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Abstract—We study the rate-distortion relationship in the set
of permutations endowed with the Kendall 7-metric and the
Chebyshev metric. Our study is motivated by the application
of permutation rate-distortion to the average-case and worst-
case distortion analysis of algorithms for ranking with incomplete
information and approximate sorting algorithms. For the Kendall
T-metric we provide bounds for small, medium, and large
distortion regimes, while for the Chebyshev metric we present
bounds that are valid for all distortions and are especially
accurate for small distortions. In addition, for the Chebyshev
metric, we provide a construction for covering codes.

I. INTRODUCTION

In the analysis of sorting and ranking algorithms, it is
often assumed that complete information is available, that is,
the answer to every question of the form “is x > y?7” can
be found, either by query or computation. A standard and
straightforward result in this setting is that, on average, one
needs at least log, n! pairwise comparisons to sort a randomly-
chosen permutation of length n. In practice, however, it is
usually the case that only partial information is available. One
example is the learning-to-rank problem, where the solutions
to pairwise comparisons are learned from data, which may
be incomplete, or in big-data settings, where the number of
items may be so large as to make it impractical to query every
pairwise comparison. It may also be the case that only an
approximately-sorted list is required, and thus one does not
seek the solutions to all pairwise comparisons. In such cases,
the question that arises is what is the quality of a ranking
obtained from incomplete data, or an approximately-sorted list.

One approach to quantify the quality of an algorithm that
ranks with incomplete data is to find the relationship between
the number of comparisons and the average, or worst-case,
quality of the output ranking, as measured via a metric on the
space of permutations. To explain, consider a deterministic al-
gorithm for ranking 7 items that makes nR queries and outputs
a ranking of length n. Suppose that the true ranking is 7r. The
information about 7t is available to the algorithm only through
the queries it makes. Since the algorithm is deterministic, the
output, denoted as f(7r), is uniquely determined by 7t. The
“distortion” of this output can be measured with a metric d as
d(7, f(7r)). The goal is to find the relationships between R
and d(7t, f(7r)) when 7t is chosen at random and when it is
chosen by an adversary.
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A general way to quantify the best possible performance
by such an algorithm is to use the rate-distortion theory on
the space of permutations. In this context, the codebook is the
set {f(7) : ™ € S, }, where S, is the set of permutations of
length n, and the rate is determined by the number of queries.
For a given rate, no algorithm can have smaller distortion than
what is dictated by rate-distortion.

With this motivation, we study rate-distortion in the space of
permutations under the Kendall T-metric and the Chebyshev
metric. Previous work on this topic includes [17], which
studies permutation rate-distortion with respect to the Kendall
T-metric and the £1-metric of inversion vectors, and [7] which
considers Spearman’s footrule. Our results on the Kendall -
metric improve upon those presented in [17]. In particular,
for the small distortion regime, as defined later in the paper,
we eliminate the gap between the lower bound and the upper
bound given in [17]; for the large distortion regime, we provide
a stronger lower bound; and for the medium distortion regime,
we provide upper and lower bounds with error terms.

Our study includes both worst-case and average-case distor-
tions as both measures are frequently used in the analysis of al-
gorithms. We also note that permutation rate-distortion results
can also be applied to lossy compression of permutations, e.g.,
rank-modulation signals [8]. Finally, we also present covering
codes for the Chebyshev metric, where covering codes for the
Kendall T-metric were already presented in [17]. The codes
are the covering analog of the error-correcting codes already
presented in [1], [9], [11], [16].

The rest of the paper is organized as follows. In Section II,
we present preliminaries and notation. Section III contains
non-asymptotic results valid for both metrics under study.
Finally, Section IV and Section V focus on the Kendall -
metric and the Chebyshev metric, respectively. Due to lack
of space, some of the proofs are omitted or shortened. These
can be found in the full version of the paper, available on
arXiv [6].

II. PRELIMINARIES AND DEFINITIONS

For a nonnegative integer 7, let [n] denote the set
{1,...,n}, and let S,; denote the set of permutations of [n].
We denote a permutation o € S, as ¢ = [0q,09,...,04],
where the permutation sets ¢ (i) = ;. We also denote the
identity permutation by Id = [1,2,...,n].

The Kendall T-distance between two permutations 7T, 0 €
S, is the number of transpositions of adjacent elements needed
to transform 7t into o, and is denoted by dk (77, ). In contrast,
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the Chebyshev distance between 7T and o is defined as

dc(7,0) = max |7e(i) = (D).

Additionally, let d(7t,0) denote a generic distance measure
between 7T and .

Both dk and d¢ are invariant; the former is left-invariant
and the latter is right-invariant [5]. In other words, for all
f,8h € Sy, we have dk(f,g) = dk(hf,hg) and dc(f,8) =
dc(fh,gh). Hence, the size of the ball of a given radius in
either metric does not depend on its center. The size of a ball
of radius r with respect to dgk, dc, and d, is given, respectively,
by Bk(r), Bc(r), and B(r). The dependence of the size of
the ball on 7 is implicit.

A code C is a subset C C 5,,. For a code C and a
permutation 71 € S, let d(71,C) = min,ccd(7, o) be the
(minimal) distance between 7t and C.

We use M (D) to denote the minimum number of codewords
required for a worst-case distortion D. That is, M(D) is the
size of the smallest code C such that for all T € S, we
have d(7t,C) < D. Similarly, let M(D) denote the minimum
number of codewords required for an average distortion D
under the uniform distribution on S,, that is, the size of
the smallest code C such that 1 ¥ s d(7,C) < D. Note
that M(D) < M(D). In what follows, we assume that the
distortion D is an integer. For worst-case distortion, this
assumption does not lead to a loss of generality as the metrics
under study are integer valued.

We also define

R(D) = 1gNI(D),

M(D) - 1, N
o AD)=_lg
where we use lg as a shorthand for log,. It is clear that
R(D) = A(D) +1gn!/n, and that a similar relationship holds
between R(D) and A(D). The reason for defining A and A is
that they sometimes lead to simpler expressions compared to
R and R. Furthermore, A (resp. A) can be interpreted as the
difference between the number of bits per symbol required to
identify a codeword in a code of size M (resp. M) and the
number of bits per symbol required to identify a permutation

inG,.

Throughout the paper, for M, M, A, A, R, and R, subscripts
K and C denote that the subscripted quantity corresponds to
the Kendall T-metric and the Chebyshev metric, respectively.
Lack of subscripts indicates that the result is valid for both
metrics.

In the sequel, the following inequalities [4] will be useful,

nH(p) nH(p)
2 < ( n > < 2
8np(l—p) \pn

V2rnp(1—=p)’

where H(-) is the binary entropy function, and 0 < p < 1.

A 1

(1)

Furthermore, to denote limy_, e % =1, we use
f(x) ~g(x) as x — oo,

or f ~ g if doing so does not cause ambiguity.

III. NON-ASYMPTOTIC BOUNDS

In this section, we derive non-asymptotic bounds, that is,
bounds that are valid for all positive integers # and D. The
results in this section apply to both the Kendall T-distance and
the Chebyshev distance as well as any other invariant distance
on permutations.

The next lemma gives two basic lower bounds for M(D)
and M(D).

Lemma 1. For alln,D € N,

N n! - n!

MP) 2 gmy MO > gy

Proof: Since the first inequality is well known and its

proof is clear, we only prove the second one. Fix n and D.
Consider a code C C 5, of size M and suppose the average
distortion of this code is at most D. There are at most MB(D)
permutations 77 such that d(77,C) < D and at least n! —
MB(D) permutations 7t such that d(7t, C) > D + 1. Hence,
D > (D+1)(1 - MB(D)/n!). The second inequality then
follows. [ ]

In the next lemma, we use a simple probabilistic argument
to give an upper bound on M(D).

Lemma 2. Foralln,D € N, M(D) < [n!Inn!/B(D)].

Proof: Suppose that a sequence of M permutations,
7, ..., 7TM, 1S drawn by choosing each 7t; i.i.d. with uniform
distribution over S,. Denote C = {my,...,tpm} € Sy. The
probability P that there exists ¢ € S, with d(c,C) > D is
bounded by

P; < Y P(Vi:d(m,0) > D) =n!(1—B(D)/n)™
oeS,

< n!efMB(D)/n! _ elnnlfMB(D)/n!.

Let M = [n!Inn!/B(D)] so that Py < 1. Hence, a code of
size M exists with worst-case distortion D. [ ]
The following theorem by Stein [15], which can be used
to obtain existence results for covering codes (see, e.g., [4]),
enables us to improve the above upper bound. We use a
simplified version of this theorem, which is sufficient for our
purpose.
Theorem 3. [15] Consider a set X, with |X| = N, and a family
{Ai}f\il of subsets of X. Suppose there is an integer Q such
that |A;| = Q for all i and that each element of X is in Q of
the sets A;. Then there is subfamily of {A;}Y . containing at
most (N/Q)(1+1InQ) sets, that covers X.

In our context X is 5;,, A; are the balls of radius D centered
at each permutation, N = n! and Q = B(D). Hence, the
theorem implies that

n!
B(D)
The following theorem summarizes the results of this section.
Theorem 4. For alln,D € IN,

B?l!j) < KI(D) < lel!))(lelnB(D)), )

N(D) < (1+InB(D)).
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Wbﬂ) < M(D) < M(D). (3)

IV. THE KENDALL T-METRIC

The goal of this section is to consider the rate-distortion
relationship for the permutation space endowed by the Kendall
T-metric. First, we find non-asymptotic upper and lower
bounds on the size of the ball in the Kendall T-metric. Then,
in the following subsections, we consider asymptotic bounds
for small, medium, and large distortion regimes. Throughout
this section, we assume 1 < D < %(g) and n > 1. Note that
D is upper bounded by (5), and the case of %(g) <D< (5)
leads to trivial codes, e.g., {Id, [n,n —1,...,1]} and {Id}.

A. Non-asymptotic Results

Let X, be the set of integer vectors x = x1,x2,...,X, of
length n such that 0 < x; < i—1 for i € [n]. It is well known
(for example, see [9]) that there is a bijection between X, and
S,; such that for corresponding elements x € X, and 77 € 5,
we have dg (77,Id) = Y', x;. Hence

BK(r):HxGXn:ixigr}, 4)
i=2

for 1 < r < (5). Thus, the number of nonnegative integer
solutions to the equation ) ' , x; < r is at least Bk (r), i.e.,

(H—n—l). 5)
r

Furthermore, for 6 € Q, > 0, such that dn is an integer,
it can also be shown that

Bk (r) <

Bk (dn) = [1+6]1[1+ 6]~ 11+, 6)

by noting the fact that the right-hand side of (6) counts the
elements of X, such that

0 < X g 1— 1,

0<x < (49,
and that }<146) (i —1) + (n— [1+6]) [6] < [6]n < on.
Next we find a lower bound on By (r) with ¥ < n. Let

I (n,r) denote the number of permutations in S, that are at
distance r from the identity. We have [2, p. 51]

fori < |1+,
fori> [144],

n+r—1 > ;
I(n,r)= < . ) + Z (—1)]fj,
j=1
- ntr—(u—j)-1 n+r—u;—1 o 2
where f; = ( r—(u;—j) )+ ( r—u; ), and u; = (3j* +
j)/2. Tt can be shown that ("*7"1) — f; > 1("*771) and
that, for j > 2, we have f] > fjH. Thus, for r < n,
1/n+r—1
BK(r)>I(n,r)>4( . ) @)

In the next two theorems, we use the aforementioned bounds
on By (r) to derive lower and upper bounds on Ag(D) and
Ax(D).

Theorem 5. Foralln,D € N, andé = D/n,

A 1+0)'"
AK(D) > —lg%,
— l—l—&”é len
) > g L8 e

Proof: Using (5), (1), and the fact that § > 1/n, we

can show By (D)gzn(”‘”H(ﬁ). The first result then follows
from (2). The proof of the second result is in essence similar
but uses (3). |

To obtain the next theorem, the lower bounds given in (6)
and (7) are used. We omit a detailed proof.

Theorem 6. Assume n,D € IN, and let 6 = D /n. We have

_ - 1+0)1 31 12
Ax(D) < Ax(D) < —1g 1T JBn T T2

ford < 1, and

~

Ax(D) < Ag(D) < —1g|1+4| —l—%lg (neU”J In|1 +5J)
ford > 1.

B. Small Distortion

In this subsection, we consider small distortion, that is, D =
O(n). First, suppose D < n, or equivalently, 6 = D/n < 1.
The next lemma follows from Theorems 5 and 6.

Lemma 7. Foré = D/n < 1, we have that
A (1+0)'+° Ign
Ak(D)=—-lg—————+0 | =), 8
K( ) g 50 + " (&)
and that Ag (D) satisfies the same equation.

The next theorem, gives the asymptotic size of the ball
Bk (D) where D = ©(n).

Theorem 8. Let n = n (r) = £+ O(1) for a constant ¢ > 0.
Then 1
n4+r—
B ~ k(") ©)
asr,n — oo, where K, is a positive constant that depends on c.

We omit the proof of the theorem due to its length and
only mention that it relies on a probabilistic transform, namely,
Theorem 3.1 of [12].

One can use (9), Theorem 4, and the definitions of Ag and
Ag to obtain the following lemma.

Lemma 9. For a constant c > 0 and D = cn + O(1), we have

1+c
% 10 (lgnn) . (10)

Furthermore, A (cn + O(1)) satisfies the same equation.

Ak (cn+0(1)) = —1g

The results given in (8) and (10) are given as lower bounds
in [17, Equation (14)]. We have thus shown that these lower
bounds in fact match the quantity under study. Furthermore,
we have shown that Ag (D) satisfies the same relations.
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Figure1. Bounds on Ag(D) +lgn for D = cn? + O(n) where the error
terms are ignored. The bounds denoted by [W] are those from [17].

C. Medium Distortion

We next consider the medium distortion regime, that is, D =
cn'*t* 4+ O(n) for constants ¢ > 0 and 0 < a < 1. For this
case, from [17], we have AK(D) ~ —lg n®. We improve upon
this result by providing upper and lower bounds with error
terms. Using Theorems 5 and 6, one can show the following
lemma.

Lemma10. For D = cn'*t* + O(n), where « and c are
constants such that 0 < ¢ < 1 and ¢ > 0, we have

—lg (ecn*) + 0O (n™%) < Ax(D)

< —lg(en*)+0 (nf"‘ + n”‘*1>

D. Large Distortion

In the large distortion regime, we have D = cn? + O(n)
and 6 = cn+ O(1). The following lemma can be proved using
Theorems 5 and 6.

Lemma 11. Suppose D = cn? + O(n) for a constant 0 < ¢ <
%. We have

A

—1g (ecn) +O(n!) < Ag(D) <
—lg (ecn) 4+ (14 c)lge+O(n tign).
From [17], it follows that —lg (ecn) — 1+ O(n~t lgn) <

Ax(D) < —lgm + O(n~'lgn). These bounds and
those of Lemma 11 are compared in Figure 1, where we added
the term Ign to remove dependence on n.

V. THE CHEBYSHEV METRIC

We now turn to consider the rate-distortion function for the
permutation space under the Chebyshev metric. We start by
stating lower and upper bounds on the size of the ball in the
Chebyshev metric, and then construct covering codes.

A. Bounds

For an n x n matrix A, the permanent of A = (4;) is

defined as,
ZIT&Mz

weS,y, i=

per(A

It is well known [10], [14] that B¢ (r) can be expressed as the
permanent of the n X n binary matrix A for which

A= 1 Ji—j|<r
vl 0 otherwise.

According to Brégman’s Theorem (see [3]), for any n X n
binary matrix A with r; 1’s in the i-th row

(11

n

per(4) < [[(r)7"

i=1
Using this bound we can state the following lemma (partially
given in [10] and extended in [16]).

Lemma 12. [16] For all 0 <

n=2r o\ 2 _
Bc(r) < {((2”‘1))2’“ Hzrr+1(!)i/ 0<r< iz,
= n

<n-1,

2
2r42—n
-1
( ) Hz r+1() T<V<H_1
Lemma 13. Forall0 <r <n—1,

2r+1)" w1 <<=l
Bel) >4 @ 7 G5TS T

zzT'_r), Tgrgf’l—l

Proof: The first case was already proved in [10]. Thus,
only the second claim requires proof, so suppose that (n —
1)/2 < v < n — 1. The proof follows the same lines as the
one appearing in [10]. Let A be defined as in (11), and let B
be an n X n matrix with

2, i+j<n—r,
Bij =12, i+j=n+r+2,
Ajj, otherwise.

We observe that B/n is doubly stochastic. It follows that

B per(B) _ n"per(B/n) n!
Bc(r) = per(A) > 22(n—r) z 22(n—r) > 22(n—r)’
where the last inequality follows from Van der Waerden’s
Theorem [13]. |

Theorem 14. Let n € IN, and let 0 < § < 1 be a constant
rational number such that D = Jn is an integer. Then

Re(D) > {g25+25g2—%00gnhﬂ

0<5<%
251g6+2(1—06)1lge+O(lgn/n), 3 <6<1

2(1-6)+0O(lgn/n),

Furthermore, the same bounds also hold for Rc(D).

%an<{gg+w+0@nmh

Proof: (outline) To prove the lower bound for R¢(D),
we first use Lemma 12 to find an asymptotic upper bound on
Bc(D). Then, from Theorem 4, which states that |\7IC(D) >
n!/Bc (D), we find a lower bound on R¢ (D) = IgMc (D) /n.

To prove the upper bound for for Rc(D), from Lemma 13,
we find a lower bound on B¢ (D). The result then follows
from Lemma 2, stating that Mc(D) < n!Inn!/Bc(D), and
the fact that Rc(D) = IgMc(D)/n.
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Figure2. Rate-distortion in the Chebyshev metric: The lower and upper
bounds of Theorem 14, (a) and (b), and the rate of the code construction,
given in Theorem 17, (c).

The proof of the lower bound for Rc(D) is similar to that
of Rc(D) except that we use M(D) > n!/(B(D)(D + 1))
from Theorem 4. The proof of the upper bound for Rc(D)
follows from the fact that Rc(D) < Rc (D). ]

B. Code Construction

Let A = {ay,a,...,a,m} C [n] be a subset of indices,
a; < ap < --- < ay. For any permutation o € S, we define
0|4 to be the permutation in Sy, that preserves the relative
order of the sequence ¢(a1),0(az),...,0(ay). Intuitively, to
compute 0|4 we keep only the coordinates of ¢ from A, and
then relabel the entries to [m] while keeping relative order. In

a similar fashion we define o4 = (71| 4) - Intuitively, to
calculate (7|A we keep only the values of o from A, and then
relabel the entries to [m] while keeping relative order.

Example 15. Let n = 6 and consider the permutation ¢
[6,1,3,5,2,4]. We take A = {3,5,6}. We then have 0|4
[2,1,3], since we keep positions 3, 5, and 6, of 7, giving us
[3,2,4], and then relabel these to get [2,1, 3]. Similarly, we have
0'|A = [3,1,2], since we keep the values 3, 5, and 6, of 7, giving
us [6,3,5], and then relabel these to get [3,1,2]. |

Construction 1. Let n and d be positive integers, 1 < d <
n — 1. Furthermore, we define the sets

Ai={i(d+1)+j|1<j<d+1}N[n],

forall 0 < i< [(n—1)/(d+1)]. We now construct the code
C defined by

C:{Uesn

o4 =1d foralli}.

We note that this construction may be seen as a dual of the
construction given in [17].

Theorem 16. Let n and d be positive integers, 1 < d < n — 1.
Then the code C C S, of Construction 1 has covering radius
exactly d and size
n!
(d+ 1)1/ @+1)] (3 mod (d +1))!

10

Proof: Due to lack of space, we only prove the fact that
the code C C 5, of Construction 1 has covering radius (at
most) d.

Let o € 5;, be any permutation. We let I; denote the indices
in which the elements of A; appear in ¢. Let us now construct
a new permutation ¢’ in which the elements of A; appear in
indices I;, but they sorted in ascending order. Thus ¢’ |A" =1d,
for all i, and so ¢’ is a codeword in C.

We observe that if o(j) € A;, then ¢/(j) € A; as well. It
follows that |0 (j) — 0’(j)| < d and so d¢c(o,0’) < d. [

The code construction has the following asymptotic form:

Theorem 17. The code from Construction 1 has the following
1

asymptotic rate,
[)eisl3)

R=H|$6
(1)) +e 5
where H is the binary entropy function.

The bounds given in Theorem 14 and the rate of the code
construction, given in Theorem 17, are shown in Figure 2.

1

)

REFERENCES
[1]

A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. Inform. Theory, vol. 56, no. 7, pp.
3158-3165, Jul. 2010.

M. Béna, Combinatorics of permutations. CRC Press, 2012.

L. M. Brégman, “Some properties of nonnegative matrices and their
permanents,” Soviet Math. Dokl., vol. 14, pp. 945-949, 1973.

G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
North-Holland, 1997.

M. Deza and H. Huang, “Metrics on permutations, a survey,’
J. Comb. Inf. Sys. Sci., vol. 23, pp. 173-185, 1998.

F. Farnoud, M. Schwartz, and J. Bruck, “Rate-distortion for ranking with
incomplete information,” arXiv preprint: http://arxiv.org/abs/1401.3093,
2014.

J. Giesen, E. Schuberth, and M. Stojakovi, “Approximate sorting,” in
LATIN 2006: Theoretical Informatics, no. 3887. Springer, Jan. 2006,
pp- 524-531.

A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp.
2659-2673, Jun. 2009.

A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inform. Theory,
vol. 56, no. 5, pp. 2112-2120, May 2010.

T. Klgve, “Spheres of permutations under the infinity norm — permuta-
tions with limited displacement,” University of Bergen, Bergen, Norway,
Tech. Rep. 376, Nov. 2008.

A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” IEEE Trans. Inform. Theory, vol. 59, no. 2, pp. 1018-1029,
Feb. 2013.

O. Milenkovic and K. J. Compton, “Probabilistic transforms for com-
binatorial urn models,” Combinatorics, Probability, and Computing,
vol. 13, no. 4-5, pp. 645-675, Jul. 2004.

H. Minc, “Permanents,” in Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, 1978, vol. 6.

M. Schwartz, “Efficiently computing the permanent and Hafnian of some
banded Toeplitz matrices,” Linear Algebra and its Applications, vol. 430,
no. 4, pp. 1364-1374, Feb. 2009.

S. Stein, “Two combinatorial covering theorems,” Journal of Combina-
torial Theory, Series A, vol. 16, no. 3, pp. 391-397, 1974.

I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inform. Theory, vol. 56, no. 6,
pp- 2551-2560, Jun. 2010.

D. Wang, A. Mazumdar, and G. W. Wornell, “A rate distortion theory
for permutation spaces,” in Proc. IEEE Int. Symp. Information Theory
(ISIT), Istanbul, Turkey, Jul. 2013, pp. 2562-2566.

[2]
[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]



