

The codes from Theorem 14 turn out to be optimal in the
cases of n = 10, 11 with sizes N = 120, 165 respectively.

V. CONCLUSION

We presented the general framework of (s, t, n)-local rank
modulation and focused on the specific case of (1, 2, n)-LRM
which is both the least-hardware-intensive, and the simplest
one to translate between binary strings and permutations.
We studied constant-weight Gray codes, which guarantee a
bounded charge difference in any “push-to-the-top” operation.
These are used to simulate conventional multi-level flash cells.

Using coloring and counting arguments we derived neces-
sary conditions for the existence of cyclic and cyclic optimal
constant-weight Gray codes for (1, 2, n)-LRM. While cyclic
optimal Gray codes exist (trivially) for w = 1, we showed that
for w = 2 their efficiency is upper bounded by 3

4 + o(1). In
contrast, for w = 3 asymptotically-optimal codes exist with

efficiency 1− o(1). The codes we constructed also come with
a relatively simple updating algorithm.

REFERENCES

[1] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for sources,”
IEEE Trans. on Inform. Theory, vol. IT-18, no. 1, pp. 160–169, Jan.
1972.

[2] I. F. Blake, “Permutation codes for discrete channels,” IEEE Trans. on
Inform. Theory, vol. 20, pp. 138–140, 1974.

[3] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,”
Inform. and Control, vol. 43, pp. 1–19, 1979.

[4] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric
multi-level memory,” in Proceedings of the 2007 IEEE International
Symposium on Information Theory (ISIT2007), Nice, France, Jun. 2007,
pp. 1186–1190.

[5] H. Chadwick and I. Reed, “The equivalence of rank permutation codes
to a new class of binary codes,” IEEE Trans. on Inform. Theory, vol. 16,
no. 5, pp. 640–641, 1970.

[6] H. D. Chadwick and L. Kurz, “Rank permutation group codes based
on Kendall’s correlation statistic,” IEEE Trans. on Inform. Theory, vol.
IT-15, no. 2, pp. 306–315, Mar. 1969.

[7] G. Cohen and M. Deza, “Decoding of permutation codes,” in Intl. CNRS
Colloquium, July, France, 1977.

[8] M. Deza and P. Frankl, “On maximal numbers of permutations with
given maximal or minimal distance,” J. Combin. Theory Ser. A, vol. 22,
1977.

[9] T. Etzion and K. G. Paterson, “Near optimal single-track Gray codes,”
IEEE Trans. on Inform. Theory, vol. 42, no. 3, pp. 779–789, May 1996.

[10] H. C. Ferriera, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation
trellis codes,” IEEE Trans. on Communications, pp. 1782–1789, Nov.
2005.

[11] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.
[12] T. Hough and F. Ruskey, “An efficient implementation of the Eades,

Hickey, Read adjacent interchange combination generation algorithm,”
J. of Comb. Math. and Comb. Comp., vol. 4, pp. 79–86, 1988.

[13] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint infor-
mation storage in write asymmetric memories,” in Proceedings of the
2007 IEEE International Symposium on Information Theory (ISIT2007),
Nice, France, Jun. 2007, pp. 1166–1170.

[14] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in
Proceedings of the 2008 IEEE International Symposium on Information
Theory (ISIT2008), Toronto, Canada, Jul. 2008, pp. 1741–1745.

[15] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” in Proceedings of the 2009 IEEE International
Symposium on Information Theory (ISIT2009), Seoul, Korea, Jun. 2009,
pp. 1219–1223.

[16] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[17] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
2010, to appear.

[18] C. D. Savage, “A survey of combinatorial Gray codes,” SIAM Rev.,
vol. 39, no. 4, pp. 605–629, Dec. 1997.

[19] M. Schwartz and T. Etzion, “The structure of single-track Gray codes,”
IEEE Trans. on Inform. Theory, vol. 45, no. 7, pp. 2383–2396, Nov.
1999.

[20] D. Slepian, “Permutation modulation,” in Proc. of the IEEE, vol. 53,
no. 3, 1965, pp. 228–236.

[21] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” Jul. 2009, submitted to the IEEE Trans. on
Inform. Theory. [Online]. Available: http://arxiv.org/pdf/0907.3387v2

[22] H. Vinck, J. Haering, and T. Wadayama, “Coded M-FSK for power
line communications,” in Proceedings of the 2000 IEEE International
Symposium on Information Theory (ISIT2000), Sorrento, Italy, 2000, p.
137.

[23] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded rank
modulation for flash memories,” in Proceedings of the 2009 IEEE
International Symposium on Information Theory (ISIT2009), Seoul,
Korea, Jun. 2009, pp. 1234–1238.

[24] E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Buffer codes for multi-
level flash memory,” in Proceedings of the 2008 IEEE International
Symposium on Information Theory (ISIT2008), Toronto, Canada, 2008,
poster.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

873

