
Generalized Gray Codes for

Local Rank Modulation

Eyal En Gad

Elec. Eng.

Caltech

Pasadena, CA 91125, U.S.A.

eengad@caltech.edu

Michael Langberg

Comp. Sci. Division

Open University of Israel

Raanana 43107, Israel

mikel@openu.ac.il

Moshe Schwartz

Elec. and Comp. Eng.

Ben-Gurion University

Beer Sheva 84105, Israel

schwartz@ee.bgu.ac.il

Jehoshua Bruck

Elec. Eng.

Caltech

Pasadena, CA 91125, U.S.A.

bruck@paradise.caltech.edu

Abstract—We consider the local rank-modulation scheme in
which a sliding window going over a sequence of real-valued
variables induces a sequence of permutations. Local rank-
modulation is a generalization of the rank-modulation scheme,
which has been recently suggested as a way of storing information
in flash memory.

We study Gray codes for the local rank-modulation scheme
in order to simulate conventional multi-level flash cells while
retaining the benefits of rank modulation. Unlike the limited
scope of previous works, we consider code constructions for the
entire range of parameters including the code length, sliding
window size, and overlap between adjacent windows. We show
our constructed codes have asymptotically-optimal rate. We also

provide efficient encoding, decoding, and next-state algorithms.

I. INTRODUCTION

With the recent application to flash memories, the rank-

modulation scheme has gained renewed interest as evident in

the recent series of papers [7], [12], [13], [15], [17], [19].

In the conventional modulation scheme used in flash-memory

cells, the absolute charge level of each cell is quantized to one

of q levels, resulting in a single demodulated symbol from

an alphabet of size q. In contrast, in the rank modulation

scheme a group of n flash cells comprise a single virtual

cell storing a symbol from an alphabet of size n!, where

each symbol is assigned a distinct configuration of relative

charge levels in the n cells. Thus, there is no more need

for threshold values to distinguish between various stored

symbols, which mitigates the effects of retention in flash cells

(slow charge leakage). In addition, if we allow only a simple

programming (charge-injection) mechanism called “push-to-

the-top”, whereby a single cell is driven above all others in

terms of charge level, then no over-programming can occur,

a problem which considerably slows down programming in

conventional multi-level flash cells.

Rank modulation has been studied intermittently since the

early works of Slepian [16] (later extended in [1]), in which

permutations were used to digitize vectors from a time-discrete

memoryless Gaussian source, and Chadwick and Kurz [5],

in which permutations were used in the context of signal

detection over channels with non-Gaussian noise (especially

impulse noise). Other works on the subject include [1]–[4],

[6]. More recently, permutations were used for communicating

This work was supported in part by ISF grant 134/10, ISF grant 480/08, the
Open University of Israel’s research fund (grant no. 46114), the NSF grant
ECCS-0802107, and an NSF-NRI award.

over powerlines (for example, see [18]), and for flash memory

modulation schemes [12], [13], [17], [19].

One drawback to the rank-modulation scheme is the fact that

we need to reconstruct the permutation induced by the relative

charge levels of the participating cells. If n cells are involved,

at least Ω(n log n) comparisons are needed, which might be

too high for some applications. It was therefore suggested in

[7], [15], [19] that only local comparisons be made, creating

a sequence of small induced permutations instead of a single

all-encompassing permutation. This obviously restricts the

number of distinct configurations, and thus, reduces the size of

the resulting alphabet as well. In the simplest case, requiring

the least amount of comparisons, the cells are located in a

one-dimensional array and each cell is compared with its two

immediate neighbors requiring a single comparator between

every two adjacent cells [7], [15].

Yet another drawback of the rank-modulation scheme is the

fact that distinct n charge levels are required for a group of

n physical flash cells. Therefore, restricted reading resolution

prohibits the use of large values of n. However, when only

local views are considered, distinct values are required only

within a small local set of cells, thus enabling the use of large

groups of cells with local rank modulation.

An important flash-memory rank-modulation application

was described in [12]: A set of n cells, over which the rank-

modulation scheme is applied, is used to simulate a single

conventional multi-level flash cell with n! levels corresponding
to the alphabet {0, 1, . . . , n!− 1}. The simulated cell supports

an operation which raises its value by 1 modulo n!. This is the
only required operation in many rewriting schemes for flash

memories (see [11] and references therein), and it is realized in

[12] by a Gray code traversing the n! states where, physically,
the transition between two adjacent states in the Gray code

is achieved by using a single “push-to-the-top” operation. In

the context of local rank modulation, Gray codes for the local

scheme were studied in [7], [15], where necessary conditions

as well as constructions were provided.

Having considered the two extremes: full rank modulation

with a single permutation of n cells, and extreme local

rank modulation with a sequence of n permutations over 2
elements, the question of whether any middle-road solutions

exist remains open. We address this question in this paper

by considering the generalized local rank modulation scheme

in which a sequence of several permutations of a given size

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 839

provide the local views into ranking of the cells. We construct

Gray codes for this scheme with asymptotically-optimal rate,

and consider efficient encoding/decoding algorithms, as well

as efficient next-state computation.

The rest of the paper is organized as follows. In Section II

we give preliminary definitions and notation. In Section III

we present our construction for optimal local rank modulation

for general degrees of locality. We conclude with a discussion

in Section IV. Due to space limitation, the proofs are omitted

and appear in the full version of this work [8].

II. DEFINITIONS AND NOTATION

We shall now proceed to introduce the notation and defini-

tions pertaining to local rank modulation and Gray codes. We

will generally follow the notation introduced in [7], [15].

A. Local Rank Modulation

Let us consider a sequence of t real-valued variables,

c = (c0, c1, . . . , ct−1)∈R
t, where we further assume ci 6= cj

for all i 6= j. The t variables induce a permutation fc ∈ St,
where St denotes the set of all permutations over [t] =
{0, 1, 2, . . . , t− 1}. The permutation fc is defined as

fc(i) =
∣

∣

{

j | cj < ci
}
∣

∣ .

Loosely speaking, fc(i) is the rank of the ith cell in ascending

order. This ranking is equivalent to the permutation described

in [7], [15], though different.

Given a sequence of n variables, c = (c0, c1, . . . , cn−1), we
define a window of size t at position p to be

cp,t = (cp, cp+1, . . . , cp+t−1)

where the indices are taken modulo n, and also 0 6 p 6 n− 1,
and 1 6 t 6 n. We now define the (s,t,n)-local rank-

modulation (LRM) scheme, which we do by defining the

demodulation process. Let s 6 t 6 n be positive integers,

with s|n. Given a sequence of n distinct real-valued variables,

c = (c0, c1, . . . , cn−1), the demodulation maps c to the

sequence of n/s permutations from St as follows:

fc = (fc0,t , fcs,t , fc2s,t , . . . , fcn−s,t). (1)

Loosely speaking, we scan the n variables using windows

of size t positioned at multiples of s and write down the

permutations from St induced by the local views of the

sequence.

In the context of flash-memory storage devices, we shall

consider the n variables, c = (c0, c1, . . . , cn−1), to be the

charge-level readings from n flash cells. The demodulated

sequence, fc, will stand for the original information which

was stored in the n cells. This approach will serve as the

main motivation for this paper, as it was also for [7], [12],

[13], [15], [17], [19]. See Figure 1 for an example.

We say a sequence f of n/s permutations over St is (s, t, n)-
LRM realizable if there exists c∈R

n such that f = fc, i.e.,

it is the demodulated sequence of c under the (s, t, n)-LRM
scheme. Except for the degenerate case of s = t, not every

fc = ([3, 0, 2, 4, 1], [4, 2, 0, 1, 3], [0, 3, 4, 2, 1])

Figure 1. Demodulating a (3, 5, 9)-locally rank-modulated signal.

sequence is realizable. We denote the set of all (s, t, n)-LRM
realizable permutation sequences as R(s, t, n).
While any f∈R(s, t, n) may be represented as a sequence

of n/s permutations over St, a more succinct representa-

tion is possible based on the (mixed-radix) factoradic nota-

tion system (see [14] for the earliest-known definition, and

[12] for a related use): We can represent any permutation

f = [f (0), . . . , f (t − 1)]∈ St with a sequence of digits

dt−1, dt−2, . . . , d1, d0, where di ∈Zi, and di counts the num-

ber of elements to the right of f (i) which are of lower

value. We call dt−1 the most significant digit and d0 the least

significant digit. If f = fc for some c∈R
t, then the factoradic

representation is easily seen to be equivalent to counting the

number of cells to the right of the ith cell which are with

lower charge levels.

Continuing with our succinct representation, we now con-

tend that due to the overlap between local views, we can then

represent each of the local permutations fci·s,t using only the s
most-significant digits in their factoradic notation. We denote

this (partial) representation as f̄ci·s,t . Accordingly, we define,

f̄c = (f̄c0,t , f̄cs,t , f̄c2s,t , . . . , f̄cn−s,t),

and the set of all such presentations as R̄(s, t, n). Thus, for
example, the configuration of Figure 1 would be represented

by ((3, 0, 1), (4, 2, 0), (0, 2, 2)).

Lemma 1. For all 1 6 s 6 t 6 n,

∣

∣R̄(s, t, n)
∣

∣ 6 |R(s, t, n)| 6 (t− s)! ·
(

t!

(t− s)!

)
n
s

.

When s = t = n, the (n, n, n)-LRM scheme degenerates

into a single permutation from Sn. This was the case in

most of the previous works using permutations for modulation

purposes. A slightly more general case, s = t < n was

discussed by Ferreira et al. [9] in the context of permutation

trellis codes, where a binary codeword was translated tuple-

wise into a sequence of permutation with no overlap between

the tuples. An even more general case was defined by Wang

et al. [19] (though in a slightly different manner where indices

are not taken modulo n, i.e., with no wrap-around). In [19],

the sequence of permutations was studied under a charge-

difference constraint called bounded rank-modulation, and

mostly with parameters s = t − 1, i.e., an overlap of one

position between adjacent windows. Finally, using the same

terminology as this paper, the case of (1, 2, n)-LRM was

considered in [7], [15].

840

B. Gray Codes

Generally speaking, a Gray code, G, is a sequence of

distinct states (codewords), G = g0, g1, . . . , gN−1, from an

ambient state space, gi ∈ S, such that adjacent states in the

sequence differ by a “small” change. What constitutes a

“small” change usually depends on the code’s application.

Since we are interested in building Gray codes for flash

memory devices with the (s, t, n)-LRM scheme, our ambient

space is R(s, t, n), which is the set of all realizable sequences

under (s, t, n)-LRM.

The transition between adjacent states in the Gray code is

directly motivated by the flash memory application, and was

first described and used in [12], and later also used in [7],

[15]. This transition is the “push-to-the-top” operation, which

takes a single flash cell and raises its charge level above all

others.

In our case, however, since we are considering a local rank-

modulation scheme, the “push-to-the-top” operation merely

raises the charge level of the selected cell above those cells

which are comparable with it. Thus, we define the set of

allowed transitions as T = {τ0, τ1, . . . , τn−1}, which is a set

of functions, τj : R(s, t, n) → R(s, t, n), where τj represents

a “push-to-the-top” operation performed on the j-th cell. More

precisely, let f be an (s, t, n)-LRM realizable sequence of

permutations, i.e., there exists c∈R
n such that f = fc. Now

define the transition τj acting on f as f′ = f′
c′ realizable by the

variables c′ = (c′0, . . . , c
′
n−1)∈R

n such that c′j is pushed to a

value higher than all of its comparable cells. We denote r(j) as
the rightmost index (cyclically) among the cells that share a

window with c′j, and l(j) as the leftmost index (cyclically)

among them. We can find r(j) and l(j) by the following

expressions:

l(j) = s

⌈

j− t + 1

s

⌉

mod n,

r(j) =

(

s

⌊

j

s

⌋

+ (t− 1)

)

mod n.

Now c′ is given by the following expression:

c′i =

{

ci i 6= j,

max
{

cl(i), . . . , cr(i)

}

+ 1 i = j.

Definition 2. A Gray code G for (s, t, n)-LRM (denoted

(s, t, n)-LRMGC) is a sequence of distinct codewords, G =
g0, g1, . . . , gN−1, where gi ∈R(s, t, n). For all 0 6 i 6 N− 2,
we further require that gi+1 = τj(gi) for some j. If g0 =
τj(gN−1) for some j, then we say the code is cyclic. We call N
the size of the code, and say G is optimal if N = |R(s, t, n)|.

Definition 3. We say a family of codes, {Gi}∞
i=1, where Gi is

an (s, t, ni)-LRMGC of size Ni, ni+1 > ni, is asymptotically

optimal if

lim
i→∞

log2 Ni

log2 |R(s, t, ni)|
= 1.

III. GRAY CODES FOR (s, t, n)-LRM

In this section we present efficiently encodable and de-

codable asymptotically-optimal Gray codes for (s, t, n)-LRM.

A rough description of our construction follows. First we

partition the n cells into m blocks each of size n/m. To

simplify our presentation we set m =
√
n, implying that we

have m blocks, each of size m. Denote the cells in block i by
ci. For each block ci we will use the factoradic representation

f̄ci to represent permutations in R̄(s, t,m). Namely, each and

every block can be thought of an element of an alphabet

Σ = {v0, . . . , vV−1} of size V.

Now, consider any de-Bruijn sequence S of order m − 1
over Σ (of period Vm−1). Namely, S will consist of a sequence

of Vm−1 elements vs0 , vs1, . . . , vsVm−1−1
over Σ such that the

subsequences vsi , . . . , vsi+m−2
of S cover all (m− 1)-tuples of

Σ exactly once, sub-indices of s taken modulo Vm−1. Here,

si ∈ [V]. Such sequences S exist, e.g., [10].

We are now ready to construct our Gray code G. The

construction will have two phases. First we construct so-called

anchor elements in G, denoted as Ḡ = {g0, . . . , gL−1}. The
elements of Ḡ will consist of a cyclic Gray code over Σm. That

is, the difference between each gi and gi+1 in Ḡ will be in

only one out of the m characters (from Σ) in gi. Specifically,
the code Ḡ will be derived from the de-Bruijn sequence S as

follows: we set g0 to be the first m elements of S, and in the

transition from gi to gi+1 we change vsi to vsi+m
. The code

Ḡ is detailed below:

g0 = vsm−1 vsm−2 . . . vs1 vs0
g1 = vsm−1 vsm−2 . . . vs1 vsm
g2 = vsm−1 vsm−2 . . . vsm+1 vsm

...

gL−2 = vsL−1 vsL−2 . . . vs1 vs0
gL−1 = vsL−1 vsm−2 . . . vs1 vs0

where L = lcm(m,Vm−1), the sub-indices of s are taken

modulo Vm−1, and the underline is an imaginary marking

distinguishing the block which is about to change.

With the imaginary marking of the underline, the code

Ḡ is clearly a Gray code over Σm due to the properties of

the de-Bruijn sequence S. However Ḡ does not suffice for

our construction as the transitions between the anchors gi
and gi+1 involve changing the entries of an entire block,

which may involve many push-to-the-top operations. We thus

refine Ḡ by adding additional elements between each pair of

adjacent anchors from Ḡ that allow us to move from the block

configuration in gi to that in gi+1 by a series of push-to-the-top

operations. Our construction is summarized below formally.

Construction 1. We consider the (s, t, n)-LRM, let n be a

square, m =
√
n > t + 2, and require that s|m. Let

{v0, v1, . . . , vV−1} be a set of V distinct mixed-radix vectors

of length m taken from ([t] × [t − 1] × · · · × [t − s])m/s.

The values of the last s(⌈(t+ 2)/s⌉ − 1) digits of each vi
do not play a role in the representation of the stored data and

are called non-information digits, so by abuse of notation, a

841

mixed-radix vector (r0, r1, . . . , rm−1) actually represents the

value (r0, r1, . . . , rm−1−s(⌈(t+2)/s⌉−1)) regardless of the value

of the last s(⌈(t+ 2)/s⌉ − 1) elements. Therefore, we get

V =

(

t!

(t− s)!

)
m
s −⌈ t+2

s ⌉+1

.

We also denote L = lcm(m,Vm−1).
Consider a de-Bruijn sequence S of order m − 1 over the

alphabet {0, 1, . . . ,V − 1}. The Gray code Ḡ of anchor vectors

is a sequence g0, g1, . . . , gL−1 of L mixed-radix vectors of

length m2 = n. Each vector is formed by a concatenation of

m blocks of length m. Between the anchors gi and gi+1, the

block vsi is transformed into the block vsi+m
.

Within each of the m blocks comprising any single anchor,

the (m − 2)nd digit (the second-from-right digit – a non-

information digit) is set to 1 in all blocks except for the

underlined block. For brevity, we call this digit the underline

digit.

Between any two anchors, gi and gi+1, a sequence of vectors

called auxiliary vectors and denoted g0i , g
1
i , . . . , g

ℓi
i , is formed

by a sequence of push-to-the-top operations on the cells of

the changing block. The auxiliary vectors are determined by

Algorithm 1 described shortly.

In what follows we present Algorithm 1 that specifies the

sequence g0i , g
1
i , . . . , g

ℓi
i that allow us to move from anchor

state gi to state gi+1. As gi and gi+1 differ only in a single

block (and this block is changed from vsi to vsi+m
), the same

will hold for the sequence g0i , g
1
i , . . . , g

ℓi
i , i.e., g

j
i and g

j′

i will

only differ in the block in which gi and gi+1 differ. Thus, it

suffices to define in Algorithm 1 how to change a block of

length m with cell values that represent vsi into a block that

represents vsi+m
using push-to-the-top operations. However,

we call the attention of the reader to the fact that while

the change in represented value affects only one block, for

administrative reasons we also push cells of the block to the

left (cyclically).

We now present Algorithm 1 and describe some of its

properties. We then prove that indeed the resulting code

G is an asymptotically-optimal cyclic (s, t, n)-LRMGC. We

assume that the following algorithm is applied to positions

{0, 1, . . . ,m− 1}. We further assume (r0, r1, . . . , rm)∈ ([t]×
[t− 1] × · · · × [t− s])m/s represents the value vℓ. Then we

say the jth digit of vℓ is

vℓ(j) =

{

rj 0 6 j < m− s(⌈(t+ 2)/s⌉ − 1)

0 otherwise.

Finally, we restrict l(·) and r(·) by defining

l′(j) =

{

l(j) 0 6 l(j) 6 m− 3

0 otherwise

r′(j) =

{

r(j) 0 6 r(j) 6 m− 3

m− 3 otherwise

Algorithm 1 Transform block vsi to block vsi+m

Push the rightmost cell of the block to the left (cyclically)

aj ⇐ 0 for all j = 0, 1, . . . ,m− 3
j ⇐ 0
repeat

if vsi+m
(j) =

r′(j)

∑
i=j+1

ai and aj = 0 then

Push the jth cell of current block.

aj ⇐ 1
j ⇐ l′(j)

else

j ⇐ j + 1
end if

until j = m− 2
Push the next-to-last cell of current block.

Our algorithm changes a block of length m with cell values

that represent vsi into one that represents vsi+m
using push-

to-the-top operations. It is strongly based on the factoradic

representation of vsi+m
. Let vsi+m

(j) be the jth entry in

this representation. Namely, if c = (c1, . . . , cm) is a cell

configuration that corresponds to vsi+m
, then for each index

j∈ [m] the number of entries in the window corresponding to

j that are to the right of j and are of value lower than cj equal
vsi+m

(j). Roughly speaking, to obtain such a configuration c,

our algorithm, for j∈ [m], pushes each cell cj in c to the top

exactly once and only after exactly j cells to the right of cj
(and participating in the window corresponding to j) have been
pushed to the top. As each time a cell is changed it is pushed

to the top, this will ensure that the resulting cell configuration

c will have a factoradic representation corresponding to vsi+m
.

A few remarks are in place. In order to keep track of which

cells were pushed during our algorithm, we save an array of

bits aj for each cell in the block (initialized to 0), indicating

whether the cell cj has been pushed before. We note that in

order to be able to decode a state, we need to have some

way to know which block is being currently changed, i.e., the

imaginary underline in the anchor. We use the last two cells

of each block for that purpose.

Example 4. Take the case of (1, 2, 16)-LRMwith m = 4, V =
2, and a de-Bruijn sequence of order 3 and alphabet of size 2 is

S = 00010111. The list of anchors is

g0 = 1010 0010 0010 0000
g1 = 1010 0010 0000 0010
g2 = 1010 0000 1010 0010
g3 = 1000 1010 1010 0010
g4 = 1010 1010 1010 0000
g5 = 1010 1010 1000 0010
g6 = 1010 1000 0010 0010
g7 = 1000 0010 0010 0010

The bold bit (the leftmost bit in each group of four) denotes

the information bit, while the rest are non-information bits. We

842

note that the underlined vectors are easily recognizable by next-

to-right bit being 0.
Notice that in this example the information bit is dominated

in size by the remaining bits of each block. This is an artifact of

our example in which we take n be be small. For large values

of n the overhead in each block is negligible with respect to the

information bits.

As an example, the transition between g1 and g2 is (the

changed positions are underlined)

g1 = 1010 0010 0000 0010
g01 = 1010 0001 0000 0010
g11 = 1010 0001 0100 0010
g21 = 1010 0000 1100 0010
g2 = 1010 0000 1010 0010

2

We now address the analysis of Algorithm 1.

Lemma 5. Assuming the underline is known, all anchors used

in Construction 1 are distinct.

Lemma 6. Algorithm 1 maintains the correctness of the under-

line digit in anchors. Also, between any two adjacent anchors,

Algorithm 1 guarantees the underline digits of the changing

block and the block to its left (cyclically), are both not maximal.

Lemma 7. Algorithm 1 terminates, and when it does, all of the

cells are pushed exactly once.

Theorem 8. Algorithm 1 changes a block representing vsi into
a block representing vsi+m

.

One drawback of Algorithm 1 is that it may visit a codeword

multiple times. For example, assume a (1, 2, 25)-LRM scheme,

with vsi = 11XXX and vsi+5
= 10XXX, where X is the

“don’t care” symbol. The algorithm would, after an initial push

of a cell on the adjacent block to the left, first push cell 1,
changing the block state to 01XXX. Afterwards, the algorithm

would push cell 0, changing the state back to vsi .
To solve that problem, we suggest to simulate the entire

remaining execution of the algorithm every time we push

a cell. If the resulting configuration after the planned push

appears another time in the future, we change the algorithm’s

inner state to that of the latest such repeat appearance. That

way we make sure that each codeword appears only once in

the Gray code. We call the revised algorithm the repetition-

avoiding algorithm.

Lemma 9. The time complexity of the repetition-avoiding al-

gorithm is O(tn).

Combining all of our observations up to now, we are

able to summarize with the following theorem for G from

Construction 1.

Theorem 10. G is a cyclic gray code of size at least L.

Corollary 11. For all constants 1 6 s < t, there exists an

asymptotically-optimal family of codes, {Gi}∞
i=t+2, where Gi

is an (s, t, ni)-LRMGC of size Ni, ni+1 > ni, with

lim
i→∞

log2 Ni

log2 |R(s, t, ni)|
= 1.

IV. CONCLUSIONS

We presented the framework for (s, t, n)-local rank modu-

lation, and studied Gray codes for the most general case. The

codes we present are asymptotically optimal.

Several questions remain open. For the case of (1, 2, n)-
LRM, a previous work describes asymptotically-optimal codes

for which the weight of the codewords is constant and ap-

proaches n
2 [7]. That property guarantees a bounded charge

difference in any “push-to-the-top” operation. Constant-weight

codes for the general case are still missing. Of more general

interest is the study of codes that cover a constant fraction of

the space.

REFERENCES

[1] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for sources,”
IEEE Trans. on Inform. Theory, vol. IT-18, no. 1, pp. 160–169, Jan.
1972.

[2] I. F. Blake, “Permutation codes for discrete channels,” IEEE Trans. on

Inform. Theory, vol. 20, pp. 138–140, 1974.
[3] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,”

Inform. and Control, vol. 43, pp. 1–19, 1979.
[4] H. Chadwick and I. Reed, “The equivalence of rank permutation codes

to a new class of binary codes,” IEEE Trans. on Inform. Theory, vol. 16,
no. 5, pp. 640–641, 1970.

[5] H. D. Chadwick and L. Kurz, “Rank permutation group codes based
on Kendall’s correlation statistic,” IEEE Trans. on Inform. Theory, vol.
IT-15, no. 2, pp. 306–315, Mar. 1969.

[6] G. Cohen and M. Deza, “Decoding of permutation codes,” in Intl. CNRS

Colloquium, July, France, 1977.
[7] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “On a construction

for constant-weight gray codes for local rank modulation,” in Proceed-

ings of the 2010 IEEE 26-th Convention of Electrical and Electronic

Engineers in Israel (IEEEI2010), Eilat, Israel, Nov. 2010, p. 996.
[8] ——, “Generalized gray codes for local rank modulation,” Manuscript

availiable at http://paradise.caltech.edu/papers/etr107.pdf, 2011.
[9] H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation

trellis codes,” IEEE Trans. on Communications, pp. 1782–1789, Nov.
2005.

[10] S. W. Golomb, Shift Register Sequences. Holden-Day, San Francisco,
1967.

[11] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” in Proceedings of the 2009 IEEE International

Symposium on Information Theory (ISIT2009), Seoul, Korea, Jun. 2009,
pp. 1219–1223.

[12] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[13] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[14] C. A. Laisant, “Sur la numération factorielle, application aux permu-
tations,” Bulletin de la Société Mathématique de France, vol. 16, pp.
176–183, 1888.

[15] M. Schwartz, “Constant-weight Gray codes for local rank modulation,”
in Proceedings of the 2010 IEEE International Symposium on Informa-

tion Theory (ISIT2010), Austin, TX, U.S.A., Jun. 2010, pp. 869–873.
[16] D. Slepian, “Permutation modulation,” in Proc. of the IEEE, vol. 53,

no. 3, 1965, pp. 228–236.
[17] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the

rank-modulation scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[18] H. Vinck, J. Haering, and T. Wadayama, “Coded M-FSK for power
line communications,” in Proceedings of the 2000 IEEE International

Symposium on Information Theory (ISIT2000), Sorrento, Italy, 2000, p.
137.

[19] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded rank
modulation for flash memories,” in Proceedings of the 2009 IEEE

International Symposium on Information Theory (ISIT2009), Seoul,
Korea, Jun. 2009, pp. 1234–1238.

843

