Covering Sets for Limited-Magnitude Errors*

Torleiv Kløve and Moshe Schwartz
${ }^{1}$ T. Kløve, Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Torleiv.Klove@ii.uib.no
2^{2} M. Schwartz, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105 Israel. schwartz@ee.bgu.ac.il

Abstract

The concept of a covering set for the limited-magnitude error channel is introduced. A number of covering-set constructions, as well as some bounds, are given. In particular, optimal constructions are given for some cases involving small-magnitude errors.

1 Introduction

For integers a, b, where $a \leq b$, we let

$$
[a, b]=\{a, a+1, a+2, \ldots, b\}, \quad[a, b]^{*}=\{a, a+1, a+2, \ldots, b\} \backslash\{0\} .
$$

Throughout this paper, let μ, λ be integers such that $0 \leq \mu \leq \lambda$, and let q be a positive integer. In the $(\lambda, \mu ; q)$ limited-magnitude error channel an element $a \in \mathbb{Z}_{q}$ can be changed into any element in the set $\{(a+e) \bmod q \mid e \in[-\mu, \lambda]\}$. For convenience we shall also set $M=[-\mu, \lambda]^{*}$.

For any $S \subseteq \mathbb{Z}_{q}$ we define $M S=\left\{x s \in \mathbb{Z}_{q} \mid x \in M, s \in S\right\}$, where multiplication is done modulo q. If $|M S|=(\mu+\lambda)|S|$, then S is packing set. A packing set S where $M S \subseteq \mathbb{Z}_{q} \backslash\{0\}$ is a $B[-\mu, \lambda](q)$ set in the terminology of [8].

If $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, where $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a $B[-\mu, \lambda](q)$ set, then

$$
\left\{\mathbf{x} \in \mathbb{Z}_{q}^{n} \mid \mathbf{x} \cdot \mathbf{s} \equiv 0 \quad(\bmod q)\right\}
$$

is a code that can correct a single limited-magnitude error from the set $[-\mu, \lambda]$. Such codes have been studied in, e.g., [1]-[6], and [8].

Similar to packing sets, we can consider covering sets, where a set S is called a $(\lambda, \mu ; q)$ covering set if $|M S|=q$. Thus, covering sets are to packing sets as covering codes are to error-correcting codes. Instead of trying to pack many disjoint translates $M s, s \in S$, into \mathbb{Z}_{q}, in the covering set scenario we are interested in having the union of $M s, s \in S$, cover \mathbb{Z}_{q} entirely with S being as small as possible. Some results where $\mu=0$ or $\mu=\lambda$ are described in [7]. Apart from its independent intellectual merit, solving this problem for $\mu=0$ has immediate applications, such as rewriting schemes for non-volatile memories, a simplified version of which we now describe. For a more detailed description the reader is referred to [2] and references therein.

[^0]Consider a set of n flash memory cells, each capable of storing an integer from \mathbb{Z}. Let G be some finite abelian group, say $G=\mathbb{Z}_{q}$, and some subset $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subseteq G$, where we denote $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Define the decoding mapping $\mathcal{D}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}_{q}$ as $\mathcal{D}(\mathbf{x})=\mathbf{x} \cdot \mathbf{s}$.

If we want to store the value $v \in \mathbb{Z}_{q}$ in the n memory cells, we choose a vector $\mathbf{x} \in \mathbb{Z}^{n}$ such that $\mathcal{D}(\mathbf{x})=v$, and store the i-th component of \mathbf{x} in the i-th cell. If we then want to rewrite this value with $v^{\prime} \in \mathbb{Z}_{q}$, we can choose a different vector $\mathbf{x}^{\prime} \in \mathbb{Z}^{n}$ that decodes to v^{\prime}. Due to the limitations of flash memory, we would like x_{i}^{\prime} to be in the range $\left[x_{i}-\mu, x_{i}+\lambda\right]$, and to leave as many cells as possible unchanged. In the extreme case, we allow only a single cell to change. To be able to allow any value v to be rewritten with v^{\prime} while changing the stored integer in a single cell as above, S can be taken to be a $(\lambda, \mu ; q)$ covering set. This is because we can write $v^{\prime}-v=m s_{i}$ with $m \in[-\mu, \lambda], s_{i} \in S$, and then choose $\mathbf{x}^{\prime}=\mathbf{x}+m \mathbf{e}_{\mathbf{i}}$, where $\mathbf{e}_{\mathbf{i}}$ is the i-th standard unit vector. For maximum efficiency, we would like S to be as small as possible.

We say S is a $(\lambda, \mu ; q)$ perfect covering set if $M S=\mathbb{Z}_{q},|M|(|S|-1)=q-1$, and $0 \in S$. In other words, S is a perfect covering set if, apart from $0 \in S$, the products $m s$ in \mathbb{Z}_{q}, where $m \in M, s \in S$, are all distinct, non-zero, and cover all the non-zero elements of \mathbb{Z}_{q}. These are also called abelian group splittings in the terminology of [7].

Similarly, S is a perfect packing set if the products $m s$ in \mathbb{Z}_{q}, where $m \in M$, $s \in S$, are all distinct, non-zero, and cover all the non-zero elements of \mathbb{Z}_{q}. We note that S is a perfect covering if and only if $S \backslash\{0\}$ is a perfect packing set.

The following functions shall be of interest to us:

$$
\begin{aligned}
\nu(q, r) & =\nu_{\lambda, \mu}(q, r)=\max _{S \subseteq \mathbb{Z}}\{|M S|| | S \mid=r\} \\
\theta(q) & =\theta_{\lambda, \mu}(q)=\max _{r \in \mathbb{N}}\{r \mid \nu(q, r)=(\mu+\lambda) r\}, \\
\omega(q) & =\omega_{\lambda, \mu}(q)=\min _{r \in \mathbb{N}}\{r \mid \nu(q, r)=q\} .
\end{aligned}
$$

Intuitively speaking, $\nu(q, r)$ expresses the maximum coverage of sets of size r, $\theta(q)$ is the maximum size of a packing set, and $\omega(q)$ is the minimum size of a covering set. If S is a $(\lambda, \mu ; q)$ covering set of minimal size $\omega_{\lambda, \mu}(q)$, we call S optimal. We first prove some basic monotonicity properties.

Theorem 1. Let μ^{\prime} and λ^{\prime} be integers such that $-\mu \leq-\mu^{\prime} \leq 0 \leq \lambda^{\prime} \leq \lambda$. Then

$$
\nu_{\lambda^{\prime}, \mu^{\prime}}(q, r) \leq \nu_{\lambda, \mu}(q, r), \quad \theta_{\lambda^{\prime}, \mu^{\prime}}(q) \geq \theta_{\lambda, \mu}(q), \quad \omega_{\lambda^{\prime}, \mu^{\prime}}(q) \geq \omega_{\lambda, \mu}(q)
$$

Proof. If we denote $M^{\prime}=\left[-\mu^{\prime}, \lambda^{\prime}\right]^{*}$ then obviously $M^{\prime} \subseteq M$ and therefore $M^{\prime} S \subseteq M S$. The claims follow immediately.

We now give a simple lower bound.
Theorem 2. We have $\omega_{\lambda, \mu}(q) \geq\left\lceil\frac{q}{\lambda+\mu}\right\rceil$.

Proof. By definition, there exists an optimal covering set S. Therefore,

$$
q=|M S| \leq(\lambda+\mu)|S|=(\lambda+\mu) \omega_{\lambda, \mu}(q),
$$

and the theorem follows.
Example 1. For $\mu=0$ and $\lambda=1$ we clearly have $M S=S$ for all sets S. Hence, $\nu_{1,0}(q, r)=r$ and $\theta_{1,0}(q)=\omega_{1,0}(q)=q$.

Example 2. Let $\mu=\lambda=1$. For $1 \leq r \leq\lfloor q / 2\rfloor$ we have $|M[1, r]|=2 r$. Hence, $\nu(q, r)=2 r$. For $\lfloor q / 2\rfloor+1 \leq r \leq q$ we have $|M[0, r-1]|=q$. Hence, $\nu(q, r)=q$. We can conclude that $\theta_{1,1}(q)=\lfloor q / 2\rfloor$ and $\omega_{1,1}(q)=\lceil q / 2\rceil$.

For $\lambda \geq 2$, it seems to be quite complicated to determine θ and ω in many cases. For $\lambda=2, \theta_{2,0}(q)$ was determined in [4], $\theta_{2,1}(q)$ in [8], and $\theta_{2,2}(q)$ in [5]. In the next sections we consider $\omega_{2,0}(q)$ and $\omega_{2,1}(q)$. Because of the page limitations, our results on $\omega_{2,2}(q)$ is are not given here.

We first give a general BCH -like upper bound.
Theorem 3. Let p be a prime, and let g be a primitive element in \mathbb{Z}_{p}. If $[-\mu, \lambda]^{*}$ contains δ consecutive powers of g then $\omega_{\lambda, \mu}(p) \leq\left\lceil\frac{p-1}{\delta}\right\rceil+1$.
Proof. One can easily verify that the set

$$
S=\{0\} \cup\left\{g^{\delta i} \left\lvert\, 0 \leq i \leq\left\lceil\frac{p-1}{\delta}\right\rceil-1\right.\right\}
$$

is indeed a $(\lambda, \mu ; q)$ covering set.
Another upper bound is the following.
Theorem 4. If q and r are odd, then $\omega_{2, \mu}(q r) \leq r\left(\omega_{2, \mu}(q)-1\right)+\omega_{2, \mu}(r)$.
Proof. Let S be an optimal $(2, \mu ; q)$ covering set and D an optimal $(2, \mu ; r)$ covering set. We remind that $\mu \leq \lambda=2$. Since q is odd, $a c \equiv 0(\bmod q)$ for some $a \in[-\mu, 2]^{*}$, only if $c=0$. Therefore, we must have $0 \in S$. Similarly, $0 \in D$. Let

$$
E=\left\{c q+s \in \mathbb{Z}_{q r} \mid c \in[0, r-1], s \in S \backslash\{0\}\right\} \cup\left\{q d \in \mathbb{Z}_{q r} \mid d \in D\right\}
$$

Then $|E|=r\left(\omega_{2, \mu}(q)-1\right)+\omega_{2, \mu}(r)$. We will show that E is a $(2, \mu ; q r)$ covering set.

First, consider the case $b \in \mathbb{Z}_{q r}, b \not \equiv 0(\bmod q)$. Let $b_{1} \equiv b(\bmod q), b_{1} \in$ $[1, q-1]$, that is $b=m q+b_{1}$ for some integer m. Furthermore, $b_{1} \equiv a s(\bmod q)$ for some $a \in[-\mu, 2]^{*}$ and $s \in S \backslash\{0\}$. That is, $a s=m_{1} q+b_{1}$ for some integer m_{1}. Hence

$$
b=m q+\left(a s-m_{1} q\right)=\left(m-m_{1}\right) q+a s .
$$

Since $q r$ is odd, we note that all the elements of $[-\mu, 2]$ are invertible in $\mathbb{Z}_{q r}$. Thus,

$$
b=\left(m-m_{1}\right) q+a s \equiv a\left[a^{-1}\left(m-m_{1}\right) q+s\right] \quad(\bmod q r) .
$$

This shows that $b \in[-\mu, 2]^{*} E$.
Next, consider the case $b \in \mathbb{Z}_{q r}, b \equiv 0(\bmod q)$. Then $b=q b_{2}$. There exist $a \in[-\mu, 2]^{*}$ and $d \in D$ such that $b_{2} \equiv a d(\bmod r)$. Hence $b=q b_{2} \equiv a(q d)$ $(\bmod q r)$, that is $b \in[-\mu, 2]^{*} E$ also in this case.

2 Determination of $\omega_{2,0}(q)$

For $S \subseteq \mathbb{Z}_{q}$ and $(\lambda, \mu)=(2,0)$, we have $M=[0,2]^{*}=\{1,2\}$ and

$$
M S=\bigcup_{s \in S}\{s, 2 s\}
$$

First, we consider $q=2 m+1$. For an integer $a \in \mathbb{Z}_{2 m+1} \backslash\{0\}$, the corresponding cyclotomic coset is

$$
\sigma(a)=\left\{a 2^{j} \bmod (2 m+1) \mid j \geq 0\right\}
$$

If $2 m+1$ is a prime, then all the cosets have the same size. We see that a packing set can contain at most $\lfloor|\sigma(a)| / 2\rfloor$ of the elements in $\sigma(a)$, and we can find a packing set with this many elements. Let $\varsigma(2 m+1)$ be the number of cyclotomic cosets of odd size. Then we get

$$
\theta_{2,0}(2 m+1)=m-\varsigma(2 m+1) / 2
$$

This is Theorem 7 in [3], where a more detailed proof is given.
Similarly, a covering set must contain at least $\lceil|\sigma(a)| / 2\rceil$ of the elements in $\sigma(a)$, and we can find a covering set with this many elements. Moreover, a covering set must contain 0 . Hence

$$
\begin{equation*}
\omega_{2,0}(2 m+1)=m+1+\varsigma(2 m+1) / 2 . \tag{1}
\end{equation*}
$$

An explicit expression for $\varsigma(2 m+1)$ is given as Theorem 2 in [4]. Combining this with (1), we get the following theorem where $\varphi(d)$ is Euler's function and $\operatorname{ord}_{p}(2)$ is the multiplicative order of 2 modulo p.

Theorem 5. If $2 m+1=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{s}^{t_{s}}$ is the prime factorization of $2 m+1$, let $q_{o}=\prod_{\substack{1 \leq \leq \leq s \\ p_{i} \in P_{o}}} p_{i}^{t_{i}}$, where P_{o} is the set of odd primes p such that $\operatorname{ord}_{p}(2)$ is odd. Then

$$
\omega_{2,0}(2 m+1)=m+1+\sum_{d \mid q_{o}, d>1} \frac{\varphi(d)}{2 \operatorname{ord}_{d}(2)}
$$

In particular, a perfect $(2,0 ; 2 m+1)$ set exists if and only if none of the primes dividing $2 m+1$ belongs to P_{o}.

Theorem 6. For $m \geq 0$ we have $\omega_{2,0}(4 m+2)=2 m+1$.
Proof. By Theorem $2, \omega_{2,0}(4 m+2) \geq 2 m+1$. On the other hand, $\{1,3, \ldots, 4 m+1\}$ is a covering set of size $2 m+1$.

Theorem 7. For all $m \geq 1$ we have $\omega_{2,0}(4 m)=2 m+\omega_{2,0}(m)$.

Proof. Let D be an optimal $(2,0 ; m)$ covering set. The set

$$
\{2 a+1 \mid a \in[0,2 m-1]\} \cup\{4 d \mid d \in D\}
$$

is easily seen to be a $(2,0 ; 4 m)$ set of size $2 m+\omega_{2,1}(m)$. Hence,

$$
\begin{equation*}
\omega_{2,0}(4 m) \leq 2 m+\omega_{2,0}(m) \tag{2}
\end{equation*}
$$

On the other hand, let S be an $(2,0 ; 4 m)$ covering set. Clearly, S must contain $E=\{2 a+1 \mid a \in[0,2 m-1]\}$. Let X be the set of even elements in S. Let $s \in X$. If $s \equiv 2(\bmod 4)$, then $s \in M E$, where $M=[1,2]$. Hence we can replace s by $2 s$ in S and still have a covering set. Therefore, we may assume that all the elements of X are divisible by 4 . Define

$$
D=\{s / 4 \mid s \in X\}
$$

We will show that D is a covering $(2,0 ; m)$ set. Let $a \in \mathbb{Z}_{m}$. Then $4 a \in \mathbb{Z}_{4 m}$. Hence, we have two possibilities:
$-4 a \in X$. Then $a \in D$.
$-4 a \notin X$. Then $4 a=2 \cdot 4 b$, where $4 b \in X$, and so $a=2 b$ where $b \in D$.
Hence $M D=\mathbb{Z}_{m}$. Therefore we get

$$
\omega_{2,0}(4 m)=|X|+2 m=|D|+2 m \geq \omega_{2,0}(m)+2 m
$$

Combined with (2), this proves the theorem.

3 Some results on $\omega_{2,1}(q)$

For $S \subseteq \mathbb{Z}_{q}$ and $(\lambda, \mu)=(2,1)$, we have $M=[-1,2]^{*}=\{-1,1,2\}$ and

$$
M S=\bigcup_{s \in S}\{s,-s, 2 s\}
$$

Theorem 8. For all $m \geq 1$ we have $\omega_{2,1}(2 m+1)=m+1$.
Proof. The set $[0, m]$ is clearly a $(2,1 ; 2 m+1)$ covering set. Hence

$$
\begin{equation*}
\omega_{2,1}(2 m+1) \leq m+1 \tag{3}
\end{equation*}
$$

Now, let S be a set of minimal size covering $\mathbb{Z}_{2 m+1}$. We note that for $x \in$ $[-1,2]^{*}$ we have $x s \equiv 0(\bmod 2 m+1)$ if and only if $s=0$. Hence $0 \in S$. Since $0 \in S$ covers only $0 \in \mathbb{Z}_{2 m+1}$ we shall, for the rest of the proof, only consider non-zero elements in S and the covering of non-zero elements in $\mathbb{Z}_{2 m+1}$. We partition the elements of $\mathbb{Z}_{2 m+1}^{*}$ into the "positive" and "negative" elements,

$$
P=\{1,2, \ldots, m\} \quad \text { and } \quad N=\{-1,-2, \ldots,-m\}
$$

We will determine a particular ordering $s_{0}=0, s_{1}, s_{2}, \ldots$ of the elements of S. We use the notation $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$. We shall say $M S_{i}$ is of configuration (j, k) if

$$
\left|P \cap M S_{i}\right|=j \quad \text { and } \quad\left|N \cap M S_{i}\right|=k .
$$

We shall further say that a configuration (j, k) is balanced if $j=k$, almost balanced if $|j-k|=1$, and imbalanced otherwise. We will show by induction that there is an ordering with the following properties:

1. If $M S_{i}$ is balanced then:
(a) $a \in M S_{i}$ iff $-a \in M S_{i}$.
(b) $\left|M S_{i}\right| \leq 2 i$
2. If $M S_{i}$ is almost balanced then:
(a) $a \in M S_{i}$ iff $-a \in M S_{i}$, except for exactly one element in $M S_{i}$.
(b) $-2 s_{i} \notin M S_{i}$.
(c) $\left|M S_{i}\right| \leq 2 i+1$.
3. $M S_{i}$ is never imbalanced.

If $2 m+1$ is divisible by 3 , then we must have $(2 m+1) / 3 \in S$ or $-(2 m+1) / 3 \in$ S (but not both since S has minimal size). In this case, we choose this as s_{1}. Then

$$
M S_{1}=\left\{\frac{2 m+1}{3}, 2 \frac{2 m+1}{3}\right\}
$$

which is a balanced set of size 2 . Otherwise, $2 m+1$ is not divisible by 3 , and we choose any non-zero element of S as s_{1} and we get $M S_{1}=\left\{s_{1},-s_{1}, 2 s_{1}\right\}$, an imbalanced set of size 3 . Moreover, $-2 s_{1} \notin M S_{1}$. Thus, the induction basis is proved.

For the induction step, let us assume the hypothesis holds for i, and we show how to pick s_{i+1}. We consider the following cases:

1. $M S_{i}$ is balanced: If we choose as s_{i+1} an element that is already covered, i.e., $s_{i+1} \in M S_{i}$, then by the induction hypothesis $-s_{i+1}$ is also covered. Now, if $2 s_{i+1}$ is covered, then again, $-2 s_{i+1}$ is covered and so $M S_{i}=M S_{i+1}$ and is balanced. If, on the other hand, $2 s_{i+1}$ is not covered then so is $-2 s_{i+1}$, but then $2 s_{i+1} \in M S_{i+1}$ and $-2 s_{i+1} \notin M S_{i+1}$ and so $M S_{i+1}$ is almost balanced. If we choose s_{i+1} that is not covered, then $-s_{i+1}$ is also not covered. As before, if $2 s_{i+1}$ is covered, then so is $-2 s_{i+1}$ and $M S_{i+1}$ is balanced. Otherwise, $2 s_{i+1}$ is not covered and $M S_{i+1}$ is almost balanced since $-2 s_{i+1} \notin M S_{i+1}$.
2. $M S_{i}$ is almost balanced: By the induction hypothesis $-2 s_{i} \notin M S_{i}$. We must have $-2 s_{i} \in\{s,-s, 2 s\}$ for some $s \in S$. We choose s_{i+1} to be one such s. We therefore have three subcases here to consider:
(a) $s_{i+1}=-2 s_{i}$. In that case $-s_{i+1}$ is already covered. We note that $2 s_{i+1}$ and $-2 s_{i+1}$ are both covered or both not covered, which results in $M S_{i+1}$ being balanced or almost balanced (with $-2 s_{i+1} \notin M S_{i+1}$) respectively.
(b) $-s_{i+1}=-2 s_{i}$, that is, $s_{i+1}=2 s_{i}$. This is exactly like the previous case only s_{i+1} is already covered.
(c) $2 s_{i+1}=-2 s_{i}$, that is, $s_{i+1}=-s_{i}$. In this case both s_{i+1} and $-s_{i+1}$ are already covered, as well as $-2 s_{i+1}=2 s_{i}$ being covered. We now have $2 s_{i+1}=-2 s_{i} \in M S_{i+1}$ and $M S_{i+1}$ is balanced.

We note that in all cases we never reach an imbalanced state, and it is a matter of simple bookkeeping to verify the size of $M S_{i+1}$ does not exceed the claim.

Having proved the claims by induction, assume $M S_{i}=\mathbb{Z}_{2 m+1}^{*}$, i.e., a covering of the non-zero elements of $\mathbb{Z}_{2 m+1}$. Since $M S_{i}$ is obviously balanced, by the claims above $i \geq m$. Since we need to add 0 to S_{i} to get a covering of $\mathbb{Z}_{2 m+1}$ we get $\omega_{2,1}(2 m+1) \geq m+1$. Combining this with (3), the theorem follows.

Theorem 9. For all $m \geq 1$ we have $\omega_{2,1}(4 m)=m+\omega_{2,1}(m)$.
Proof. Let $E=\{2 a+1 \mid a \in[0, m-1]\}$. Then

$$
M E=\left\{a \in \mathbb{Z}_{4 m} \mid a \not \equiv 0 \quad(\bmod 4)\right\}
$$

Let D be an optimal $(2,1 ; m)$ set. Then the set $E \cup\{4 d \mid d \in D\}$ is easily seen to be a $(2,1 ; 4 m)$ set of size $m+\omega_{2,1}(m)$. Hence,

$$
\begin{equation*}
\omega_{2,1}(4 m) \leq m+\omega_{2,1}(m) \tag{4}
\end{equation*}
$$

On the other hand, let S be an optimal $(2,1 ; 4 m)$ covering set. Let S_{0} be the set of even elements in S and S_{1} be the set of odd elements in S. First, we see that for an odd integer $a \in \mathbb{Z}_{4 m}$, we must have $a \in S_{1}$ or $-a \in S_{1}$. Hence, S_{1} contains at least m elements. Let $S^{\prime}=S_{0} \cup E$. Then $M S_{1} \subseteq M E$ and so $M S^{\prime}=\mathbb{Z}_{4 m}$. Also

$$
\omega_{2,1}(4 m) \leq\left|S^{\prime}\right|=m+\left|S_{0}\right| \leq\left|S_{1}\right|+\left|S_{0}\right|=\omega_{2,1}(4 m),
$$

and so S^{\prime} is an optimal covering set.
Next, if S_{0} contains an element $s \equiv 2(\bmod 4)$, this covers $s, 4 m-s$, and $s^{\prime}=(2 s \bmod 4 m)$. The first two are also covered by E. Therefore, if we replace s by s^{\prime}, the set is still a covering set for $\mathbb{Z}_{4 m}$. Repeating the process with for all elements in S_{0} that er congruent to 2 modulo $4 m$, we get a set S_{0}^{\prime} where all elements are divisible by 4 , and such that $E \cup S_{0}^{\prime}$ is a covering set, of size $\omega_{2,1}(4 m)$. Let $D=\left\{s / 4 \mid s \in S_{0}^{\prime}\right\}$. Then it is easy to see that D is a set covering \mathbb{Z}_{m}. Hence, $\left|S_{0}^{\prime}\right| \geq \omega_{2,1}(m)$ and so

$$
\omega_{2,1}(4 m)=|S|=|E|+\left|S_{0}^{\prime}\right| \geq m+\omega_{2,1}(m) .
$$

Combined with (4), the theorem follows.
The determination of $\omega_{2,1}(4 m+2)$ seems to be more tricky. We start with a lower bound.

Theorem 10. For all $m \geq 1$ we have $\omega_{2,1}(4 m+2) \geq 3 m / 2+1$.

Proof. Let S be an optimal $(2,1 ; 4 m+2)$ covering set. We first note that the only way to cover $2 m+1 \in \mathbb{Z}_{4 m+2}$ is by having $2 m+1 \in S$. Thus, 0 is also covered since $2(2 m+1) \equiv 0(\bmod 4 m+2)$. We now use an argument similar to that used in the proof of Theorem 9 . The odd elements of $\mathbb{Z}_{4 m+2}$ can only be covered by odd elements in S. Since $s \in S$ covers both s and $-s$, in order to cover the $2 m$ remaining odd elements of $\mathbb{Z}_{4 m+2}$ we need at least m odd elements in S in addition to our initial choice of $2 m+1 \in S$. Furthermore, this implies that of the $2 m$ even non-zero elements of $\mathbb{Z}_{4 m+2}, m$ are already covered. We are therefore left with m even non-zero elements in $\mathbb{Z}_{4 m+2}$ which we still need to cover. Adding an odd element to S can cover at most another single even element in $\mathbb{Z}_{4 m+2}$. In contrast, adding an even element s to S can cover at most two more elements of $\mathbb{Z}_{4 m+2}$ since at least one of s and $-s$ is already covered. Thus, we need to add at least $\frac{m}{2}$ more elements to S.

We turn to prove upper bounds on $\omega_{2,1}(4 m+2)$. Let v_{2} denote the 2 -ary evaluation, that is $n=2^{v_{2}(n)} n_{1}$, where n_{1} is odd. By an explicit construction, we can find an upper bound on $\omega_{2,1}(4 m+2)$.

Construction 1. For $m \geq 0$, let $S=X \cup Y \cup Z$, where

$$
\begin{aligned}
X & =\{2 a+1 \mid a \in[0, m]\} \\
Y & =\left\{\left.c \in\left[1,4\left\lfloor\frac{m}{3}\right\rfloor+2\right] \right\rvert\, v_{2}(c)=1\right\} \\
Z & =\left\{\left.c \in\left[1,8\left\lfloor\frac{m}{3}\right\rfloor\right] \right\rvert\, v_{2}(c) \text { is odd and } v_{2}(c) \geq 3\right\} .
\end{aligned}
$$

Proposition 1. For all $m \geq 0, S$ of Construction 1 is a $(2,1 ; 4 m+2)$ covering set.

Proof. Let $b \in[0,4 m+1]$.

- Case $b=0$. We have $0 \equiv 4 m+2=2(2 m+1)(\bmod 4 m+2)$.
- Case $b \in[1,4 m+1]$ and $v_{2}(b)=0$. If $b \leq 2 m+1$, then $b \in X$. If $b \geq 2 m+3$, then $q-b \in X$.
- Case $b \in[1,4 m+1]$ and $v_{2}(b)=1$. In this case, $b=2 c$, where $c \in X$.
- Case $b \in\left[1,8\left\lfloor\frac{m}{3}\right\rfloor+4\right]$ and $v_{2}(b)=2$. In this case, $b=2 c$, where $c \in Y$.
- Case $b \in\left[1,8\left[\frac{m}{3}\right]+4\right], v_{2}(b) \geq 3$, and $v_{2}(b)$ is odd. In this case, $b \in Z$.
- Case $b \in\left[1,8\left\lfloor\frac{m}{3}\right\rfloor+4\right], v_{2}(b) \geq 4$, and $v_{2}(b)$ is even. In this case, $b=2 c$, where $c \in Z$.
- Case $b \in\left[8\left\lfloor\frac{m}{3}\right\rfloor+8,4 m\right]$ and $v_{2}(b) \geq 2$. Let $b=4 \beta$, where now β is an integer. Then

$$
4 m+2-b=4(m-\beta)+2 .
$$

In particular, $v_{2}(4 m+2-b)=1$. Furthermore,

$$
4 m+2-b \leq 4 m+2-8\left\lfloor\frac{m}{3}\right\rfloor-8 \leq 4\left\lfloor\frac{m}{3}\right\rfloor+2,
$$

and so $4 m+2-b \in Y$.

Corollary 1. For all $m \geq 0$ we have

$$
\frac{3 m+2}{2} \leq \omega_{2,1}(4 m+2)<\frac{14 m+18}{9}+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil
$$

Proof. The lower bound is from Theorem 9. We will show that the upper bound follows from Proposition 1. We have

$$
\begin{aligned}
|X| & =m+1 \\
|Y| & =\left\lfloor\frac{m}{3}\right\rfloor+1 \\
|Z| & =\sum_{j \geq 1}\left\lfloor 2^{1-2 j}\left\lfloor\frac{m}{3}\right\rfloor+\frac{1}{2}\right\rfloor<\frac{2}{3}\left\lfloor\frac{m}{3}\right\rfloor+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil
\end{aligned}
$$

The first two of these are immediate.
For $|Z|$, we see that $b \in Z$ if $b=2^{2 j+1}(2 \delta+1)$ where $\delta \geq 0, j \geq 1$, and

$$
2 \delta+1 \leq 2^{3-2 j-1}\left\lfloor\frac{m}{3}\right\rfloor
$$

Hence, we must have $2^{2-2 j}\left\lfloor\frac{m}{3}\right\rfloor \geq 1$, that is $2^{2 j-2} \leq\left\lfloor\frac{m}{3}\right\rfloor$ and s $2 j-2 \leq$ $\log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor\right)$, that is $j \leq 1+\frac{\log _{2}(\lfloor m / 3\rfloor)}{2}$. Further, for a given j,

$$
0 \leq \delta \leq-2^{-1}+2^{1-2 j}\left\lfloor\frac{m}{3}\right\rfloor
$$

that is, the number of δ is $\left\lfloor 2^{1-2 j}\left\lfloor\frac{m}{3}\right\rfloor+\frac{1}{2}\right\rfloor$. By Proposition 1 ,

$$
\begin{aligned}
\omega_{2,1}(4 m+2) & <|X|+|Y|+|Z| \\
& \leq m+1+\left\lfloor\frac{m}{3}\right\rfloor+1+\frac{2}{3}\left\lfloor\frac{m}{3}\right\rfloor+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil \\
& \leq \frac{14 m+18}{9}+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil .
\end{aligned}
$$

Another recursive construction is described next.
Construction 2. Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ covering set such that $S^{\prime} \subseteq[0, m]$. Let $S=X \cup Y$, where the sets $X, Y \subseteq \mathbb{Z}_{4 m+2}$ are defined by

$$
X=\{2 a+1 \mid a \in[0, m]\}, \quad Y=\left\{2 s^{\prime} \mid s^{\prime} \in S^{\prime}\right\} \backslash\{0\} .
$$

Proposition 2. For all $m \geq 0, S$ of Construction 2 is a $(2,1 ; 4 m+2)$ covering set.

Proof. First, we see that X covers 0 and all the odd elements of $\mathbb{Z}_{4 m+2}$. Next, we note that the even elements of $\mathbb{Z}_{4 m+2}$ are isomorphic to $\mathbb{Z}_{2 m+1}$. Thus, the elements of Y cover all the even non-zero elements of $\mathbb{Z}_{4 m+2}$ except perhaps elements of the form $-4 s^{\prime}$ for $s^{\prime} \in S^{\prime}$. However

$$
-4 s^{\prime} \equiv 2\left(2\left(m-s^{\prime}\right)+1\right) \quad(\bmod 4 m+2)
$$

and so $-4 s^{\prime}$ is covered by X since $2\left(m-s^{\prime}\right)+1 \in X$.
Corollary 2. For all $m \geq 0, \omega_{2,1}(4 m+2) \leq m+\omega_{2,2}(2 m+1)$.
Proof. Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ optimal covering set. Without loss of generality, we may assume that $S^{\prime} \subseteq[0, m]$, since s and $-s \equiv 2 m+1-s$ $(\bmod 2 m+1)$ cover the same elements of $\mathbb{Z}_{2 m+1}$. From Construction 2 we get

$$
\omega_{2,1}(4 m+2) \leq|S|=|X|+|Y|=(m+1)+\left(\omega_{2,2}(2 m+1)-1\right) .
$$

Corollary 3 in [5] states that a $(2,2 ; 2 m+1)$ perfect packing set exists if and only if $v_{2}\left(\operatorname{ord}_{p}(2)\right) \geq 2$ for any prime p dividing $2 m+1$.
Corollary 3. If $v_{2}\left(\operatorname{ord}_{p}(2)\right) \geq 2$ for any prime p dividing $2 m+1$, then $\omega_{2,1}(4 m+2)=3 m / 2+1$, and Construction 2 produces an optimal $(2,1 ; 4 m+2)$ covering set.
Proof. A simple counting argument shows that if a $(2,2 ; 2 m+1)$ perfect covering set exists, then $\omega_{2,2}(2 m+1)=m / 2+1$. We then combine Theorem 10 with Corollary 2 to obtain the desired result.

Example 3. Of the first 1000 even $m, 390$ satisfy the condition of Corollary 3, the first ten are $2,6,8,12,14,18,20,26,30,32$. Of the 5000 even m below 10000, 1745 satisfy the condition of Corollary 3.

References

1. Cassuto, Y., Schwartz, M., Bohossian, V., Bruck, J.: Codes for asymmetric limitedmagnitude errors with applications to multilevel flash memories. IEEE Trans. Inform. Theory 56(4), 1582-1595 (2010)
2. Jiang, A., Langberg, M., Schwartz, M., Bruck, J.: Trajectory codes for flash memory. Accepted to IEEE Trans. on Inform. Theory
3. Kløve, T., Bose, B., Elarief, N.: Systematic, single limited magnitude error correcting codes for flash memories. IEEE Trans. Inform. Theory $\mathbf{5 7}(7), 4477-4487$ (2011)
4. Kløve, T., Luo, J., Naydenova, I., Yari, S.: Some codes correcting asymmetric errors of limited magnitude. IEEE Trans. Inform. Theory 57(11), 7459-7472 (2011)
5. Kløve, T., Luo, J., Yari, S.: Codes correcting single errors of limited magnitude. IEEE Trans. Inform. Theory 58(4), 2206-2219 (2012)
6. Schwartz, M.: Quasi-cross lattice tilings with applications to flash memory. IEEE Trans. Inform. Theory 58(4), 2397-2405 (2012)
7. Stein, S., Szabó, S.: Algebra and Tiling. The Mathematical Association of America (1994)
8. Yari, S., Kløve, T., Bose, B.: Some codes correcting unbalanced errors of limited magnitude for flash memories. Submitted to IEEE Trans. on Inform. Theory

[^0]: * Supported by The Norwegian Research Council and by ISF grant 134/10.

