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Abstract—Codes over permutations under the infinity norm
have been recently suggested as a coding scheme for correcting
limited-magnitude errors in the rank modulation scheme. Given
such a code, we show that a simple relabeling operation, which
produces an isomorphic code, may drastically change the minimal
distance of the code. Thus, we may choose a code structure for
efficient encoding/decoding procedures, and then optimize the
code’s minimal distance via relabeling.

We formally define the relabeling problem, and show that all
codes may be relabeled to get a minimal distance at most 2. The
decision problem of whether a code may be relabeled to distance
1 is shown to be NP-complete, and calculating the best achievable
minimal distance after relabeling is proved hard to approximate.

Finally, we consider general bounds on the relabeling problem.
We specifically show the optimal relabeling distance of cyclic
groups. A specific case of a general probabilistic argument is
used to show AGL(p) may be relabeled to a minimal distance

of p−O(
√

p ln p).

I. INTRODUCTION

In the race to dominate non-volatile information-storage

devices, flash memory is a prominent contender. Flash memory

is an electronic non-volatile memory that uses floating-gate

cells to store information [4]. While initially, flash memory

cells used to contain a single bit of information, in the

standard multi-level flash-cell technology of today, every cell

has q > 2 discrete states, {0, 1, . . . , q− 1}, and therefore can

store log2 q bits. The flash memory changes the state of a cell

by injecting (cell programming) or removing (cell erasing)

charge into/from the cell.

Flash memories possess inherent problems one has to

address in order to have a reliable storage medium. Firstly,

writing is more time- and energy-consuming than reading [4].

The main reason behind this asymmetry is the iterative cell-

programming procedure designed to avoid over-programming

[1] (raising the cell’s charge level above its target level).

Cells can be programmed individually, however when erasing

is needed, the flash memory can erase only entire blocks

(today, containing approximately 105 cells, see [4]). Since

over-programming can only be corrected by erasure of entire

blocks, a more cautious programming is performed in order to

achieve a more accurate cell level. This approach, of course,

is costly in both time and energy.

Another major concern for flash memory is data reliability.

The stored data can be corrupted due to many reasons such as

charge leakage, read disturbance, and write disturbance (see

[4]), among other things. Some of the error mechanisms have

an asymmetric property, making the cells’ charge levels drift

in one direction. In addition, error rate increases due to the

number of levels in multi-level flash memory, since the safety

margins between adjacent levels are reduced.

To address these issues, the rank-modulation scheme has

been recently suggested [12]. This scheme removes the ne-

cessity to measure absolute charge levels, eliminates the over-

programming problem, and reduces retention errors. In this

scheme the information is stored by the permutation induced

by the n distinct charge levels being read from n cells. Each

cell has a rank which indicates its relative position when

ordering the cells in descending charge level. The ranks of

the n cells induce a permutation of {1, 2, . . . , n}.
While this new scheme alleviates some of the problems

associated with current flash technology, the flash-memory

channel remains noisy and error correction must be employed

to increase reliability. In a recent work [15], spike-error correc-

tion was addressed in this model. Such errors are characterized

by a limited-magnitude change in charge level in the cells,

which readily translates into a limited-magnitude change in

the rank of, possibly, all cells in the stored permutation. These

errors correspond to a bounded distance change in the induced

permutation under the ℓ∞-metric. We call codes protecting

against such errors limited-magnitude rank-modulation codes,

or LMRM-codes. Throughout the paper we consider only

LMRM-codes.

A similar error model for flash memory was considered not

in the context of rank modulation in [5], while a different error-

model (charge-constrained errors for rank modulation) was

studied in [13]. Codes over permutations are also referred to

as permutation arrays and have been studied in the past under

different metrics [2], [3], [6], [7], [9], [10], [16]. Specifically,

permutation arrays under the ℓ∞-metric were considered in

[14].

A code over permutations, being a subset of the symmetric

group Sn, may happen to be a subgroup, in which case we

call it a group code. Group theory offers a rich structure to be

exploited when constructing and analyzing group codes, in an

analogy to the case of linear codes over vector spaces. Hence,

throughout this paper, we focus on LMRM group codes.

If C and C ′
are conjugate subgroups of the symmetric group,

then from a group-theoretic point of view, they are almost

the same group, having the same properties. However, from

a coding point of view these two codes can possess vastly

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 844



different minimal distance, which is one of the most important

properties of a code. For example, let C = {ι, (1, n)} and

C ′
= {ι, (1, 2)}, where ι is the identity permutation and the

rest of the permutations are given in a cycle notation. The

subgroups C and C ′
are conjugate but the minimal distance of

C and C ′
is n− 1 and 1 respectively, which is the highest and

the lowest possible minimal distance in the ℓ∞-metric.

Hence, we conclude that the minimal distance of a code C
depends crucially on the specific conjugate subgroup. Thus,

while a certain group code might be chosen due to its group-

theoretic structure (perhaps allowing simple encoding or de-

coding), we may choose to use an isomorphic conjugate of the

group, having the same group-theoretic structure, but with a

higher minimal distance. We refer to the problem of finding the

optimal minimal distance among all conjugate groups (sets) of

a certain group (set) as the labeling problem.

Apart from introducing and motivating the labeling problem,

we show that this algorithmic problem is hard. However, we

are able to show the existence of a labeling with high minimal

distance for a variety of codes, based on the size of the code

and the number of cycles in certain permutations derived from

the code itself.

The rest of the paper is organized as follows. In Section

II we define the notation, introduce the error model with

the associated ℓ∞-metric, as well as formally defining the

labeling problem. We proceed in Section III to introduce two

algorithmic problems related to the labeling problem, and we

show their hardness. In Section IV we give some labeling

results on ordinary groups and we present our main result of

the paper, which gives general labeling results for arbitrary

codes based on a probabilistic argument. In addition with

give a few corollaries by applying this result to some well-

known groups. We conclude in Section V with a summary

of the results and short concluding remarks. Due to the page

limitation, most proofs are omitted.

II. DEFINITIONS AND NOTATIONS

For any m, n ∈ N, m 6 n, let [m, n] denote the set

{m,m+ 1, . . . , n}, where we also denote by [n] the set [1, n].
Given any n ∈ N we denote by Sn the set of all permutations

over the set [n].
We will use the cycle notation for permutations f ∈

Sn, where f = ( f0, f1, . . . , fk−1) denotes the permutation

mapping fi 7→ fi+1 mod k for i ∈ [0, k − 1]. Given two

permutations f , g ∈ Sn, the product f g is a permutation

mapping i 7→ f (g(i)) for all i ∈ [n].
A code, C is a subset C ⊆ Sn. Sometimes C will be also

be a subgroup of Sn, in which case we shall refer to C as a

group code. For a code C and a permutation f ∈ Sn we call

the code fC f−1 = { f c f−1 : c ∈ C} a conjugate code of C .
Consider n flash memory cells which we name 1, 2, . . . , n.

The charge level of each cell is denoted by ci ∈ R for all

i ∈ [n]. In the rank-modulation scheme defined in [12], the

information is stored by the permutation induced by the cells’

charge levels: The induced permutation (in vector notation) is

[ f1, f2, . . . , fn] iff c f1 > c f2 > · · · > c fn .

Having stored a permutation in n flash cells, a corrupted

version of it may be read due to any of a variety of error

sources (see [4]). For a measure of the corruption in the stored

permutations one can use any of the well-known metrics over

Sn (see [8]). Given a metric over Sn, defined by a distance

function d : Sn × Sn → N ∪ {0}, an error-correcting code is

a subset of Sn with lower-bounded distance between distinct

members.

In [13], the Kendall-τ metric was used, where the distance

between two permutations is the number of adjacent transpo-

sitions required to transform one into the other. This metric is

used when we can bound the total difference in charge levels.

In this work we consider a different type of error – a limited-

magnitude spike error. Suppose a permutation f ∈ Sn was

stored by setting the charge levels of n flash memory cells to

c1, c2, . . . , cn. We say a single spike error of limited-magnitude

L has occurred in the i-th cell if the corrupted charge level, c′i,
obeys

∣

∣ci − c′i
∣

∣ 6 L. In general, we say spike errors of limited-

magnitude L have occurred if the corrupted charge levels of

all the cells, c′1, c
′
2, . . . , c

′
n, obey

max
i∈[n]

∣

∣ci − c′i
∣

∣ 6 L.

Denote by f ′ the permutation induced by the cell charge

levels c′1, c
′
2, . . . , c

′
n under the rank-modulation scheme. Under

the plausible assumption that distinct charge levels are not

arbitrarily close (due to resolution constraints and quantization

at the reading mechanism), i.e.,
∣

∣ci − cj
∣

∣ > ℓ for some positive

constant ℓ ∈ R for all i 6= j, a spike error of limited-magnitude

L implies a constant d ∈ N such that

max
i∈[n]

∣

∣

∣
f−1(i)− f ′−1(i)

∣

∣

∣
< d.

Loosely speaking, an error of limited magnitude cannot change

the rank of the cell i (which is simply f−1(i)) by d or more

positions.

We therefore find it suitable to use the ℓ∞-metric over Sn
defined by the distance function

d∞( f , g) = max
i∈[n]

| f (i) − g(i)| ,

for all f , g ∈ Sn. Since this will be the distance measure used

throughout the paper, we will usually omit the ∞ subscript.

Definition 1. A limited-magnitude rank-modulation code

(LMRM-code) with parameters (n,M, d), is a subset C ⊆ Sn
of cardinality M, such that d∞( f , g) > d for all f , g ∈ C ,
f 6= g. (We will sometimes omit the parameter M.)

We note that unlike the charge-constrained rank-modulation

codes of [13], in which the codeword is stored in the per-

mutation induced by the charge levels of the cells, here the

codeword is stored in the inverse of the permutation.

For a code C we define its minimal distance and denote it

by d(C) as

d(C) = min
f ,g∈C
f 6=g

d( f , g).
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A labeling function is a permutation l over the set [n]. We

say that the code C has minimal distance d with a labeling

function l when

d(lCl−1) = d.

It is well known (see [8]) that the ℓ∞-metric over Sn is only

right invariant and not left invariant, i.e., for any f , g, h ∈ Sn,
d( f , g) = d( f h, gh), and usually d( f , g) 6= d(h f , hg), thus
we would expect that in many cases d(C) 6= d(lC l−1).
Therefore, the questions of which labeling permutation leads to

the optimal minimal distance, and what is the optimal minimal

distance, rise naturally in the context of error-correcting codes

over permutations under the infinity metric. Note that l is

called a labeling function because for a permutation in cycle

notation f = (a1, . . . , ak1) . . . (ak j+1, . . . , an) we get

l f l−1 = (l(a1), . . . , l(ak1)) . . . (l(ak j+1), . . . , l(an)).

The labeled permutation l f l−1 has the same cycle structure as

f but the elements within each cycle are relabeled by l.
From the right invariance of the ℓ∞-metric we get that

d(C) = min
f=gh−1

g,h∈C,g 6=h

d( f , ι),

where ι is the identity element of Sn. This makes it easier to

calculate the minimal distance of a group code since f simply

goes over all the codewords.

More specifically, we will explore the case where C is a

subgroup of Sn and ask which conjugate group of C has the

largest minimal distance. We denote by Lmin(C) (Lmax(C))
the minimal (maximal) achievable minimal distance among all

the conjugates of a code C .

III. THE LABELING PROBLEM IS HARD TO APPROXIMATE

In this section we define two algorithmic problems regard-

ing the labeling of codes, and show that they are hard to

approximate. We shall begin by showing that for any code

C , Lmin(C) 6 2, which means that the minimal distance of

a code depends crucially on its labeling. We then continue

by showing the decision problem of whether Lmax(C) > 2
is NP-complete, while finding out what Lmax(C) is hard to

approximate.

Theorem 2. For any code C ⊆ Sn (not necessarily a subgroup),
there exists a labeling of the elements such that the minimum

distance is at most 2, i.e., there exists l ∈ Sn such that

d(lC l−1) 6 2. Moreover, C has a labeling with minimal

distance 1 if and only if the set {ab−1 : a, b ∈ C} contains

an involution (a permutation of order 2).

We now show that the algorithmic decision problem of

determining whether a certain code C has Lmax(C) = 1 or

Lmax(C) > 2 is NP-complete.

2-DISTANCE PROBLEM:

• INPUT: A subset of permutations C ⊆ Sn given as a list

of permutations, each given in vector notation.

• OUTPUT: The correct Yes or No answer to the question

“Does C have a labeling that leads to a minimal distance

at least 2, i.e., is Lmax(C) > 2? ”.

We start with a few definitions. For a code C ⊆ Sn, define
its associated set of involutions as

I(C) = {g ∈ Sn : g2 = ι, g = ab−1 6= ι, a, b ∈ C}.
For any g ∈ I(C) we define a set of edges, E(g), in the

complete graph on n vertices, Kn, where the vertices are

conveniently called 1, 2, . . . , n, as

E(g) = {uv ∈ E(Kn) : g(u) = v, u 6= v} .
Recall that a Hamiltonian path in an undirected graph G is

a path which visits each vertex exactly once. The following

theorem shows an equivalence between the property of a code

having a labeling with minimal distance at least 2 and the

existence of a certain Hamiltonian path in the complete graph

Kn.

Theorem 3. Let C ⊆ Sn be a code, then Lmax(C) > 2 if and

only if there exists a Hamiltonian path in Kn which does not

include all the edges E(g) for any g ∈ I(C).

By the last theorem we conclude that any algorithm that

finds a labeling of C with minimal distance at least 2, actually
finds a Hamiltonian path in Kn which does not include all the

edges E(g), for any g ∈ I(C). We are now able to show that

the 2-DISTANCE problem is NP-complete.

Theorem 4. The 2-DISTANCE problem is NP-complete.

Proof: First, we show that 2-DISTANCE is in NP. For

any given verifier, l ∈ Sn, which is a labeling function, we

compute the distance between ι and all the elements of I(C).
Note that |I(C)| 6 |C|2 and constructing I(C) may be easily

done in polynomial time. Thus, the question can be verified

in polynomial time.

In order to verify the completeness we shall reduce the

HAMILTONIAN-PATH problem (see [11]) to our problem.

Let G(V, E) be a graph on n vertices (given as an adjacency

matrix) in which we want to decide whether a Hamiltonian

path exists. Define the code

C = {(u, v) : uv /∈ E} ∪ {ι} ,
where (u, v) is the permutation that fixes everything in place

except commuting the elements u and v. Obviously, we can

construct C from G in polynomial time. We then run the 2-

DISTANCE algorithm on C and return its answer.

We observe that

I(C) = {(u, v)(k, l) : (u, v), (k, l) ∈ C , {u, v} 6= {k, l}}
∪ C \ {ι} .

If a1, a2, . . . , an is a Hamiltonian path in G, then it is also

a Hamiltonian path in Kn not containing all of E(g) for any

g ∈ I(C) (and in fact, not containing any edge of E(g)). This
is true because the edges E(g) are a subset of the edges that

are not in E.

846



For the other direction, if there is a Hamiltonian path in Kn

which does not include all the edges of E(g) for any g ∈ I(C),
then, in particular, this path does not include all of E(g), g ∈
C , g 6= ι. Since for any such g = (u, v) ∈ C , E(g) = uv /∈ E,
this path is also a Hamiltonian path in G.
We now define a harder algorithmic question and deduce

by Theorem 4 that this problem is hard to approximate.

OPTIMAL-DISTANCE PROBLEM:

• INPUT: A subset of permutations C ⊆ Sn given in a

vector notation.

• OUTPUT: The integer Lmax(C).

For a constant ǫ > 1 we say the problem may be ǫ-

approximated if there exists an efficient algorithm that for any

input C computes f (C) which satisfies

1

ǫ

Lmax(C) 6 f (C) 6 ǫLmax(C).

Corollary 5. For any 1 < ǫ < 2, the OPTIMAL-DISTANCE

problem cannot be ǫ-approximated unless P = NP.

IV. BOUNDS ON OPTIMAL LABELINGS

In the previous section we have shown that the 2-

DISTANCE and OPTIMAL-DISTANCE problems are hard.

We are therefore motivated to focus on solving and bounding

the latter problem for specific families of codes, and in

particular, codes that form a subgroup of the symmetric group

Sn. The rich structure offered by such codes makes them easier

to analyze, in much the same way as linear codes in vector

space. Furthermore, knowing good labelings for certain groups

is of great interest since one can use them as building blocks

when constructing larger codes (see for example the direct and

semi-direct product constructions in [15]).

The most simple basic groups one can think of are cyclic

groups. Recall that for a cyclic group G there is an element

g ∈ G such that G is generated by the powers of g, i.e.,
G = {gk : k ∈ N}. The following theorem gives an exact

optimal labeling for transitive cyclic group over the set [n].

Theorem 6. Let C ⊆ Sn be a transitive cyclic group over the

set [n], then the optimal minimal distance for C is

Lmax(C) = n−
⌈√

4n− 3− 1

2

⌉

.

We now turn to address the optimal labeling problem for the

AGL(p) group, p a prime, but first we give some definitions.

Definition 7. Let p ∈ N be a prime, then AGL(p) is defined
by the subgroup of permutations that acts on the set [0, p− 1]
and is generated by the permutations f (x) = x+ 1 and g(x) =
ax, where all calculations are over GF(p) and a is primitive in

GF(p).

Throughout we shall consider only AGL(p) for p > 3. We

refer to the natural labeling of AGL(p) as the labeling derived
from the permutations f and g described above. For example,

the natural labeling of AGL(5) is the group generated by

the permutations (in cycle notation) f = (0, 1, 2, 3, 4) and

g = (1, 2, 4, 3). The following theorem gives us the minimal

distance of the natural labeling.

Theorem 8. AGL(p) with the natural labeling has minimal

distance (p− 1)/2.

Theorem 9. For any prime 3 6 p < 8,

Lmax(AGL(p)) =
p− 1

2
.

Proof: Let I be the set of involutions of AGL(p). It is
easy to verify that any permutation g ∈ I is of the form

g(x) = −x + b for some b ∈ GF(p), and so |I| = p. We

note also that for any x1, x2 ∈ GF(p) there is exactly one

involution g ∈ I such that g(x1) = x2 (finding g is by solving

the equation x2 = −x1 + b).
Assume that we have a labeling of AGL(p) with minimal

distance more than the natural minimal distance. In particular,

with this labeling every involution has minimal distance at

least (p+ 1)/2 from the identity permutation. Let

B =

{

{x, y} : x, y ∈ GF(p), |x− y| >
p+ 1

2

}

.

Now, for any g ∈ I there is at least one unordered pair

{x, y} ∈ B such that g(x) = y. It follows that

|B| =
p2 − 1

8
> |I| = p.

Solving the inequality we get p > 4+
√
17 > 8.

We now present a general method we call the neighboring-

sets method. With this method, lower and upper bounds on

Lmax(C) may be obtained provided certain neighboring sets

of indices exist. We shall first describe the general method, and

then apply it, using further probabilistic arguments, to show

strong bounds on Lmax(AGL(p)).

Definition 10. Let C ⊆ Sn be any set of permutations acting on

[n]. Two disjoint subsets A, B ⊆ [n] are called C-neighboring
sets if for any f ∈ C , f 6= ι, the following holds

( f (A) ∩ B) ∪ ( f (B)∩ A) 6= ∅.

We define O(C) to be the smallest integer O(C) = |A| + |B|,
where A and B are C-neighboring sets. If there are no such sets
then we say O(C) = ∞.

First we show that if C is a group then, O(C) is closely

related to its optimal minimal distance.

Theorem 11. Let C ⊆ Sn be a group that acts on [n] with
O(C) < ∞, then

n−O(C) + 1 6 Lmax(C).

Moreover, if Lmax(C) > n
2 then also

Lmax(C) 6 n− O(C)

2
.

It is pointed out in the definition that some groups C ⊆ Sn
might have O(C) = ∞, e.g., O(Sn) = ∞. The following

theorem shows that for any prime p > 5, O(AGL(p)) is

finite while also showing a lower bound.
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Theorem 12. If p = 3, 5, then O(AGL(p)) = ∞. For any

prime p > 7,

O(AGL(p)) > max

{

√

2(p− 1), 6

}

.

For primes p > 37 we also have

O(AGL(p)) 6 p.

The following theorem is our main result of this paper. It

gives a generic labeling result for a code C over the set [n]
based solely on the size of the code and the number of cycles

in the set of permutations {gh−1 : g, h ∈ C}.
Theorem 13. Let C ⊆ Sn be a code. If there is 0 < p < 1 and

t > 0 such that

e−
2t2

n + e−np2/(1−p) ∑
f=gh−1

g,h∈C ,g 6=h

ec( f )p
2/(1−p)

< 1, (1)

where c( f ) is the number of cycles in the permutation f , then
there exists a labeling l such that

Lmax(C) > d(lCl−1) > n + 1− ⌊2pn+ t⌋ .
We say that a ∈ [n] is a fixed point of a permutation

f ∈ Sn if f (a) = a. The minimal degree of a subgroup C
is the minimum number of non-fixed points among the non-

identity permutations in C . The following corollary connects

the minimal degree of a group and an achievable distance by

applying Theorem 13.

Corollary 14. Let C be a subgroup of Sn with minimal degree

d, such that there exist t > 0, 0 < p <
1
2 , satisfying

e−
2t2

n + |C|e−
dp2

2(1−p) < 1,

then C has a labeling l with d(lC l−1) > n + 1− ⌊2pn + t⌋.
Proof: If C has minimal degree d, then the number of

cycles of any g ∈ C , g 6= ι, is at most n− d
2 and the claim

follows by Theorem 13.

The following corollary is the main result of this section,

showing strong bounds on Lmax(AGL(p)).

Corollary 15. For p, a large enough prime,

p−O(
√

p ln p) 6 Lmax(AGL(p)) 6 p−
√

p− 1

2
.

Proof: For the upper bound we simply combine Theorem

11 and Theorem 12. For the lower bound we recall that

AGL(p) is sharply 2-transitive, hence, its minimal degree is

p− 1. By Corollary 14,

e
− 2t2

p + |AGL(p)| e−
(p−1)q2

2(1−q) 6 e
− 2t2

p + p2e−
(p−1)q2

2 . (2)

For t =
√

p ln(p+ 1) and q =
√

4 ln(p+1)
p−1 , we get

e
− 2t2

p + p2e−
(p−1)q2

2 =
1

(q+ 1)2
+

q2

(q+ 1)2
< 1.

We note that for p large enough, q <
1
2 . It follows that

Lmax(AGL(p)) > p− 2pq− t

= p− 2p

√

4 ln(p+ 1)

p− 1
−

√

p ln(p+ 1)

= p−O(
√

p ln p).

V. SUMMARY

In this work we defined the relabeling problem and showed

its hardness. We studied bounds on the achievable relabeling

distance for general groups, and showed strong bounds on

some known groups. Finding out how the best achievable

minimal distance after relabeling depends on certain group

properties, and finding its exact value for other well-known

groups, are still open problems.
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