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Abstract. We examine 2-dimensional 3-dispersion lattice interleavers
in three connectivity models: the rectangular grid with either 4 or 8
neighbors, and the hexagonal grid. We provide tight lower bounds on
the interleaving degree in all cases and show lattices which achieve the
bounds.

1 Introduction

In some relatively new applications, two-dimensional error-correcting codes are
used. The codewords are written on the plane, and their coordinates are indexed
by Z

2. Several models of two-dimensional bursts of errors are handled in the
literature. The most common burst type studied involves the rectangular grid
and rectangular bursts [1,2,3,4,5]. The general two-dimensional case was studied
in [6] and later in [7]. In the general case, an unrestricted burst (also called a
cluster) is a connected set of points in Z

2. The only parameter associated with
such a burst is its size.

Since a burst is a connected set of points of Z
2, we must consider several

connectivity models. The simplest one is the + model in which the neighbors
of a given point (x, y) ∈ Z

2 are, {(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)}. A
natural variation on the + model is the +× model in which a point (x, y) ∈ Z

2

has the following neighbor set, {(x + a, y + b) | a, b ∈ {−1, 0, 1} , |a| + |b| �= 0}.
Finally, another model of interest to us is the hexagonal model. Instead of the
rectangular grid, we define the following grid: we start by tiling the plane R

2 with
regular hexagons. The vertices of the grid are the center points of the hexagons.
We connect two vertices if and only if their respective hexagons are adjacent.
This way, each vertex has exactly 6 neighboring vertices.

Given some connectivity model and r-points, p1, . . . , pr ∈ Z
2, we define

dr(p1, . . . , pr), also called the r-dispersion, to be the size (minus one) of the
smallest burst containing all r points. The function d2 is the known distance,
while d3 is called the tristance.

Bursts of errors are usually handled by interleaving several codewords to-
gether. An interleaving scheme, Γ : Z

2 → {1, 2, . . . , m} is denoted A(t, r) if
every burst of size t contains no more than r instances of the same integer
from {1, 2, . . . , m}. The number m of codewords needed for the interleaving, is
the interleaving degree of Γ denoted by deg(Γ ). If we take m codewords of an
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r-error-correcting code and write the i-th codeword in coordinates which are
mapped by Γ to i, then a burst of size t generates no more than r errors in each
of the codewords.

A simple way of creating an interleaving scheme is by taking a lattice Λ, i.e.,
a subspace of Z

2, and mapping it, and each of its cosets to a unique integer. It
was shown in [7] that if the (r + 1)-dispersion of any r + 1 points of Λ is at least
t, then the interleaving scheme induced by Λ is an A(t, r). Its degree is the index
of Λ in Z

2, also called the volume of Λ. The lattice Λ is always the span of a
2 × 2 matrix G over Z

2 and the index of Λ in Z
2 is also given by |G|.

In this paper we describe optimal lattice interleavers for 2 repetitions. That
is, for a given tristance d3 we build lattices with minimal volume for which
the tristance between any three of its points is at least d3. The following three
sections describe optimal lattices in each of the three connectivity models.

2 The + Model

2.1 Preliminaries

In the + model, a point (x, y) ∈ Z
2 is connected to (x + 1, y), (x − 1, y), (x, y +

1), and (x, y − 1). We note that the distance in this model coincides with the
definition of the L1 distance between two points. Thus, for pi = (xi, yi), 1 ≤ i ≤ r
we have

d2(p1, p2) = |x1 − x2| + |y1 − y2| = max
1≤i≤2

xi − min
1≤i≤2

xi + max
1≤i≤2

yi − min
1≤i≤2

yi .

Lemma 1 (Theorem 2.4, [7]). If pi = (xi, yi), 1 ≤ i ≤ 3, are three points in
Z

2, then their tristance equals,

d3(p1, p2, p3) = max
1≤i≤3

xi − min
1≤i≤3

xi + max
1≤i≤3

yi − min
1≤i≤3

yi .

In [7], Etzion and Vardy give constructions for lattice interleavers with 2
repetitions in the + model. The generator matrices for the interleavers are,

G4k =
(

k k
0 3k

)
G4k+1 =

(
k k + 1
0 3k + 2

)

G4k+2 =
(

k + 1 k
1 3k + 1

)
G4k+3 =

(
k + 1 k + 1

0 3k + 2

)

for k ≥ 1, and the resulting lattices are denoted Λ4k+i, for 0 ≤ i ≤ 3. It was
shown ([7], Theorem 3.1) that for all k ≥ 1 and 0 ≤ i ≤ 3,

d3(Λ4k+i) = 4k + i .

Furthermore, the following theorem shows that Λ4k and Λ4k+2 are optimal.
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Theorem 1 ([7], Theorem 3.6). Let Λ be any sublattice of Z
2 with tristance

d3(Λ) = t. Set k = �t/4�. Then the volume of Λ is bounded from below as follows:

V (Λ) ≥ 3k2 if t ≡ 0 (mod 4)

V (Λ) ≥ 3k2 +
3
2
k +

1
2

if t ≡ 1 (mod 4)

V (Λ) ≥ 3k2 + 3k + 1 if t ≡ 2 (mod 4)

V (Λ) ≥ 3k2 +
9
2
k +

5
2

if t ≡ 3 (mod 4)

In the following subsection we improve on the second and fourth cases, and show
that Λ4k+1 and Λ4k+3 are also optimal.

2.2 Lower Bounds

Theorem 2. Let Λ be a sublattice of Z
2 with d3(Λ) = 4k + 1 + 2i, where i ∈

{0, 1}, then V (Λ) ≥ (3k + 2)(k + i).

Proof. We first note that d2(Λ) ≥ 2k +1+ i. Otherwise, let p0 = (0, 0), and p′ =
(x′, y′) be two points in Λ such that d2(p0, p

′) ≤ 2k+ i, and then d3(p0, p
′, 2p′) =

4k + 2i, so d3(Λ) ≤ 4k + 2i which is a contradiction.
Let p0 = (0, 0), p1 = (x1, y1), and p2 = (x2, y2), for which x2 ≥ x1 ≥ 0, and

d3(p0, p1, p2) = d3(Λ) = 4k + 1 + 2i. We start by showing that we should only
prove the case where y1 > y2 ≥ 0.

If y1 < 0 we take a mirror image of the lattice along the X axis and continue
with the same proof. Hence we may assume that y1 ≥ 0. Now, if y2 < 0, we
move p2 to the origin and take a mirror image of the lattice along the Y axis
to achieve the required configuration, and then continue with the same proof.
Therefore we may also assume that y2 ≥ 0. The last case is that of y2 ≥ y1. In
that case,

d3(p0, p1, p2) = d2(p0, p1) + d2(p1, p2) ≥ 2d2(Λ) ≥ 4k + 2 + 2i ,

which contradicts our assumption. Thus, y1 > y2 ≥ 0 is the only case left for us
to handle.

We start by sharpening the inequalities. If x1 = x2 then again,

d3(p0, p1, p2) = d2(p0, p2) + d2(p2, p1) ≥ 2d2(Λ) ≥ 4k + 2 + 2i ,

which is a contradiction. Hence x2 > x1. We now show that p0, p1, p2, and p2−p1,
define a fundamental region. We actually prove a slightly stronger claim: there
are no points of Λ in the rectangle R = {(x, y) | 0 < x < x2, y2 − y1 < y < y1}.
Let us assume the contrary, i.e., that there exists p = (x, y) ∈ Λ∩R. Now, if y ≥ 0
then d3(p0, p2, p) = x2 + max {y2, y} < x2 + y1 = 4k + 1 + 2i, since y, y2 < y1.
This is a contradiction, since d3(Λ) = 4k + 1 + 2i. In the same manner, if y < 0,
then d3(p0, p2, p) = x2 + y2 − y < x2 + y1 = 4k + 1 + 2i, since y > y2 − y1, again
a contradiction. Thus, p0, p1, p2, and p2 − p1, define a fundamental region.
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In the current configuration, d3(Λ) = 4k + 1 + 2i = x2 + y1. Since one of
the two summands must be strictly greater than the other, we may assume that
x2 > y1, or else we exchange the X and Y axes and repeat the proof. We may
therefore denote x2 = 2k + 1 + i + δ, and y1 = 2k + i − δ for some integer δ ≥ 0.
With the fundamental region defined above we have,

V (Λ) =
∣∣∣∣x2 − x1 y2 − y1

x1 y1

∣∣∣∣ = x2y1 − x1y2

= (3k + 2)(k + i) + i(i − 1) + k(k + i) − (δ2 + δ + x1y2)

= (3k + 2)(k + i) + k(k + i) − (δ2 + δ + x1y2) since i ∈ {0, 1} .

All we have to do now, is show that δ2 + δ + x1y2 ≤ k(k + i).
Using the fact that d2(Λ) ≥ 2k + 1 + i we get the following inequalities:

2k + 1 + i ≤ d2(p0, p1) = x1 + 2k + i − δ ⇐⇒ 0 ≤ δ ≤ x1 − 1 (1)
2k + 1 + i ≤ d2(p1, p2) = 4k + 1 + 2i − (x1 + y2) ⇐⇒ x1 + y2 ≤ 2k + i (2)

Two more inequalities are achieved by examining p1, p2, and 2p1. If 2x1 ≤ x2
then,

4k + 1 + 2i ≤ d3(p1, p2, 2p1) ⇐⇒ y2 ≤ 2k + i − x1 − δ . (3)

Otherwise, if 2x1 > x2, then,

4k + 1 + 2i ≤ d3(p1, p2, 2p1) ⇐⇒ x1 − y2 ≥ 2δ + 1 . (4)

If 2x1 ≤ x2 then,

δ2 + δ + x1y2 ≤ δ2 + δ + x1(2k + i − x1 − δ) by (3)
≤ x1(2k + i − x1) maximized at δ = 0, x1 − 1 by (1)
≤ k(k + i) maximized at x1 = k, k + i .

Otherwise, 2x1 > x2 and then,

δ2 + δ + x1y2 ≤ δ2 + δ + (k + δ + 1)(k + i − δ − 1) by (2) and (4)
= k(k + i) + (δ + 1)(i − 1) ≤ k(k + i) since δ ≥ 0, and i ∈ {0, 1} .

�


Corollary 1. The lattices Λ4k+1 and Λ4k+3 are optimal.

3 The Hexagonal Model

3.1 Preliminaries

Another model of interest to us is the hexagonal model. We follow the same
notations as in [8]. Instead of the rectangular grid we used up to now, we define
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the following graph. We start by tiling the plane R
2 with regular hexagons. The

vertices of the graph are the center points of the hexagons. We connect two
vertices if and only if their respective hexagons are adjacent. This way, each
vertex has exactly 6 neighboring vertices.

Since handling this grid directly is hard, we prefer an isomorphic represen-
tation of the model. This representation includes Z

2 as the set of vertices. Each
point (x, y) ∈ Z

2 has the following neighboring vertices,

{(x + a, y + b) | a, b ∈ {−1, 0, 1} , a + b �= 0} .

It may be shown that the two models are isomorphic by using the mapping
ξ : R

2 → Z
2, which is defined by ξ(x, y) = ( x√

3
+ y

3 , 2y
3 ). The effect of the

mapping on the neighbor set is shown in Fig. 1. From now on, by abuse of
notation, we will also call the last model – the hexagonal model.

0

1

2

34

5

6 1

2

34

5

6

0−−−−−−−−−−→
(x,y)�→( x√

3
+y

3 , 2y
3 )

Fig. 1. The hexagonal model translation

Obviously, the distance dhex
2 between two points pi = (xi, yi), i = 1, 2, is

dhex
2 (p1, p2) =

{
max {|x1 − x2| , |y1 − y2|} (x1 − x2)(y1 − y2) ≥ 0
|x1 − x2| + |y1 − y2| otherwise .

Handling the tristance in the hexagonal model is a little more complicated.

Theorem 3 ([8], Theorem 6). Let pi = (xi, yi), 1 ≤ i ≤ 3 be points in Z
2 for

which, W.l.o.g., x1 ≤ x2 ≤ x3 then,

dhex
3 (p1, p2, p3) =




dhex
2 (p1, p2) + dhex

2 (p2, p3) y1 ≤ y2 ≤ y3

dhex
2 (p1, min(p2, p3)) + dhex

2 (p2, p3) y1 ≤ y3 ≤ y2

d3(p1, p2, p3) y3 ≤ y1 ≤ y2

d3(p1, p2, p3) y3 ≤ y2 ≤ y1

d3(p1, p2, p3) y2 ≤ y3 ≤ y1

dhex
2 (p1, p2) + dhex

2 (max(p1, p2), p3) y2 ≤ y1 ≤ y3

,

where max (min) of two points is a component-wise max (min).
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An important thing to observe is that the hexagonal tristance allows scaling.

Theorem 4. Let p1, p2, p3 ∈ Z
2 be three points and k ≥ 0 an integer, then

dhex
3 (kp1, kp2, kp3) = k · dhex

3 (p1, p2, p3) .

Proof. The theorem simply results from Theorem 3 and the fact that the tris-
tance in the + model also allows scaling, as stated in [7]. �


3.2 Constructions

For each integer k ≥ 1 we define the lattices Λhex
2k and Λhex

2k+1 by their respective
generator matrices:

Ghex
2k =

(
k 0
0 k

)
Ghex

2k+1 =
(

k −1
1 k + 1

)
.

Theorem 5.

dhex
3 (Λhex

2k ) = 2k V (Λhex
2k ) = k2

dhex
3 (Λhex

2k+1) = 2k + 1 V (Λhex
2k+1) = k2 + k + 1 .

Proof. The volumes of the lattices are easily calculated by the determinants of
generator matrices. Therefore, we turn to prove the minimal tristance of the
lattices is as specified.

The simple case is the lattice Λhex
2k . This lattice is a scaling up of the trivial

lattice Z
2, by a factor of k. Since dhex

3 (Z2) = 2, we immediately get dhex
3 (Λhex

2k ) =
2k.

The last case requires more care. Given three points which achieve the min-
imal tristance in Λhex

2k+1, we may always move the leftmost point to the origin.
Hence, we may assume that the three points are, p0 = (0, 0), p1 = (x1, y1),
p2 = (x2, y2), and x1, x2 ≥ 0.

We now note that both p′
1 = (k,−1) and p′

2 = (k + 1, k) belong to Λhex
2k+1,

and that dhex
3 (p0, p

′
1, p

′
2) = 2k + 1. Hence, as potential candidates for p1 and

p2, we need to examine only points p = (x, y) of Λhex
2k+1 for which, x ≥ 0 and

dhex
2 (p0, p) ≤ 2k + 1. The only such points of Λhex

2k+1 are easily seen to be,

(k,−1), (1, k + 1), (k + 1, k), (k − 1,−k − 2) .

Going over the 6 possible choices of pairs of points from the list, one may verify
that dhex

3 (p0, p1, p2) ≥ 2k + 1 in all cases. �


3.3 Lower Bounds

We now show that both Λhex
2k and Λhex

2k+1 are optimal in the sense that they have
the lowest possible interleaving degree. We do so by explicitly proving Λhex

2k to
be optimal, and deducing that Λhex

2k+1 must be also optimal.
Due to lack of space, the proof that Λhex

2k is optimal is omitted. The complete
proof may be found in [9].
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Theorem 6. Let Λ be a sublattice of Z
2 with dhex

3 (Λ) = 2k, and dhex
2 (Λ) = k.

In that case, V (Λ) ≥ k2.

Theorem 7. Let Λ be a sublattice of Z
2 with dhex

3 (Λ) = 2k, and dhex
2 (Λ) > k.

In that case, V (Λ) > k2.

Corollary 2. Let Λ be a sublattice of Z
2 with dhex

3 (Λ) = 2k. So then, V (Λ) ≥ k2.

We now show that Λhex
2k+1 is optimal also.

Theorem 8. Let Λ be a sublattice of Z
2 with dhex

3 (Λ) = 2k+1. So then, V (Λ) ≥
k2 + k + 1.

Proof. Let us assume to the contrary, that V (Λ) ≤ k2 + k. Let Λ′ be a scaling
up of Λ by a factor of 2. Hence, dhex

3 (Λ′) = 2dhex
3 (Λ) = 2(2k + 1), and V (Λ′) =

4V (Λ) ≤ 4k2 + 4k. However, according to Corollary 2, V (Λ′) ≥ (2k + 1)2 =
4k2 + 4k + 1, a contradiction. �


4 The +× Model

4.1 Preliminaries

The +× model uses the rectangular grid as the previous + model does, but each
point (x, y) ∈ Z

2 has eight neighboring points forming the set
{
(x + a, y + b) ∈ Z

2 | a, b ∈ {−1, 0, 1} , |a| + |b| �= 0
}

.

We denote the r-dispersion in the +× model as d+× and in general, by affixing
the +× to a notation we refer to its +× model counterpart. Etzion and Vardy [7]
construct the lattices Λ+×

4k, Λ+×
4k+1, Λ+×

4k+2, los4k+3, by providing their respective
generator matrices,

G+×
4k =

(
k 3k
0 6k − 1

)
G+×

4k+1 =
(

k + 1 3k + 1
1 6k

)

G+×
4k+2 =

(
k + 1 3k + 1

1 6k + 2

)
G+×

4k+3 =
(

k + 2 3k + 2
2 6k + 3

)
.

It was shown ([7], Theorem 7.2) that for all k ≥ 1 and 0 ≤ i ≤ 3,

d+×
3 (Λ+×

4k+i) = 4k + i .

However, no proof is given to show that the lattices are optimal.
Our main tool for handling the +× model is the function ϕ defined in [7]. Let

us denote the sublattice of Z
2 defined as,

D2 = {(x, y) | x + y ≡ 0 (mod 2)} .
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The mapping ϕ : Z
2 → D2 is defined as

ϕ(x, y) = (x − y, x + y) .

In essence, ϕ rotates the plane counterclockwise by an angle of π/4 and scales
it up by a factor of

√
2.

If Λ is a sublattice of Z
2, then Λ′ = ϕ(Λ) is obviously a sublattice of D2. By

[7] Theorem 7.1,

d+×
3 (Λ) =

⌈
d3(Λ′)

2

⌉
.

By the nature of ϕ, it is also easy to show that

V (Λ) =
V (Λ′)

2
.

4.2 Lower Bounds

Theorem 9. Let Λ be a sublattice of Z
2 with d+×

3 (Λ) = 4k, then V (Λ) ≥ 6k2 −k.

Proof. Let us assume the contrary, i.e., that d+×
3 (Λ) = 4k, and V (Λ) < 6k2 − k.

Let Λ′ = ϕ(Λ), so then d3(Λ′) is either 8k − 1 or 8k, and V (Λ′) < 12k2 − 2k.
If d3(Λ′) = 8k − 1, then by Theorem 2, V (Λ′) ≥ 12k2 − 2k. If d3(Λ′) = 8k,

then by Theorem 1, V (Λ′) ≥ 12k2. Either way, we have a contradiction. �


Theorem 10. Let Λ be a sublattice of Z
2 with d+×

3 (Λ) = 4k + 2, then V (Λ) ≥
6k2 + 5k + 1.

Proof. Let us assume the contrary, i.e., that d+×
3 (Λ) = 4k + 2, and V (Λ) <

6k2 + 5k + 1. Let Λ′ = ϕ(Λ), so then d3(Λ′) is either 8k + 3 or 8k + 4, and
V (Λ′) < 12k2 + 10k + 2.

If d3(Λ′) = 8k + 3, then by Theorem 2, V (Λ′) ≥ 12k2 + 10k + 2. If d3(Λ′) =
8k + 4, then by Theorem 1, V (Λ′) ≥ 12k2 + 12k + 3. Either way, we have a
contradiction. �


Corollary 3. The lattices Λ+×
4k and Λ+×

4k+2 are optimal.

The two cases left require some more work. If we try to apply the method
used in the last two theorems, we find that the bound we achieve is not tight.
This stems from the fact that by examining ϕ(Λ), we restrict ourselves to sub-
lattices of D2. We now state the equivalent theorem to Theorem 2 which refers
to sublattices of D2.

Theorem 11. Let Λ be a sublattice of D2 with d3(Λ) = 4k + 1, then V (Λ) ≥
3k2 + 3k − 2.
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Proof. The proof proceeds in a similar fashion to the proof of Theorem 2, so
we will only point out the differences. The first one is the fact that in D2, the
distance between any two points is even. Hence, d2(Λ) ≥ 2k + 2.

This, in turn, changes inequalities (1) and (2) to the following:

2k + 2 ≤ d2(p0, p1) = x1 + 2k − δ ⇐⇒ 0 ≤ δ ≤ x1 − 2 (5)
2k + 2 ≤ d2(p1, p2) = 4k + 1 − (x1 + y2) ⇐⇒ x1 + y2 ≤ 2k − 1 (6)

We now remind that x2 = 2k+1+δ and y1 = 2k−δ, so x2 and y1 have different
parity. This means that x1 and y2 also have different parity. We distinguish
between two cases:
Case 1: 2x1 ≤ x2. There are two subcases according to the parity of δ.

Case 1a: δ is even. Since the parity of x1 and y2 is different, (3) is sharper
and we get

y2 ≤ 2k − x1 − δ − 1 . (7)

Now,

δ2 + δ + x1y2 ≤ δ2 + δ + x1(2k − x1 − δ − 1) by (7)
≤ x1(2k − x1 − 1) maximized at δ = 0 by (5)

≤ k2 − k maximized at x1 = k − 1, k .

Case 1b: δ is odd. Hence δ ≥ 1, so then,

δ2 + δ + x1y2 ≤ δ2 + δ + x1(2k − x1 − δ) by (3)
≤ 2 + x1(2k − x1 − 1) maximized at δ = 1, x1 − 2

≤ k2 − k + 2 maximized at x1 = k − 1, k .

Case 2: 2x1 > x2. Then,

δ2 + δ + x1y2 ≤ δ2 + δ + (k + δ)(k − δ − 1) by (6) and (4)

= k2 − k

We see that in any case, δ2 + δ + x1y2 ≤ k2 − k + 2. Like in the proof of
Theorem 2,

V (Λ) =
∣∣∣∣x2 − x1 y2 − y1

x1 y1

∣∣∣∣
= x2y1 − x1y2 = 4k2 + 2k − (δ2 + δ + x1y2) ≥ 3k2 + 3k − 2 .

�

Note that for k = 1, the bound of Theorem 11 is worse than the bound of

Theorem 2. This does not interfere with the following theorems which do not
reach that case.
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Theorem 12. Let Λ be a sublattice of Z
2 with d+×

3 (Λ) = 4k + 1 and k ≥ 1, then
V (Λ) ≥ 6k2 + 3k − 1.

Proof. Let us assume the contrary, i.e., that d+×
3 (Λ) = 4k + 1, and V (Λ) <

6k2 + 3k − 1. Let Λ′ = ϕ(Λ), so then d3(Λ′) is either 8k + 1 or 8k + 2, and
V (Λ′) < 12k2 + 6k − 2.

Note that Λ′ is a sublattice of D2. Therefore, if d3(Λ′) = 8k + 1, then by
Theorem 11, V (Λ′) ≥ 12k2 + 6k − 2. If d3(Λ′) = 8k + 2, then by Theorem 1,
V (Λ′) ≥ 12k2 + 6k + 1. Either way, we have a contradiction. �


Theorem 13. Let Λ be a sublattice of Z
2 with d+×

3 (Λ) = 4k + 3 and k ≥ 1, then
V (Λ) ≥ 6k2 + 9k + 2.

Proof. Let us assume the contrary, i.e., that d+×
3 (Λ) = 4k + 3, and V (Λ) <

6k2 + 9k + 2. Let Λ′ = ϕ(Λ), so then d3(Λ′) is either 8k + 5 or 8k + 6, and
V (Λ′) < 12k2 + 18k + 4.

Note that Λ′ is a sublattice of D2. Therefore, if d3(Λ′) = 8k + 5, then by
Theorem 11, V (Λ′) ≥ 12k2 + 18k + 4. If d3(Λ′) = 8k + 6, then by Theorem 1,
V (Λ′) ≥ 12k2 + 18k + 7. Either way, we have a contradiction. �


Corollary 4. The lattices Λ+×
4k+1 and Λ+×

4k+3 are optimal.
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