
The Capacity of String-Duplication Systems

Farzad Farnoud (Hassanzadeh)

Electrical Engineering

California Institute of Technology

Pasadena, CA 91125, U.S.A.

farnoud@caltech.edu

Moshe Schwartz

Electrical and Computer Engineering

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

schwartz@ee.bgu.ac.il

Jehoshua Bruck

Electrical Engineering

California Institute of Technology

Pasadena, CA 91125, U.S.A.

bruck@paradise.caltech.edu

Abstract—It is known that the majority of the human genome
consists of repeated sequences. Furthermore, it is believed that
a significant part of the rest of the genome also originated
from repeated sequences and has mutated to its current form.
In this paper, we investigate the possibility of constructing an
exponentially large number of sequences from a short initial
sequence and simple duplication rules, including those resembling
genomic duplication processes. In other words, our goal is to
find out the capacity, or the expressive power, of these string-
duplication systems. Our results include the exact capacities, and
bounds on the capacities, of four fundamental string-duplication
systems.

I. INTRODUCTION

More than 50% of the human genome consists of repeated

sequences [6]. An important class of these repeated sequences

are interspersed repeats, which are caused by transposons. A

transposon, or a “jumping gene”, is a segment of DNA that can

“copy and paste” or “cut and paste” itself into new positions

of the genome. Currently, 45% of the human genome is known

to consist of transposon-driven repeats [6].

A second type of repeats are tandem repeats, generally

thought to be caused by slipped-strand mispairings [11]. A

slipped-strand mispairing is said to occur when, during DNA

synthesis, one strand in a DNA duplex becomes misaligned

with the other. These mispairings may lead to deletions or

insertion of a repeated sequence [9]. While tandem repeats are

known to constitute only 3% of the human genome, they cause

important phenomena such as chromosome fragility, expan-

sion diseases, silencing genes [12], and rapid morphological

variation [4].

While interspersed repeats and random repeats together

account for a significant part of the human genome, it is likely

that a substantial portion of the unique genome, the part that is

not known to contain repeated sequences, also has its origins

in ancient repeated sequences that are no longer recognizable

due to change over time [6], [12].

Motivated by the prevalence and the significance of repeated

sequences and the fact that much of our unique DNA was

likely originally repeated sequences, in this paper we study

the capacity of string-duplication systems with simple dupli-

cation rules including rules that resemble the repeat-producing

genomic processes, namely duplication of transposons and

This work was supported in part by the NSF Expeditions in Computing
Program (The Molecular Programming Project).

duplication caused by slipped-strand mispairings. A string-

duplication system, to be defined formally later, consists of

a set of rewriting rules, an initial sequence, and all sequences

that can be obtained by applying the rules to the initial

sequence a finite number of times. The notion of capacity,

defined later in the paper, represents the average number of

bits per symbol that can asymptotically be encoded by the

sequences in a string-duplication system, and thus illustrates

the expressive power and the diversity of that system.

In this paper, we consider four duplication rules. The

first is the end duplication rule, which allows substrings of

a certain length k to be appended to the end of previous

sequences. For example, if k = 3 we may construct the

sequence TCATGCCAT from TCATGC. While this rule is

not biologically motivated, we present it first because of the

simplicity of proving the related results. In particular, we show

that nearly all sequences with the same alphabet as the initial

sequence can be generated with this rule.

The second rule is called tandem duplication and allows

a substring of length k to be duplicated next to its original

position. For example, for k = 3, from the sequence TCATGC,

one can generate TCATCATGC. We show that this rule has

capacity zero regardless of the initial sequence. However, if

one allows substrings of all length larger than a given value

to be copied, the capacity becomes positive except in trivial

cases.

The third rule is reversed tandem duplication, which is

similar to tandem duplication except that the copy is reversed

before insertion. For instance, in our previous example, the

sequence TCATTACGC can be generated. Here, the capacity

is zero only in the trivial case in which the initial sequence

consists of only one unique symbol.

The last rule is duplication with a gap, where the copy of a

substring of a given length k can be inserted after k′ symbols.

This rule is motivated by the fact that transposons may insert

themselves in places far from their original positions. As an

example, for k = 3 and k′ = 1, from TCATGC, one can obtain

TCATGCATC. For this rule, we show that the capacity is zero

if and only if the initial sequence is periodic with period equal

to the greatest common divisor of k and k′.
We note that tandem duplication has been already studied

in a series of papers [1], [2], [7], [8]. However, this was done

in the context of the theory of formal languages, and the goal

of these studies was mainly to determine their place in the

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 1301

Chomsky hierarchy of formal languages.

In the next section, we present the preliminaries and in the

following four sections, we present the results for each of

the aforementioned duplication rules. Due to lack of space,

we omit some proofs or only provide their outline. Complete

proofs can be found in the full version of this paper, available

on arXiv [3].

II. PRELIMINARIES

Let Σ be some finite alphabet. We recall some useful

notation commonly used in the theory of formal languages. An

n-string x = x1x2 . . . xn ∈ Σn is a finite sequence of alphabet

symbols, xi ∈ Σ. We say n is the length of x and denote

it by |x| = n. For two strings, x ∈ Σn and y ∈ Σm, their

concatenation is denoted by xy ∈ Σn+m. For a positive integer

m and a string s, sm denotes the concatenation of m copies of

s. The set of all finite strings over the alphabet Σ is denoted

by Σ∗. We say v ∈ Σ∗ is a substring of x if x = uvw, where

u, w ∈ Σ∗. The alpha-representation of a string s, denoted

by R(s), is the set of all letters from Σ making up s. Thus,

R(s) ⊆ Σ. The alpha-diversity of s is the size of the alpha-

representation of s, denoted by δ(s) = |R(s)|. Furthermore,

let the number of occurrences of a symbol a ∈ Σ in a sequence

s ∈ Σ∗ be denoted by ns(a).
For S ⊆ Σ∗, we let S∗ = {w1w2 . . . wm | wi ∈ S, m > 0} ,

whereas S+ = {w1w2 . . . wm | wi ∈ S, m > 1} . For any x ∈
Σ∗, |x| = n > m, the m-suffix of x is w ∈ Σm, such that

x = vw for some v ∈ Σ∗. Similarly, the m-prefix of x is

u ∈ Σm, where x = uv for some v ∈ Σ∗.

A string system S is a subset S ⊆ Σ∗. For any integer n,

we denote by NS(n) the number of length n strings in S,

i.e., NS(n) = |S ∩ Σn| . The capacity of a string system S is

defined by

cap(S) = lim sup
n→∞

log2 NS(n)

n
.

A string-duplication system is a tuple S = (Σ, s, T), where

Σ is a finite alphabet, s ∈ Σ∗ is a finite string (which we

will use to start the duplication process), and T is a set of

functions such that each T ∈ T is a mapping from Σ∗ to

Σ∗ that defines a string-duplication rule. The resulting string

system S, induced by (Σ, s, T), is defined as the closure of

the string-duplication functions T on the initial string set {s},

i.e., S is the minimal set for which s ∈ S, and for each s′ ∈ S
and T ∈ T we also have T(s′) ∈ S.

III. END DUPLICATION

We define the end-duplication function, Tend
i,k : Σ∗ → Σ∗,

as follows:

Tend
i,k (x) =

{

uvwv if x = uvw, |u| = i, |v| = k

x otherwise.

We also define two sets of these functions which will be used

later:

T end
k =

{

Tend
i,k | i > 0

}

, T end
>k =

{

Tend
i,k′ | i > 0, k′ > k

}

Intuitively, in the end-duplication system, the transforma-

tions duplicate a substring of length k and append the duplicate

substring to the end of the original string.

Theorem 1. Let Σ be any finite alphabet, k > 1 any integer,

and s ∈ Σ∗, |s| > k. Then for Send
k = (Σ, s, T end

k), we have

cap(Send
k) = log2 δ(s).

Proof: (Sketch). First we note that by requiring |s| > k
we avoid the degenerate case of Send

k containing only s. We

further note that, by the definition of the duplication functions,

R(x) = R(Tend
i,k (x)) for all non-negative integers i and k, and

thus, all the strings in Send
k have the same alpha-representation.

Thus, trivially, cap(Send
k) 6 log2 δ(s).

We now turn to prove the inequality in the other direction.

It can be shown that after 2k duplication steps we can obtain

from any x ∈ Σ∗, |x| > k, a string x′ with any given k-suffix

w, provided R(w) ⊆ R(x). Thus, from the initial string s, we

can obtain a string s′ with all of the strings of R(s)k appearing

as k-substrings, using at most 2kδ(s)k duplication steps1, i.e.,

∣

∣s′
∣

∣ 6 |s|+ 2k2δ(s)k.

After having obtained s′, each duplication may duplicate

any of the k-strings in R(s)k in a single operation. Thus, for

all n = |s′| + tk, t a non-negative integer, the number of

distinct strings in Send
k is bounded from below by

NSend
k

(n) > δ(s)n−|s′|.

Since |s′| is a constant, we have cap(Send
k) > log2 δ(s).

The following is an obvious corollary.

Theorem 2. Let Σ be any finite alphabet, k > 1 any integer,

and s ∈ Σ∗, |s| > k. Then for Send
>k = (Σ, s, T end

>k), we have

cap(Send
>k) = cap(Send

k) = log2 δ(s).

Proof: Since for all n > k, we have NSend
k

(n) 6

NSend
>k

(n) 6 δ(s)n, the claim follows.

IV. TANDEM DUPLICATION

We now consider different duplication rules, Ttan
i,k : Σ∗ →

Σ∗, defined by

Ttan
i,k (x) =

{

uvvw if x = uvw, |u| = i, |v| = k

x otherwise.

We also define the sets

T tan
k =

{

Ttan
i,k | i > 0

}

, T tan
>k =

{

Ttan
i,k′ | i > 0, k′ > k

}

Unlike the end duplication discussed in the previous sec-

tion, tandem duplication takes a k-substring and duplicates it

adjacent to itself in the string. Also, the capacity of tandem-

duplication systems is in complete contrast to end-duplication

systems.

1This bound may be improved, but this will not affect the capacity
calculation.

2014 IEEE International Symposium on Information Theory

1302

Theorem 3. Let Σ be any finite alphabet, k any positive integer,

and s ∈ Σ∗, with |s| > k. Then for Stan
k = (Σ, s, T tan

k), we

have cap(Stan
k) = 0.

Proof: Consider any n-string x ∈ Σ∗, n > k. Instead of

viewing x = x1x2 . . . xn as a sequence of n symbols from Σ,

we can, by abuse of notation, view it as a sequence of n −
k + 1 overlapping k-substrings x = x′1x′2 . . . x′n−k+1, where

x′i = xixi+1 . . . xi+k−1.

For a k-string y = y1y2 . . . yk, yi ∈ Σ, its cyclic shift by

one position is denoted by Ey = y2y3 . . . yky1. A cyclic shift

by j positions is denoted by

Ejy = yj+1yj+2 . . . yky1y2 . . . yj.

We say two k-strings, y, z ∈ Σk, are cyclically equivalent if

y = Ejz, for some integer j. Clearly this is an equivalence

relation. Let φ(y) denote the equivalence class of y. If y and

z are cyclically equivalent, then φ(y) = φ(z).
We now define

Φ(x) = φ(x′1)φ(x′2) . . . φ(x′n−k+1),

i.e., Φ(x) is the image of the overlapping k-substrings of x
under φ. We also observe that knowing x′1 and Φ(x) enables

a full reconstruction of x.

At this point we turn to consider the effect of the duplication

Ttan
i,k on a string x ∈ Σ∗, |x| > k. When viewed as a sequence

of overlapping k-substrings, as defined above,

Ttan
i,k (x) = x′1 . . . x′i−1x′iEx′iE

2x′i . . . Ek−1x′ix
′
ix

′
i+1 . . . x′n−k+1.

Since φ(x′i) = φ(Ej(x′i)) for all j, we have

Φ(Ttan
i,k (x)) = φ(x′1) . . . φ(x′i−1)

φ(x′i)φ(x′i) . . . φ(x′i)

φ(x′i+1) . . . φ(x′n−k+1),

where φ(x′i) appears k + 1 consecutive times.

Thus, we may think of φ(x′i) as a bin, and the action of

Ttan
i,k as throwing k balls into the bin φ(x′i). The number of

bins does not change throughout the process, and is equal to

one more than the number of times φ(x′i) 6= φ(x′i+1), where

x = s is the original string. If b is the number of bins defined

by s, then the number of strings obtained by m duplications is

exactly (b+m−1
b−1). Since this number grows only polynomially

in the length of the resulting string, we have cap(Stan
k) = 0.

When considering Stan
>k = (Σ, s, Ttan

>k) the situation appears to

be harder to analyze.

Theorem 4. For any finite alphabet Σ, and any string s ∈ Σ∗ of

nontrivial alpha-diversity, δ(s) > 2, we have

cap(Stan
>1) > log2(r + 1),

where r is the largest (real) root of the polynomial

f (x) = xδ(s) −
δ(s)−2

∑
i=0

xi.

Proof: The proof strategy is the following: we shall show

that Stan
>1 contains, among other things, a regular language. The

capacity of that regular language will serve as the lower bound

we claim.

For the first phase of the proof, assume i1 < i2 < · · · <
iδ(s) are the indices of δ(s) distinct alphabet symbols in s.

We produce a sequence of strings, s0, s1, . . . , sδ(s)−1, where

s0 = s, defined iteratively by

sj = Ttan
iδ(s)−j−1,iδ(s)−iδ(s)−j+j(sj−1),

for j = 1, 2, . . . , δ(s) − 1. After this set of steps, the δ(s)-
substring starting at position iδ(s) of sδ(s)−1 contains δ(s)
distinct symbols. In what follows we will only use these

symbols for duplication, and thus, the constant amount of other

symbols in sδ(s)−1 does not affect the capacity calculation.

Thus, for ease of presentation we shall assume from now on

that |s| = δ(s), i.e., the initial string contains no repeated

symbol from the alphabet. Furthermore, without loss of gen-

erality, let us assume these symbols are aδ(s), aδ(s)−1, . . . , a1,

in this order.

We now perform the following iterations: In iteration i,
where i = δ(s), δ(s) − 1, . . . , 2, we duplicate i-substrings

equal to aiai−1 . . . a2a1. As a final iteration, we may duplicate

1-substrings without constraining their content. It is easy

to verify the resulting strings form the following regular

language,

S =



a+
δ(s)

(

a+
δ(s)−1

(

. . .
(

a+2
(

a+1
)+
)+
)+
)+




+

.

The construction process implies S ⊆ Stan
>1 .

a1

a1

a1

a1

a2

a2

a3aδ(s)−1

aδ(s)−1

aδ(s)

aδ(s)

Figure 1. The finite-state automaton accepting the regular language used in
the proof of Theorem 4.

The finite-state automaton accepting S is depicted in Fig-

ure 1. The graph is primitive and lossless, and thus, for the

purpose of calculating the capacity, instead of counting the

number of length n words in S, we can count the number of

length n paths in the automaton graph G (see [5], [10]). By

Perron-Frobenius theory,

cap(Stan
>1) > cap(S) = log2 λ(AG),

2014 IEEE International Symposium on Information Theory

1303

where λ(AG) is the largest magnitude of an eigenvalue of AG ,

and where AG denotes the adjacency matrix of G. We note

that AG is the δ(s)× δ(s) matrix

AG =















1 1
1 1

. . .
. . .

1 1
1 1 . . . 1 1















,

and its largest eigenvalue is the largest real root of

det(λI − AG) = (λ − 1)δ(s)−
δ(s)−2

∑
i=0

(λ − 1)i.

Setting x = λ − 1 we obtain the desired result.

At least in one case, the bound of Theorem 4 is attained

with equality, as is shown in the following corollary.

Corollary 5. For Σ = {0, 1}, and s ∈ Σ∗ with δ(s) = 2 we

have cap(Stan
>1) = 1.

Proof: By applying Theorem 4 we get cap(Stan
>1) > 1. We

also have the trivial upper bound cap(Stan
>1) 6 log2 |Σ| = 1,

which completes the proof.

For Stan
>k and general k, we claim a weaker result, that is

provided in the following theorem, stated without proof.

Theorem 6. For any finite alphabet Σ, and any binary string

s ∈ Σ∗, |s| > k, of nontrivial alpha-diversity, δ(s) > 2, we

have cap(Stan
>k) > log2 r > 0, where r is the largest root of the

polynomial

f (x) = xk+1 − x − 1.

V. REVERSED TANDEM DUPLICATION

Consider the reversed tandem duplication rule Trt
i,k : Σ∗ →

Σ∗ defined as

Trt
i,k(x) =

{

uvvRw if x = uvw, |u| = i, |v| = k,

x otherwise,

where yR is the reverse of y, i.e., yR = ymym−1 . . . y1 for a

sequence y = y1y2 . . . ym ∈ Σ∗. Furthermore, let

T rt
k =

{

Trt
i,k

∣

∣

∣ i > 0
}

.

and use Srt
k = (Σ, s, T rt

k). Since the starting string s will play

a crucial role, we shall often use the notation Srt
k (s).

Lemma 7. Let s ∈ Σk with s 6= sR. Then cap(Srt
k (s)) > 1/k.

Proof: By repeatedly applying duplication to the last

block of k symbols, we can create any sequence of alternating

blocks s and sR, starting with s. To extend any run of s, except

the first one, (resp. any run of sR) we can apply duplication

to the last block of the previous run, which is an sR block

(resp. s). Thus, the regular language S = ssR {s, sR}∗ , satisfies

S ⊆ Srt
k (s) and thus cap(Srt

k (s)) > cap(S). Furthermore,

since s 6= sR, we see that cap(S) = 1/k.
Note that the requirement that s 6= sR implies that k > 2.

The following theorem states that the capacity of reversed

tandem duplication is positive except in trivial cases.

Theorem 8. For any s ∈ Σ∗, |s| > k, we have cap(Srt
k (s)) = 0

if and only if δ(s) = 1.

Proof: (Sketch). It is clear that if δ (s) = 1, then

cap(Srt
k (s)) = 0. For the other direction, suppose that

cap(Srt
k (s)) = 0. We show that δ(s) = 1. We only prove

this for |s| = k. Denote s = s1s2 . . . sk, with si ∈ Σ,

and let t = s2s3 · · · sksk. It is not difficult to see that since

cap(Srt
k (s)) = 0, we have cap(Srt

k (t)) = 0. Hence, applying

Lemma 7 to s and t implies that s = sR and t = tR. From

these, it can be shown that δ(s) = 1.

In Theorem 10, we show that in determining the capacity

of a system Srt
k (s), only δ(s) is important and not the actual

sequence s. The idea behind the proof is that any other finite

sequence with alphabet R(s) appears as a substring of some

sequence in Srt
k (s). This is formalized in the following lemma.

Lemma 9. For any x, y ∈ Σ∗, with |y| > k, if for all a ∈ Σ,

ny (a) > nx (a), then x is a suffix of some sequence in Srt
k (y).

Due to lack of space, we omit the proof of the lemma.

Theorem 10. For all s ∈ Σ∗, |s| > k, cap(Srt
k (s)) depends on

s only through δ(s).

Proof: Consider two sequences s, t ∈ Σ∗, |s| , |t| > k,

such that δ(s) = δ(t). Since the identity of the symbols is

irrelevant to the capacity, we may assume that R(s) = R(t).
By appropriate duplications, it is easy to find a sequence

t′ ∈ Srt
k (t) such that for all a ∈ Σ, we have nt′ (a) > ns (a).

We then apply Lemma 9 and show that s is a substring of some

sequence t′′ ∈ Srt
k (t). Hence, cap(Srt

k (s)) 6 cap(Srt
k (t

′′)) 6
cap(Srt

k (t)). Similarly, we can show that cap(Srt
k (t)) 6

cap(Srt
k (s)). Hence, cap(Srt

k (s)) = cap(Srt
k (t)).

VI. DUPLICATION WITH A GAP

Consider the duplication-with-a-gap rule T
gap
i,k,k′

: Σ∗ → Σ∗

defined as

T
gap
i,k,k′

(x) =











uvwvz, if x = uvwz, |u| = i,

|v| = k, |w| = k′,

x, otherwise.

Furthermore, we let

T
gap

k,k′
=
{

T
gap
i,k,k′

∣

∣

∣ i > 0
}

,

and use S
gap
k,k′

= (Σ, s, T
gap

k,k′
), for some s ∈ Σ∗. We may also

use S
gap
k,k′

(s) to denote the aforementioned string system. To

avoid trivialities, throughout this section, we assume k, k′ > 1.

For a sequence s = s1s2 . . . , with si ∈ Σ, we conveniently

denote the substring starting at position i and of length k as

si,k = sisi+1 . . . si+k−1. Furthermore, for two sequences of

equal length, s, s′ ∈ Σk, we denote their Hamming distance as

dH(s, s′), which is the number of coordinates in which s and

s′ disagree.

The following lemma, presented without proof, is useful for

characterizing the set of sequences s with cap(S
gap
k,k′

(s)) > 0.

2014 IEEE International Symposium on Information Theory

1304

Lemma 11. For all s ∈ Σ∗ such that |s| > k + k′, we have

cap(S
gap
k,k′ (s)) >

1

k
log2

(

1 + dH

(

s1,k, (s2)k+1,k

))

.

The next corollary is an immediate result of the lemma.

Corollary 12. Assume cap(S
gap
k,k′

(s)) = 0, where s ∈ Σ∗

and |s| > k + k′. For any (k + k′)-substring of s, denoted

x1 . . . xky1 . . . yk′ , with xi, yi ∈ Σ, we have

x1 . . . xk = y1 . . . yk′x1 . . . xk−k′ , if k > k′,

x1 . . . xk = y1 . . . yk, if k 6 k′.

This corollary is used in the following theorem.

Theorem 13. For s ∈ Σ∗, |s| > k + k′, we have

cap(S
gap
k,k′

(s)) = 0 if and only if s is periodic with period

gcd(k, k′).

Proof: (Sketch). We start with the easy direction. Assume

s is periodic with period gcd(k, k′). Note that in this case

S
gap
k,k′ (s) contains only one sequence of length ik + k′ for each

i > 1, which is itself a periodic extension of s. No other

sequences appear in S
gap
k,k′

(s). Thus, the capacity is 0.

We now turn to the other direction. Assume the capacity is

0. Here we only consider the case of k > k′. First, assume

s = x1 . . . xky1 . . . yk′ , with xi, yi ∈ Σ, has length k + k′.
Denote k′′ = k − k′. We show that s is periodic with period

gcd(k, k′). From Corollary 12, it follows that y1 . . . yk′ =
x1 . . . xk′ so we can write s = x1 . . . xkx1 . . . xk′ . Furthermore,

said corollary implies that xi = xk′+i for i ∈ [k − k′] and so

s = x1 . . . xk′x1 . . . xk′′x1 . . . xk′ . By once applying the rule of

T
gap
0,k,k′ to s we obtain

t = x1 . . . xk′ x1 . . . xk′′ x1 . . . xk′ x1 . . . xk′ x1 . . . xk′′ .

Consider the substring t′ = x1 . . . xk′′ x1 . . . xk′ x1 . . . xk′ of

t. Since cap(S
gap
k,k′

(s)) = 0, we must have cap(S
gap
k,k′

(t)) = 0,

and obviously, also cap(S
gap
k,k′

(t′)) = 0. By applying Corol-

lary 12 to t′, we get x1 . . . xk′′x1 . . . xk′ = x1 . . . xk′x1 . . . xk′′ ,
that is, the sequence x1 . . . xk′′x1 . . . xk′ , which has length k,

equals itself when cyclically shifted by k′. Hence, it is periodic

with period gcd(k, k′) and so is s.

We have shown that for the special case of |s| = k + k′, if

the capacity is zero, then s is periodic with period gcd(k, k′).
Now suppose |s| > k + k′ and that cap(S

gap
k,k′ (s)) = 0. Let

d = gcd(k, k′) and, for the moment, also suppose that d

divides |s|. Let C =
{

sid+1,k+k′ : 0 6 i 6
|s|−(k+k′)

d

}

be a set

of (k + k′)-substrings of s that cover s and each consecutive

pair overlap in at least d positions. Since the capacity for each

of these (k+ k′)-substrings is also zero, they are periodic with

period d. Because of their overlaps and the fact that they cover

s, it follows that s is also periodic with period d.

To complete the proof it remains to consider the case

in which d does not divide |s|. In this case, we can

repeat the same argument but with adding the substring

s|s|−(k+k′)+1,(k+k′) to the set C to ensure that s is covered

by overlapping (k + k′)-substrings.

We now turn to find a strict upper bound on cap(S
gap
k,k′ (s)).

For a sequence x ∈ Σ∗ and two symbols a, b ∈ R(x), let

∆x (a, b) =
{

j
∣

∣ ∃i, xi = a, xi+j = b
}

,

be the set of the differences of positions of a and b in x.

Furthermore, let ρx,ℓ (a, b) = {(j mod ℓ) | j ∈ ∆x (a, b)} .

Lemma 14. Let Σ be some finite alphabet, d > 0 an integer,

and D ⊂ {0, 1, . . . , d − 1} some subset, |D| < d. Consider the

constrained system S ⊆ Σ∗ such that for every x ∈ S, and every

two symbols a, b ∈ Σ (not necessarily distinct), ρx,d(a, b) ⊆
D. Then cap(S) < log2 |Σ|.

We omit the proof of Lemma 14 and only mention that it relies

on the Perron-Frobenius theory. Using Lemma 14 we obtain

the following theorem.

Theorem 15. Let s ∈ Σ∗ have length at least k + k′ and

denote d = gcd(k, k′). If, for some a, b ∈ R(s), we have
∣

∣ρs,d(a, b)
∣

∣ < d then cap(S
gap
k,k′

(s)) < log2 δ(s).

Proof: We observe that for any x, x′ ∈ S
gap
k,k′ (s), and

for a, b ∈ R(s), we have ρx,d (a, b) = ρx′,d (a, b) , where

d = gcd(k, k′). This can be easily seen by noting that any

function in T
gap

k,k′
changes the differences between positions

of two elements by a linear combination of k and k′. We then

apply Lemma 14.

Our last result is the following theorem, which we state

without proof.

Theorem 16. For s ∈ Σ∗ with |s| > k + k′, if gcd(k, k′) = 1,

then cap(S
gap
k,k′

(s)) depends on s only through δ(s).

REFERENCES

[1] J. Dassow, V. Mitrana, and G. Paun, “On the regularity of duplication
closure,” Bulletin of the EATCS, vol. 69, pp. 133–136, 1999.

[2] J. Dassow, V. Mitrana, and A. Salomaa, “Operations and language
generating devices suggested by the genome evolution,” Theoretical
Computer Science, vol. 270, no. 1, pp. 701–738, 2002.

[3] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
replication systems,” arXiv preprint: http://arxiv.org/abs/1401.4634,
2014.

[4] J. W. Fondon and H. R. Garner, “Molecular origins of rapid and contin-
uous morphological evolution,” Proceedings of the National Academy

of Sciences, vol. 101, no. 52, pp. 18 058–18 063, 2004.
[5] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon

Foundation Publishers, 2004.
[6] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody,

J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al., “Initial
sequencing and analysis of the human genome,” Nature, vol. 409, no.
6822, pp. 860–921, 2001.

[7] P. Leupold, C. Martı́n-Vide, and V. Mitrana, “Uniformly bounded
duplication languages,” Discrete Applied Mathematics, vol. 146, no. 3,
pp. 301–310, 2005.

[8] P. Leupold, V. Mitrana, and J. M. Sempere, “Formal languages arising
from gene repeated duplication,” in Aspects of Molecular Computing.
Springer, 2004, pp. 297–308.

[9] G. Levinson and G. A. Gutman, “Slipped-strand mispairing: a major
mechanism for DNA sequence evolution.” Molecular Biology and Evo-
lution, vol. 4, no. 3, pp. 203–221, 1987.

[10] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and

Coding. Cambridge University Press, 1985.
[11] N. Mundy and A. J. Helbig, “Origin and evolution of tandem repeats in

the mitochondrial DNA control region of shrikes (lanius spp.),” Journal

of Molecular Evolution, vol. 59, no. 2, pp. 250–257, 2004.
[12] K. Usdin, “The biological effects of simple tandem repeats: lessons from

the repeat expansion diseases,” Genome research, vol. 18, no. 7, pp.
1011–1019, 2008.

2014 IEEE International Symposium on Information Theory

1305

