
Covering Sets for Limited-Magnitude Errors⋆

Torleiv Kløve and Moshe Schwartz

1 T. Kløve, Department of Informatics, University of Bergen, N-5020 Bergen,
Norway. Torleiv.Klove@ii.uib.no

2 M. Schwartz, Department of Electrical and Computer Engineering, Ben-Gurion
University of the Negev, Beer Sheva 84105 Israel. schwartz@ee.bgu.ac.il

Abstract. The concept of a covering set for the limited-magnitude error
channel is introduced. A number of covering-set constructions, as well as
some bounds, are given. In particular, optimal constructions are given
for some cases involving small-magnitude errors.

1 Introduction

For integers a, b, where a ≤ b, we let

[a, b] = {a, a+ 1, a+ 2, . . . , b} , [a, b]∗ = {a, a+ 1, a+ 2, . . . , b} \ {0} .

Throughout this paper, let µ, λ be integers such that 0 ≤ µ ≤ λ, and let q
be a positive integer. In the (λ, µ; q) limited-magnitude error channel an element
a ∈ Zq can be changed into any element in the set {(a+ e) mod q | e ∈ [−µ, λ]}.
For convenience we shall also set M = [−µ, λ]∗.

For any S ⊆ Zq we define MS = {xs ∈ Zq | x ∈ M, s ∈ S} , where multipli-
cation is done modulo q. If |MS| = (µ+ λ)|S|, then S is packing set. A packing
set S where MS ⊆ Zq \ {0} is a B[−µ, λ](q) set in the terminology of [8].

If s = (s1, s2, . . . , sn), where {s1, s2, . . . , sn} is a B[−µ, λ](q) set, then

{

x ∈ Z
n
q | x · s ≡ 0 (mod q)

}

is a code that can correct a single limited-magnitude error from the set [−µ, λ].
Such codes have been studied in, e.g., [1]-[6], and [8].

Similar to packing sets, we can consider covering sets, where a set S is called
a (λ, µ; q) covering set if |MS| = q. Thus, covering sets are to packing sets as
covering codes are to error-correcting codes. Instead of trying to pack many dis-
joint translates Ms, s ∈ S, into Zq, in the covering set scenario we are interested
in having the union of Ms, s ∈ S, cover Zq entirely with S being as small as
possible. Some results where µ = 0 or µ = λ are described in [7]. Apart from
its independent intellectual merit, solving this problem for µ = 0 has immediate
applications, such as rewriting schemes for non-volatile memories, a simplified
version of which we now describe. For a more detailed description the reader is
referred to [2] and references therein.
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Consider a set of n flash memory cells, each capable of storing an integer
from Z. Let G be some finite abelian group, say G = Zq, and some subset S =
{s1, s2, . . . , sn} ⊆ G, where we denote s = (s1, s2, . . . , sn). Define the decoding

mapping D : Zn → Zq as D(x) = x · s.
If we want to store the value v ∈ Zq in the n memory cells, we choose a

vector x ∈ Z
n such that D(x) = v, and store the i-th component of x in the i-th

cell. If we then want to rewrite this value with v′ ∈ Zq, we can choose a different
vector x′ ∈ Z

n that decodes to v′. Due to the limitations of flash memory, we
would like x′

i to be in the range [xi − µ, xi + λ], and to leave as many cells as
possible unchanged. In the extreme case, we allow only a single cell to change.
To be able to allow any value v to be rewritten with v′ while changing the stored
integer in a single cell as above, S can be taken to be a (λ, µ; q) covering set.
This is because we can write v′ − v = msi with m ∈ [−µ, λ], si ∈ S, and then
choose x′ = x + mei, where ei is the i-th standard unit vector. For maximum
efficiency, we would like S to be as small as possible.

We say S is a (λ, µ; q) perfect covering set if MS = Zq, |M |(|S| − 1) = q− 1,
and 0 ∈ S. In other words, S is a perfect covering set if, apart from 0 ∈ S, the
products ms in Zq, where m ∈ M , s ∈ S, are all distinct, non-zero, and cover
all the non-zero elements of Zq. These are also called abelian group splittings in
the terminology of [7].

Similarly, S is a perfect packing set if the products ms in Zq, where m ∈ M ,
s ∈ S, are all distinct, non-zero, and cover all the non-zero elements of Zq. We
note that S is a perfect covering if and only if S \ {0} is a perfect packing set.

The following functions shall be of interest to us:

ν(q, r) = νλ,µ(q, r) = max
S⊆Zq

{|MS| | |S| = r} ,

θ(q) = θλ,µ(q) = max
r∈N

{r | ν(q, r) = (µ+ λ)r} ,

ω(q) = ωλ,µ(q) = min
r∈N

{r | ν(q, r) = q} .

Intuitively speaking, ν(q, r) expresses the maximum coverage of sets of size r,
θ(q) is the maximum size of a packing set, and ω(q) is the minimum size of a
covering set. If S is a (λ, µ; q) covering set of minimal size ωλ,µ(q), we call S
optimal. We first prove some basic monotonicity properties.

Theorem 1. Let µ′ and λ′ be integers such that −µ ≤ −µ′ ≤ 0 ≤ λ′ ≤ λ. Then

νλ′,µ′(q, r) ≤ νλ,µ(q, r), θλ′,µ′(q) ≥ θλ,µ(q), ωλ′,µ′(q) ≥ ωλ,µ(q).

Proof. If we denote M ′ = [−µ′, λ′]∗ then obviously M ′ ⊆ M and therefore
M ′S ⊆ MS. The claims follow immediately. ⊓⊔

We now give a simple lower bound.

Theorem 2. We have ωλ,µ(q) ≥
⌈

q
λ+µ

⌉

.



Proof. By definition, there exists an optimal covering set S. Therefore,

q = |MS| ≤ (λ+ µ)|S| = (λ+ µ)ωλ,µ(q),

and the theorem follows. ⊓⊔

Example 1. For µ = 0 and λ = 1 we clearly have MS = S for all sets S. Hence,
ν1,0(q, r) = r and θ1,0(q) = ω1,0(q) = q.

Example 2. Let µ = λ = 1. For 1 ≤ r ≤ ⌊q/2⌋ we have |M [1, r]| = 2r. Hence,
ν(q, r) = 2r. For ⌊q/2⌋+1 ≤ r ≤ q we have |M [0, r− 1]| = q. Hence, ν(q, r) = q.
We can conclude that θ1,1(q) = ⌊q/2⌋ and ω1,1(q) = ⌈q/2⌉.

For λ ≥ 2, it seems to be quite complicated to determine θ and ω in many
cases. For λ = 2, θ2,0(q) was determined in [4], θ2,1(q) in [8], and θ2,2(q) in
[5]. In the next sections we consider ω2,0(q) and ω2,1(q). Because of the page
limitations, our results on ω2,2(q) is are not given here.

We first give a general BCH-like upper bound.

Theorem 3. Let p be a prime, and let g be a primitive element in Zp. If [−µ, λ]∗

contains δ consecutive powers of g then ωλ,µ(p) ≤
⌈

p−1
δ

⌉

+ 1.

Proof. One can easily verify that the set

S = {0} ∪

{

gδi
∣

∣

∣
0 ≤ i ≤

⌈

p− 1

δ

⌉

− 1

}

is indeed a (λ, µ; q) covering set. ⊓⊔

Another upper bound is the following.

Theorem 4. If q and r are odd, then ω2,µ(qr) ≤ r(ω2,µ(q)− 1) + ω2,µ(r).

Proof. Let S be an optimal (2, µ; q) covering set and D an optimal (2, µ; r)
covering set. We remind that µ ≤ λ = 2. Since q is odd, ac ≡ 0 (mod q) for
some a ∈ [−µ, 2]∗, only if c = 0. Therefore, we must have 0 ∈ S. Similarly, 0 ∈ D.
Let

E = {cq + s ∈ Zqr | c ∈ [0, r − 1], s ∈ S \ {0}} ∪ {qd ∈ Zqr | d ∈ D} .

Then |E| = r(ω2,µ(q)− 1)+ω2,µ(r). We will show that E is a (2, µ; qr) covering
set.

First, consider the case b ∈ Zqr , b 6≡ 0 (mod q). Let b1 ≡ b (mod q), b1 ∈
[1, q− 1], that is b = mq+ b1 for some integer m. Furthermore, b1 ≡ as (mod q)
for some a ∈ [−µ, 2]∗ and s ∈ S \ {0}. That is, as = m1q + b1 for some integer
m1. Hence

b = mq + (as−m1q) = (m−m1)q + as.

Since qr is odd, we note that all the elements of [−µ, 2] are invertible in Zqr .
Thus,

b = (m−m1)q + as ≡ a[a−1(m−m1)q + s] (mod qr).

This shows that b ∈ [−µ, 2]∗E.
Next, consider the case b ∈ Zqr, b ≡ 0 (mod q). Then b = qb2. There exist

a ∈ [−µ, 2]∗ and d ∈ D such that b2 ≡ ad (mod r). Hence b = qb2 ≡ a(qd)
(mod qr), that is b ∈ [−µ, 2]∗E also in this case. ⊓⊔



2 Determination of ω2,0(q)

For S ⊆ Zq and (λ, µ) = (2, 0), we have M = [0, 2]∗ = {1, 2} and

MS =
⋃

s∈S

{s, 2s} .

First, we consider q = 2m+1. For an integer a ∈ Z2m+1 \{0}, the corresponding
cyclotomic coset is

σ(a) =
{

a2j mod (2m+ 1) | j ≥ 0
}

.

If 2m+1 is a prime, then all the cosets have the same size. We see that a packing
set can contain at most ⌊|σ(a)| /2⌋ of the elements in σ(a), and we can find a
packing set with this many elements. Let ς(2m+1) be the number of cyclotomic
cosets of odd size. Then we get

θ2,0(2m+ 1) = m− ς(2m+ 1)/2.

This is Theorem 7 in [3], where a more detailed proof is given.
Similarly, a covering set must contain at least ⌈|σ(a)| /2⌉ of the elements

in σ(a), and we can find a covering set with this many elements. Moreover, a
covering set must contain 0. Hence

ω2,0(2m+ 1) = m+ 1 + ς(2m+ 1)/2. (1)

An explicit expression for ς(2m + 1) is given as Theorem 2 in [4]. Combining
this with (1), we get the following theorem where ϕ(d) is Euler’s function and
ordp(2) is the multiplicative order of 2 modulo p.

Theorem 5. If 2m+ 1 = pt11 pt22 · · · ptss is the prime factorization of 2m+ 1, let
qo =

∏

1≤i≤s

pi∈Po

ptii , where Po is the set of odd primes p such that ordp(2) is odd. Then

ω2,0(2m+ 1) = m+ 1 +
∑

d|qo,d>1

ϕ(d)

2 ordd(2)
.

In particular, a perfect (2, 0; 2m+ 1) set exists if and only if none of the primes

dividing 2m+ 1 belongs to Po.

Theorem 6. For m ≥ 0 we have ω2,0(4m+ 2) = 2m+ 1.

Proof. By Theorem 2, ω2,0(4m+2) ≥ 2m+1. On the other hand, {1, 3, . . . , 4m+ 1}
is a covering set of size 2m+ 1. ⊓⊔

Theorem 7. For all m ≥ 1 we have ω2,0(4m) = 2m+ ω2,0(m).



Proof. Let D be an optimal (2, 0;m) covering set. The set

{2a+ 1 | a ∈ [0, 2m− 1]} ∪ {4d | d ∈ D}

is easily seen to be a (2, 0; 4m) set of size 2m+ ω2,1(m). Hence,

ω2,0(4m) ≤ 2m+ ω2,0(m). (2)

On the other hand, let S be an (2, 0; 4m) covering set. Clearly, S must contain
E = {2a+ 1 | a ∈ [0, 2m− 1]}. Let X be the set of even elements in S. Let
s ∈ X . If s ≡ 2 (mod 4), then s ∈ ME, where M = [1, 2]. Hence we can replace
s by 2s in S and still have a covering set. Therefore, we may assume that all the
elements of X are divisible by 4. Define

D = {s/4 | s ∈ X} .

We will show that D is a covering (2, 0;m) set. Let a ∈ Zm. Then 4a ∈ Z4m.
Hence, we have two possibilities:

– 4a ∈ X . Then a ∈ D.
– 4a 6∈ X . Then 4a = 2 · 4b, where 4b ∈ X , and so a = 2b where b ∈ D.

Hence MD = Zm. Therefore we get

ω2,0(4m) = |X |+ 2m = |D|+ 2m ≥ ω2,0(m) + 2m.

Combined with (2), this proves the theorem. ⊓⊔

3 Some results on ω2,1(q)

For S ⊆ Zq and (λ, µ) = (2, 1), we have M = [−1, 2]∗ = {−1, 1, 2} and

MS =
⋃

s∈S

{s,−s, 2s} .

Theorem 8. For all m ≥ 1 we have ω2,1(2m+ 1) = m+ 1.

Proof. The set [0,m] is clearly a (2, 1; 2m+ 1) covering set. Hence

ω2,1(2m+ 1) ≤ m+ 1. (3)

Now, let S be a set of minimal size covering Z2m+1. We note that for x ∈
[−1, 2]∗ we have xs ≡ 0 (mod 2m+ 1) if and only if s = 0. Hence 0 ∈ S. Since
0 ∈ S covers only 0 ∈ Z2m+1 we shall, for the rest of the proof, only consider
non-zero elements in S and the covering of non-zero elements in Z2m+1. We
partition the elements of Z∗

2m+1 into the “positive” and “negative” elements,

P = {1, 2, . . . ,m} and N = {−1,−2, . . . ,−m} .



We will determine a particular ordering s0 = 0, s1, s2, . . . of the elements of S.
We use the notation Si = {s1, s2, . . . , si}. We shall say MSi is of configuration
(j, k) if

|P ∩MSi| = j and |N ∩MSi| = k.

We shall further say that a configuration (j, k) is balanced if j = k, almost
balanced if |j − k| = 1, and imbalanced otherwise. We will show by induction
that there is an ordering with the following properties:

1. If MSi is balanced then:

(a) a ∈ MSi iff −a ∈ MSi.
(b) |MSi| ≤ 2i

2. If MSi is almost balanced then:

(a) a ∈ MSi iff −a ∈ MSi, except for exactly one element in MSi.
(b) −2si 6∈ MSi.
(c) |MSi| ≤ 2i+ 1.

3. MSi is never imbalanced.

If 2m+1 is divisible by 3, then we must have (2m+1)/3 ∈ S or −(2m+1)/3 ∈
S (but not both since S has minimal size). In this case, we choose this as s1.
Then

MS1 =

{

2m+ 1

3
, 2

2m+ 1

3

}

which is a balanced set of size 2. Otherwise, 2m + 1 is not divisible by 3, and
we choose any non-zero element of S as s1 and we get MS1 = {s1,−s1, 2s1}, an
imbalanced set of size 3. Moreover, −2s1 6∈ MS1. Thus, the induction basis is
proved.

For the induction step, let us assume the hypothesis holds for i, and we show
how to pick si+1. We consider the following cases:

1. MSi is balanced: If we choose as si+1 an element that is already covered, i.e.,
si+1 ∈ MSi, then by the induction hypothesis −si+1 is also covered. Now, if
2si+1 is covered, then again, −2si+1 is covered and so MSi = MSi+1 and is
balanced. If, on the other hand, 2si+1 is not covered then so is −2si+1, but
then 2si+1 ∈ MSi+1 and −2si+1 6∈ MSi+1 and soMSi+1 is almost balanced.
If we choose si+1 that is not covered, then −si+1 is also not covered. As be-
fore, if 2si+1 is covered, then so is −2si+1 and MSi+1 is balanced. Otherwise,
2si+1 is not covered and MSi+1 is almost balanced since −2si+1 6∈ MSi+1.

2. MSi is almost balanced: By the induction hypothesis −2si 6∈ MSi. We must
have −2si ∈ {s,−s, 2s} for some s ∈ S. We choose si+1 to be one such s.
We therefore have three subcases here to consider:

(a) si+1 = −2si. In that case −si+1 is already covered. We note that 2si+1

and −2si+1 are both covered or both not covered, which results inMSi+1

being balanced or almost balanced (with −2si+1 6∈ MSi+1) respectively.
(b) −si+1 = −2si, that is, si+1 = 2si. This is exactly like the previous case

only si+1 is already covered.



(c) 2si+1 = −2si, that is, si+1 = −si. In this case both si+1 and −si+1 are
already covered, as well as −2si+1 = 2si being covered. We now have
2si+1 = −2si ∈ MSi+1 and MSi+1 is balanced.

We note that in all cases we never reach an imbalanced state, and it is a
matter of simple bookkeeping to verify the size of MSi+1 does not exceed the
claim.

Having proved the claims by induction, assumeMSi = Z
∗
2m+1, i.e., a covering

of the non-zero elements of Z2m+1. Since MSi is obviously balanced, by the
claims above i ≥ m. Since we need to add 0 to Si to get a covering of Z2m+1 we
get ω2,1(2m+ 1) ≥ m+ 1. Combining this with (3), the theorem follows. ⊓⊔

Theorem 9. For all m ≥ 1 we have ω2,1(4m) = m+ ω2,1(m).

Proof. Let E = {2a+ 1 | a ∈ [0,m− 1]}. Then

ME = {a ∈ Z4m | a 6≡ 0 (mod 4)} .

Let D be an optimal (2, 1;m) set. Then the set E ∪ {4d | d ∈ D} is easily seen
to be a (2, 1; 4m) set of size m+ ω2,1(m). Hence,

ω2,1(4m) ≤ m+ ω2,1(m). (4)

On the other hand, let S be an optimal (2, 1; 4m) covering set. Let S0 be
the set of even elements in S and S1 be the set of odd elements in S. First, we
see that for an odd integer a ∈ Z4m, we must have a ∈ S1 or −a ∈ S1. Hence,
S1 contains at least m elements. Let S′ = S0 ∪ E. Then MS1 ⊆ ME and so
MS′ = Z4m. Also

ω2,1(4m) ≤ |S′| = m+ |S0| ≤ |S1|+ |S0| = ω2,1(4m),

and so S′ is an optimal covering set.
Next, if S0 contains an element s ≡ 2 (mod 4), this covers s, 4m − s, and

s′ = (2s mod 4m). The first two are also covered by E. Therefore, if we replace
s by s′, the set is still a covering set for Z4m. Repeating the process with for
all elements in S0 that er congruent to 2 modulo 4m, we get a set S′

0 where
all elements are divisible by 4, and such that E ∪ S′

0 is a covering set, of size
ω2,1(4m). Let D = {s/4 | s ∈ S′

0}. Then it is easy to see that D is a set covering
Zm. Hence, |S′

0| ≥ ω2,1(m) and so

ω2,1(4m) = |S| = |E|+ |S′
0| ≥ m+ ω2,1(m).

Combined with (4), the theorem follows. ⊓⊔

The determination of ω2,1(4m+2) seems to be more tricky. We start with a
lower bound.

Theorem 10. For all m ≥ 1 we have ω2,1(4m+ 2) ≥ 3m/2 + 1.



Proof. Let S be an optimal (2, 1; 4m + 2) covering set. We first note that the
only way to cover 2m + 1 ∈ Z4m+2 is by having 2m + 1 ∈ S. Thus, 0 is also
covered since 2(2m + 1) ≡ 0 (mod 4m + 2). We now use an argument similar
to that used in the proof of Theorem 9. The odd elements of Z4m+2 can only
be covered by odd elements in S. Since s ∈ S covers both s and −s, in order to
cover the 2m remaining odd elements of Z4m+2 we need at least m odd elements
in S in addition to our initial choice of 2m + 1 ∈ S. Furthermore, this implies
that of the 2m even non-zero elements of Z4m+2, m are already covered. We
are therefore left with m even non-zero elements in Z4m+2 which we still need
to cover. Adding an odd element to S can cover at most another single even
element in Z4m+2. In contrast, adding an even element s to S can cover at most
two more elements of Z4m+2 since at least one of s and −s is already covered.
Thus, we need to add at least m

2 more elements to S. ⊓⊔

We turn to prove upper bounds on ω2,1(4m + 2). Let v2 denote the 2-ary
evaluation, that is n = 2v2(n)n1, where n1 is odd. By an explicit construction,
we can find an upper bound on ω2,1(4m+ 2).

Construction 1. For m ≥ 0, let S = X ∪ Y ∪ Z, where

X = {2a+ 1 | a ∈ [0,m]} ,

Y =
{

c ∈
[

1, 4
⌊m

3

⌋

+ 2
]
∣

∣

∣
v2(c) = 1

}

,

Z =
{

c ∈
[

1, 8
⌊m

3

⌋] ∣

∣

∣
v2(c) is odd and v2(c) ≥ 3

}

.

Proposition 1. For all m ≥ 0, S of Construction 1 is a (2, 1; 4m+2) covering
set.

Proof. Let b ∈ [0, 4m+ 1].

– Case b = 0. We have 0 ≡ 4m+ 2 = 2(2m+ 1) (mod 4m+ 2).
– Case b ∈ [1, 4m+1] and v2(b) = 0. If b ≤ 2m+1, then b ∈ X . If b ≥ 2m+3,

then q − b ∈ X .
– Case b ∈ [1, 4m+ 1] and v2(b) = 1. In this case, b = 2c, where c ∈ X .
– Case b ∈

[

1, 8
⌊

m
3

⌋

+ 4
]

and v2(b) = 2. In this case, b = 2c, where c ∈ Y .

– Case b ∈
[

1, 8
⌊

m
3

⌋

+ 4
]

, v2(b) ≥ 3, and v2(b) is odd. In this case, b ∈ Z.

– Case b ∈
[

1, 8
⌊

m
3

⌋

+ 4
]

, v2(b) ≥ 4, and v2(b) is even. In this case, b = 2c,
where c ∈ Z.

– Case b ∈
[

8
⌊

m
3

⌋

+ 8, 4m
]

and v2(b) ≥ 2. Let b = 4β, where now β is an
integer. Then

4m+ 2− b = 4(m− β) + 2.

In particular, v2(4m+ 2− b) = 1. Furthermore,

4m+ 2− b ≤ 4m+ 2− 8
⌊m

3

⌋

− 8 ≤ 4
⌊m

3

⌋

+ 2,

and so 4m+ 2− b ∈ Y .



⊓⊔

Corollary 1. For all m ≥ 0 we have

3m+ 2

2
≤ ω2,1(4m+ 2) <

14m+ 18

9
+

⌈

1

2
log2

(⌊m

3

⌋

+ 1
)

⌉

.

Proof. The lower bound is from Theorem 9. We will show that the upper bound
follows from Proposition 1. We have

|X | = m+ 1,

|Y | =
⌊m

3

⌋

+ 1,

|Z| =
∑

j≥1

⌊

21−2j
⌊m

3

⌋

+
1

2

⌋

<
2

3

⌊m

3

⌋

+

⌈

1

2
log2

(⌊m

3

⌋

+ 1
)

⌉

.

The first two of these are immediate.
For |Z|, we see that b ∈ Z if b = 22j+1(2δ + 1) where δ ≥ 0, j ≥ 1, and

2δ + 1 ≤ 23−2j−1
⌊m

3

⌋

.

Hence, we must have 22−2j
⌊

m
3

⌋

≥ 1, that is 22j−2 ≤
⌊

m
3

⌋

and s 2j − 2 ≤

log2
(⌊

m
3

⌋)

, that is j ≤ 1 + log
2
(⌊m/3⌋)
2 . Further, for a given j,

0 ≤ δ ≤ −2−1 + 21−2j
⌊m

3

⌋

,

that is, the number of δ is
⌊

21−2j
⌊

m
3

⌋

+ 1
2

⌋

. By Proposition 1,

ω2,1(4m+ 2) < |X |+ |Y |+ |Z|

≤ m+ 1 +
⌊m

3

⌋

+ 1 +
2

3

⌊m

3

⌋

+

⌈

1

2
log2

(⌊m

3

⌋

+ 1
)

⌉

≤
14m+ 18

9
+

⌈

1

2
log2

(⌊m

3

⌋

+ 1
)

⌉

.

⊓⊔

Another recursive construction is described next.

Construction 2. Let S′ ⊆ Z2m+1 be a (2, 2; 2m + 1) covering set such that
S′ ⊆ [0,m]. Let S = X ∪ Y , where the sets X,Y ⊆ Z4m+2 are defined by

X = {2a+ 1 | a ∈ [0,m]} , Y = {2s′ | s′ ∈ S′} \ {0} .

Proposition 2. For all m ≥ 0, S of Construction 2 is a (2, 1; 4m+2) covering
set.



Proof. First, we see that X covers 0 and all the odd elements of Z4m+2. Next,
we note that the even elements of Z4m+2 are isomorphic to Z2m+1. Thus, the
elements of Y cover all the even non-zero elements of Z4m+2 except perhaps
elements of the form −4s′ for s′ ∈ S′. However

−4s′ ≡ 2
(

2(m− s′) + 1
)

(mod 4m+ 2),

and so −4s′ is covered by X since 2(m− s′) + 1 ∈ X . ⊓⊔

Corollary 2. For all m ≥ 0, ω2,1(4m+ 2) ≤ m+ ω2,2(2m+ 1).

Proof. Let S′ ⊆ Z2m+1 be a (2, 2; 2m + 1) optimal covering set. Without loss
of generality, we may assume that S′ ⊆ [0,m], since s and −s ≡ 2m + 1 − s
(mod 2m+ 1) cover the same elements of Z2m+1. From Construction 2 we get

ω2,1(4m+ 2) ≤ |S| = |X |+ |Y | = (m+ 1) + (ω2,2(2m+ 1)− 1).

⊓⊔

Corollary 3 in [5] states that a (2, 2; 2m+1) perfect packing set exists if and
only if v2(ordp(2)) ≥ 2 for any prime p dividing 2m+ 1.

Corollary 3. If v2(ordp(2)) ≥ 2 for any prime p dividing 2m+ 1, then
ω2,1(4m+2) = 3m/2+1, and Construction 2 produces an optimal (2, 1; 4m+2)
covering set.

Proof. A simple counting argument shows that if a (2, 2; 2m+1) perfect covering
set exists, then ω2,2(2m + 1) = m/2 + 1. We then combine Theorem 10 with
Corollary 2 to obtain the desired result. ⊓⊔

Example 3. Of the first 1000 even m, 390 satisfy the condition of Corollary 3,
the first ten are 2, 6, 8, 12, 14, 18, 20, 26, 30, 32. Of the 5000 even m below
10000, 1745 satisfy the condition of Corollary 3.
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