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Abstract—A client/encoder edits a file, as modeled by an
insertion-deletion (InDel) process. An old copy of the file is stored
remotely at a data-centre/decoder, and is also available to the clien-
t. We consider the problem of throughput- and computationally-
efficient communication from the client to the data-centre, to
enable the server to update its copy to the newly edited file. We
study two models for the source files/edit patterns: the random
pre-edit sequence left-to-right random InDel (RPES-LtRRID)
process, and the arbitrary pre-edit sequence arbitrary InDel
(APES-AID) process. In both models, we consider the regime in
which the number of insertions/deletions is a small (but constant)
fraction of the original file. For both models we prove information-
theoretic lower bounds on the best possible compression rates that
enable file updates. Conversely, our compression algorithms use
dynamic programming (DP) and entropy coding, and achieve rates
that are approximately optimal.

I. INTRODUCTION

As the paradigm of cloud computing becomes pervasive,

storing and transmitting files and their edited versions consumes

a huge amount of resources (storage, bandwidth, computation)

in client-datacentre channels, and intra-datacentre traffic.
If a file is “lightly edited”, storing and transmitting the entire

new file from clients to servers wastes a significant amount

of space and bandwidth. For example, data-backup systems

such as Dropbox and Time Machine keep regular snapshots

of users’ files. In revision-control software such as CVS, Git

and Mercurial, users are likely to periodically commit and store

their code after a small number of edits. Currently, many online-

backup services use delta encoding (also known as delta com-

pression), and only upload the edited pieces of files. However,

to the best of our knowledge, none of these techniques provide

information-theoretically optimal compression guarantees, and

indeed this is the primary contribution of our work.
There are many other types of edits besides symbol in-

sertions and deletions (for instance block insertions/deletion,

substitutions, transpositions, etc. – see for example [2], [3],

[6], [10]–[12]). Since these other edit models are in general a

combination of symbol insertions and deletions, we focus on

the “base case” of symbol insertions-deletions.

A. Our work/contributions

In this work, we study the problem of one-way communi-

cation of file updates to a data-centre. The client (encoder)

has a file X (pre-edit source sequence PreESS) drawn from

The work of Qiwen Wang and Sidharth Jaggi was supported by a grant from
University Grants Committee of the Hong Kong Special Administrative Region,
China (Project No. AoE/E-02/08). The work of Muriel Médard was supported
by the National Science Foundation (NSF) under Grant No. CCF-1409228.

some distribution, and edits it according to some process – we

shortly describe both the source and the edit process in more

detail – to generate the new file (post-edit source sequence

PosESS) Y. The encoder has both the old file X and the edited

version of the file Y.1 The encoder transmits a function of X,Y
to the data-centre (decoder). The pre-edit source sequence X

is available at the decoder as side-information. The goal of

communication is for the decoder to reconstruct Y. A “good”

communication scheme manages to achieve this while requiring

minimal communication from the encoder to the decoder.

There are many possible combinations of different PreESS

processes and edit processes. Some of them in the literature

include: arbitrary input process [4], [6], random input pro-

cess [7]–[10], (partial) permutations [11], duplications [13];

arbitrary edit process [1], [2]; random edit process [4], [6]–[8],

[10], Markov edit process [9]. In this work, we consider two

models. In the random pre-edit sequence left-to-right random

InDel (RPES-LtRRID) process, a file is modeled as a sequence

of symbols drawn i.i.d. uniformly at random from an alphabet

A. The new file is obtained from the old file through a left-

to-right random InDel process, which is modeled as a Markov

chain of three states: the “insertion state”, the “deletion state”,

and the “no-operation state”.2

We also study an arbitrary pre-edit sequence arbitrary InDel

(APES-AID) process. In this model, the old file is modeled as

an arbitrary sequence over an arbitrary alphabet A. The post-

edit source sequence Y is generated from the pre-edit source

sequence X through an arbitrary/“worst-case” InDel process

– we require that the number of edit operations is at most a

small (but possibly constant) fraction of the file length n. The

sequence of edits (insertions and deletions) is arbitrary up to an

upper bound on the total number, occurs in arbitrary positions,

and inserts arbitrary symbols from A for edits corresponding to

insertions. Both the RPES-LtRRID and the APES-AID models

are described formally in Section II-A.

In both models, we consider arbitrary alphabet sizes. We first

prove information-theoretic lower bounds on the compression

rate needed so that the decoder is able to reconstruct Y for

both models. To do so we build non-trivially on recent work on
1The encoder may ALSO have access to the actual edit process, but as we

shall see this doesn’t necessarily help in our problem.
2Roughly speaking, these three states correspond to the cursor moving “from

left to right”, and at each point, either a uniformly random symbol is inserted,
the symbol at the cursor is deleted, or the cursor jumps ahead without changing
the previous symbol.
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2/3n logn)

[7]YD12
Enc ⇐ X Dec ⇐ Y

Enc ⇋ Dec
2 Ran Ran Del O(n) - D O(n4) ε O((−δ log δ)n)

[8]BD13
Enc ⇐ X Dec ⇐ Y

Enc ⇋ Dec
|A| Ran Ran Ins,Del O(n) - D - ε O((−(ǫ + δ) log (ǫ+ δ))n) A can be non-uniform

[9]MRT11
Enc ⇐ X Dec ⇐ Y

Enc → Dec
2 Ran Markov Del O(n) Y - - ε

(−δ log δ + δ(log 2e− 1.29)
+O(δ2−τ ))n

In 4 Ran is a special

case of Markov

[10]MRT12
Enc ⇐ {X,Y} Dec ⇐ Y

Enc → Dec
2 Ran Ran Ins,Del,Sub O(n) N D O(n2) 0

( lim
n→∞

H(X|Y)/n+

O(max(ǫ, δ)2−τ ))n

This work
Enc ⇐ {X,Y} Dec ⇐ X

Enc → Dec
|A|

Arb Arb Ins,Del O(n) Y D O(n2) 0
(H(δ) +H(ǫ) + ǫ log |A|
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Ran Ran Ins,Del O(n) Y D O(n2) ε
(H(δ) +H(ǫ) + ǫ log |A|
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Table 1: (Related work) The content of each column is as follows – 1 Two aspects of each communication model are shown here. The first aspect concerns what information is

available to which party. Depending on the specific model considered, either the original file (the pre-edit source sequence) X, or the new file (the post-edit source sequence) Y,

or both may be available at the encoder and the decoder. The second aspect considered is whether interactive/two-way transmissions between the encoder and decoder are allowed,

or only the encoder is allowed to transmit (one-way communication). 2 The size of the source alphabet – 2 denotes a binary source alphabet, and |A| denotes a general non-binary

alphabet. 3 ‘Arb’ represents an arbitrary (“worst-case”) pre-edit source sequence; ‘Ran’ represents the pre-edit sequences drawn i.i.d. from the alphabet. 4 ‘Arb’ represents the positions

and contents of the edits being arbitrary; ‘Ran’ represents random positions and contents of edits; ‘Markov’ represents the edit process being a Markov chain. 5 Here ‘Ins’,‘Del’

and ‘Sub’ respectively represent insertion, deletion and substitution edit operations. 6 Upper bounds on the number of edits in each work, as a function of n (length of the pre-edit

source sequence X). 7 Whether an explicit information-theoretical lower bound is presented, where ‘Y’ and ‘N’ stands for ‘Yes’ and ‘No’ respectively. 8 Whether the algorithm is

deterministic (‘D’) or random (‘R’). 9 The complexity of the algorithm, as a function of n (length of the pre-edit source sequence X). 10 Whether the algorithm has “small” error –

ε-error, or zero error. 11 The number of bits transmitted. In our notation, ε stands for the fraction (of n) of insertions, and δ for the fraction of deletions. In [4], [6]–[8], the fractions

of insertions and deletions vanish with n, hence the corresponding variables are denoted ǫn and δn . 12 This column has additional remarks on specific works.

the deletion channel [14] in the random pre-edit sequence/edit

model (see Theorem 1), and provide a combinatorial argument

in the arbitrary pre-edit source/edit model (see Theorem 2). We

then design “universal” computationally-efficient achievability

schemes based on dynamic programming and entropy coding

(see Theorems 3 & 4). The compression rates achieved by the

scheme is an explicitly computable additive term away from

the lower bounds for almost all alphabet-sizes3, and number of

edits. In the regime wherein the number of edits is a small (but

possibly constant) fraction of the length of X and the alphabet-

size is large, this term is small (Section III).

B. Related work

Various models of the file-synchronization problem have

been considered in the literature – see Table 1 for a summary.

Our work here differs from each of those works in significant

ways. For instance, in our model the encoder knows both files,

hence we design one-way communication protocols (rather

than the multi-round protocols required in the models where

the encoder and the decoder each has one version of the file

as in [2]–[4], [6]–[8]); hence our protocols are information-

theoretically near-optimal (however for two-way communica-

tion model, computationally efficient schemes which achieve

rates within constant factors of the lower bounds are already

challenging). The one-way file synchronization model studied
3In the random source/edit model, we actually have no restriction on the

alphabet-size; in the arbitrary source/edit model, for technical reasons, our
bounds hold only for alphabets of size at least 3.

in [9], [10] is the closest to our RPES-LtRRID model. For the

information-theoretical lower bound, we differ from [9] by con-

sidering both insertions and deletions, and arbitrary alphabet.

The achievability scheme in [10] matches the lower bound up

to first order term for the random source/edit model, whereas

our scheme is “universal” for both RPES-LtRRID and APES-

AID models in this work. The literature on insertion/deletion

channels and error-correcting codes is also quite closely related

– indeed, we borrow significantly from techniques in [14]–[16].

II. MODEL

A. Edit Process

1) Random Pre-Edit Sequence Left-to-Right Random InDel

(RPES-LtRRID) Process: As noted in the introduction, differ-

ent stochastic models for source- and edit-processes have been

considered in the literature. We study a RPES-LtRRID process,

which is motivated by the Markov deletion model in [9].4

Pre-edit source sequence (PreESS): The source initially has a

pre-edit source sequence X̄ = (X̄1, X̄2, . . . , X̄n), a length-n
sequence of symbols drawn i.i.d. uniformly at random from

the source alphabet A = {0, . . . , a− 1}. Finally, we append an

end of file symbol X̄n+1 = eof to the end of X̄. We denote the

distribution of the pre-edit source sequence by p(X̄).
InDel process: The InDel process is a Markov chain with three

states as shown in Figure 1: the “insertion state” ῑ inserts

(writes) a symbol uniformly drawn from A; the “deletion state”
4Our results should in general translate over to other stochastic models as

well in the regime wherein there is a small number of insertions and deletions.



∆̄ reads one symbol rightwards in X̄ and deletes the symbol;

the “no-operation state” η̄ reads one symbol rightwards in the

pre-edit source sequence X̄, and do nothing.

ῑ ∆̄

η̄

ǫ

ǫ

ǫ

δ
δ

δ

1− ǫ− δ

1− ǫ− δ

1− ǫ− δ

Fig. 1: Left-to-Right Random InDel (LtRRID) process: starting in front of the first symbol

of X̄, at each step, insert a symbol uniformly drawn from A with probability ǫ, read one

symbol rightwards and delete it with probability δ, read one symbol rightwards and do

nothing with probability 1− ǫ− δ. Note that an inserted symbol is never deleted in this

process. Whereas, a deleted symbol might be inserted back right away, with probability

ǫ 1

|A|
. The process stops when it reaches the end of file X̄n+1 = eof.

The edit process starts in front of X̄1 and ends when it

reaches the end of file X̄n+1 = eof. This means that in

our model, the total number of deletions plus no-operations

equals exactly n. In addition there are a potentially unbound-

ed number of insertions (though in our model the expected

number of insertions is bounded). The number of deletions

and insertions are random variables KD and KI respectively.

We describe the edit pattern of the InDel process by a pair

of sequences Ē = (Ōn+KI , C̄KI ), where the edit operation

pattern is Ōn+KI ∈ {ῑ, ∆̄, η̄}n+KI and the insertion content is

C̄KI ∈ AKI . The transition probabilities (as shown in Figure 1)

set the random (ǫ, δ)-InDel process to be an i.i.d. InDel process

with P (ῑ) = ǫ, P (∆̄) = δ, and P (η̄) = 1− ǫ− δ.

Post-edit source sequence (PosESS): The post-edit source se-

quence Ȳ = Ȳ(X̄, Ē) is a sequence obtained from X̄ through

the InDel process Ē = (Ōn+KI , C̄KI ).
Post-edit set: Given any PreESS X̄, any PosESS Ȳ in A∗ (any

sequence over A of any length) might be in its post-edit set,

albeit with possibly “very small” probability. In fact, for any

X̄ and Ȳ, there may be multiple edit patterns that generate

Ȳ from X̄. We use p(Ȳ|X̄) to denote the probability that the

output of the random left-to-right InDel process generates Ȳ

from X̄ (via any edit pattern).

Runs: We use the usual definition (see, for example [17]) of

a run being a maximal block of contiguous identical symbols.

Since we shall be interested in runs of several different se-

quences, to avoid confusion about the parent sequence we use

S-run to denote a run in a sequence S.

2) Arbitrary Pre-Edit Sequence Arbitrary InDel (APES-AID)

Process: We say that the PreESS is arbitrary if it can equal any

length-n sequence over A. Similarly, we say the InDel process

is arbitrary if at most ǫn insertions and δn deletions occur in

the edit pattern. We refer the reader to Section II-B2 of [18]

for a detailed description.5

B. Communication Model
The system diagram for the RPES-LtRRID process model is

presented in Figure 2. The code C̄ǫ,δ
n comprises the encoder-

decoder pair ( ¯Enc, D̄ec). The average rate R̄ of the code C̄ǫ,δ
n is

5Note that in the APES-AID process, the order of insertions and deletions
in the edit process is in general arbitrary. However, we can simplify the model
by separating the insertions and deletions. (See Fact 1 in [18].)

Ȳ
¯Enc(X̄, Ȳ)¯Enc D̄ec

X̄InDel process

Ȳ
′

Fig. 2: Communication model: The source has both the random PreESS X̄ and the

random PosESS Ȳ, as discussed in Section II-A1. The sequence Ȳ is obtained from

X̄ through the random (ǫ, δ)-InDel process discussed in Section II-A1. The source

encodes the source sequences (X̄, Ȳ) into a transmission ¯Enc(X̄, Ȳ) and sends it

to the decoder through a noiseless channel. The arbitrary PreESS X̄ is available at

the decoder as side-information. The decoder receives ¯Enc(X̄, Ȳ), and regenerates the

arbitrary PosESS Ȳ
′ from ( ¯Enc(X̄, Ȳ), X̄). Here the bar superscript is used to denote

the fact that the source sequences and edit process are as described in Section II-A1 rather

than Section II-A2. The communication model for the APES-AID model discussed in

Section II-A2 is similar, except that the quantity {X̄, Ȳ, ¯Enc(X̄, Ȳ), Ȳ′} are replaced

with {X,Y,Enc(X,Y),Y′}.

the average number of bits transmitted by the encoder, defined

as
∑

X̄∈An,Ȳ∈A∗ p(X̄, Ȳ) log | ¯Enc(X̄, Ȳ)|, where, as in Fig-

ure 2, ¯Enc(X̄, Ȳ) denotes the transmission and | ¯Enc(X̄, Ȳ)|
denotes its length. A code C̄ǫ,δ

n is “(1 − Pe)-good” if the av-

erage probability of error, defined as PrX̄∈An,Ȳ∈A∗{(X̄, Ȳ) :
D̄ec( ¯Enc(X̄, Ȳ), X̄) 6= Ȳ}, is less than Pe. A rate R̄ǫ,δ is said

to be achievable on average if for any Pe > 0 there is a code

for sufficiently large n which is (1 − Pe)-good. The infimum

(over all n and corresponding C̄ǫ,δ
n ) of all achievable rates R̄∗

ǫ,δ

is called the optimal average transmission rate.

The APES-AID process model is structurally similar to

the RPES-LtRRID model, except that we require zero-error

reconstruction at the decoder, and we measure worst-case

communication cost. We again refer the reader to Section II-C

in [18] for details.

III. MAIN RESULTS

Theorem 1 (RPES-LtRRID Lower Bound). For any τ > 0,

and for all sufficiently small ǫ, δ, the optimal achievable trans-

mission rate R̄∗
ǫ,δ for the RPES-LtRRID process satisfies R̄∗

ǫ,δ ≥

H(δ) + H(ǫ) + ǫ log |A| − (δ + ǫ)C|A| − λR · max (ǫ, δ)2−τ
,

where C|A| =

∞
∑

l=1

(

1

|A|

)l−1 (

1−
1

|A|

)2

l log l is a constant

that depends only on the alphabet size |A|, and λR ≤ 56 is a

universal positive constant.

Theorem 2 (APES-AID Lower Bound). For all sufficiently

small ǫ and δ, and for all alphabet-sizes |A| ≥ 3, the optimal

achievable transmission rate R∗
ǫ,δ for the APES-AID process

satisfies R∗
ǫ,δ ≥ H(δ)+H(ǫ)+ǫ log (|A| − 2)−λA ·max(ǫ, δ)2,

where λA ≤ 4 log e is a universal positive constant.

Theorem 3 (RPES-LtRRID Achievability). For any τ > 0,

and for all sufficiently small ǫ, δ, the optimal achievable

transmission rate R̄∗
ǫ,δ for the RPES-LtRRID process satisfies

R̄∗
ǫ,δ ≤ H(δ) + H(ǫ) + ǫ log |A| + λR · max (ǫ, δ)

2−τ
, where

λR ≤ 2 log |A|+2 log e+4 is a positive constant that depends

only on the alphabet size |A|.

Theorem 4 (APES-AID Achievability). For all sufficiently

small ǫ and δ, the optimal achievable transmission rate R∗
ǫ,δ

for the APES-AID process satisfies R∗
ǫ,δ ≤ H(δ) + H(ǫ) +

ǫ log |A| + λA · ǫ2, where λA ≤ 2 log e is a universal positive

constant.



nR̄ǫ,δ ≥ H(Ȳ|X̄)
Lemma 3 [18]

= H(Ē)−H(Ē|X̄, Ȳ) = H(Ē)−H(Ê|X̄, Ŷ) +H(Ê|X̄, Ŷ)−H(Ē|X̄, Ȳ) ≥ H(Ē)−H(Ê|X̄, Ŷ)− 2H(ÊC)−H(Â
X̄,Ŷ

)

Lemma 2 [18] (Fano’s) Computed in Lemma 4 [18]

(Ē, X̄, Ȳ) (Ê, X̄, Ŷ)Ê
C

(X̄, Ȳ) (X̄, Ŷ)
Ê

C , Â
X̄,ŶBounded in Lemma 6 [18] Lemma 7 [18] by Bounded in Lemma 5 [18]

Fig. 3: Flowchart of the proof (Theorem 1): The lower bound of the amount of information that the encoder needs to send to the decoder is given by the conditional entropy

H(Ȳ|X̄) (Lemma 2 [18]), which we show in Lemma 3 [18] equals to the amount of information to describe the edit pattern H(Ē) subtracts an amount called “nature’s secret”

H(Ē|X̄, Ȳ). We calculate H(Ē) in Lemma 4 [18]. To characterize nature’s secret H(Ē|X̄, Ȳ), we perturb the edit pattern Ē to a “typicalized” edit pattern Ê. We show in

Lemma 7 [18] that nature’s secret H(Ē|X̄, Ȳ) is within at most an order O(max (ǫ, δ)2−τ ) distance from the “typicalized nature’s secret” H(Ê|X̄, Ŷ), which we characterize

in Lemma 6 [18].

IV. LOWER BOUND

A. RPES-LtRRID Process (Theorem 1)

This is probably the most challenging part of this work.

Details are in the long version [18]. We present intuition here.
Since the decoder already has access to PreESS X̄, the

entropy of ¯Enc(X̄, Ȳ) merely needs to equal H(Ȳ|X̄), the

conditional entropy of the entire PosESS given the PreESS

(Lemma 2 [18]). The challenge is to characterize this condi-

tional entropy in single-letter/computable form, rather than as

a “complicated” function of n – indeed the same challenge

is faced in providing information-theoretic converses for any

problems in which information is processed and/or commu-

nicated. For scenarios when the relationship from X̄ to Ȳ

corresponds to a memoryless channel, standard techniques often

apply – unfortunately, this is not the case in our file update

problem. We follow the lead of [14]6, which noted that for

InDel processes that are independent of the sequence being

edited (as in our case), characterizing H(Ȳ|X̄) is equivalent to

characterizing H(Ē|X̄, Ȳ). (Recall that Ē denotes the random

variable corresponding to the edit pattern.) In fact H(Ȳ|X̄)
can be written as H(Ē)−H(Ē|X̄, Ȳ) (Lemma 3 [18]). This is

because of the aforementioned independence between Ē and X̄,

and the fact that Ȳ is a deterministic function of X̄ and Ē. But

the entropy of the edit patterns is exactly equal to the entropy

of specifying the locations of deletions, and insertions and their

contents. Since multiple edit patterns can take a PreESS X̄ to a

PosESS Ȳ, the term H(Ē|X̄, Ȳ) corresponds to the uncertainty

in the edit pattern given both X̄ and Ȳ. The intuition is that

disambiguating this uncertainty is useless for the problem of file

updating, hence this quantity is called “nature’s secret” in [9].

For instance, given X̄ = 00000 and Ȳ = 000, the decoder

doesn’t know, nor does it need to know, which specific pattern

of two deletions converted X̄ to Ȳ; all the encoder needs to

communicate to the decoder is that there are two deletions. In

general, if a symbol is deleted from a run or the same symbol

generating a run is inserted in the run (edits that shorten or

lengthen runs in X̄), the encoder doesn’t need to specify to the

decoder the exact locations of deletions or insertions in X̄-runs.
However, characterizing H(Ē|X̄, Ȳ) is still a non-trivial

task, since it corresponds to an entropic quantity of “long

sequences with memory”. One challenge is that it is hard to
6One major difference between our work and the analysis in [14] is that since

we consider both insertions and deletions, our case-analysis is significantly
more intricate. Another difference is that we explicitly characterize our bounds
for sequences over all (finite) alphabet sizes, whereas [14] concerned itself only
with binary sequences. Besides the difference in models and techniques, the
underlying motivation also differs. The authors of [14] focused on character-
izing the capacity of deletion channels (and hence they could choose arbitrary
subsets of PreESS). On the other hand we focus on the file update problem (and
hence our “channel input” PreESS X̄ is drawn according to source statistics).

align X̄-runs and Ȳ-runs. In other words, it’s in general difficult

to tell which run/runs in X̄ lead to a run in Ȳ (we call this

run/runs in X̄ parent run/runs of the run in Ȳ [14]). We

develop the approach in [14]:

• We first carefully “perturb” the original edit pattern Ē to

a typicalized edit pattern Ê, by eliminating some “dense”

edits. (See Definition 1 and Figure 5 in Section III-A2

in [18] for details and example).

• We compute the typicalized PosESS Ŷ corresponding to

operating the typicalized edit pattern Ê on the PreESS X̄.

• We show via non-trivial case analysis (Lemma 5 [18])

that with a “small amount” (O(max(ǫ, δ)2)n) of additional

alignment information Â
X̄,Ŷ, X̄ and Ŷ can be aligned.

• We show two implications of the above alignment: Lemma

7 [18] shows that H(Ê|X̄, Ŷ) is “close” to H(Ē|X̄, Ȳ);
Lemma 6 [18] provides a bound on H(Ê|X̄, Ŷ).

Pulling together the implications of the steps above enables us

to characterize, up to first order in ǫ and δ, H(Ȳ|X̄).

B. APES-AID Process (Theorem 2)

Given an arbitrary pre-edit source sequence X ∈ An, the

X-post-edit set Yǫ,δ(X) denotes the set of all sequences over

A that may be obtained from X via an arbitrary (ǫ, δ)-InDel

process. For zero-error decodability, The encoder needs to send

log |Yǫ,δ(X)| bits to decoder. The larger the X-post-edit set, the

larger the corresponding lower bound on the optimal achievable

rate. Hence to find a “good” lower bound on the optimal

achievable rate, one needs to find a pre-edit sequence X with

a large X-post-edit set.7 Below we provide a proof sketch of

Theorem 2, by constructing a PreESS XLB and a subset of

InDel patterns, such that any of the InDel patterns in the subset,

applied to XLB, results in a distinct PosESS Y.
Proof sketch of Theorem 2: Consider a PreESS XLB construct-

ed by alternating two symbols, eg: 0101 . . .01. We describe a

subset of arbitrary (ǫ, δ)-InDel patterns that result in a large

XLB-post-edit set. In this subset of InDel patterns, we require

that (1) all the δn deletions precede all the ǫn insertions; (2)

the deletions, and then the insertions, occur in a “left-to-right

manner”; (3) the deletions may delete any δn non-pairwise-

contiguous symbols; (4) each insertion may only insert symbols

from {2, . . . , |A| − 1}. It can be verified that each edit pattern

results in a distinct PosESS Y, by noting that given XLB and

Y, one can reconstruct the edit pattern. (See Section III-B

in [18] for a full argument.) The number of such InDel patterns

as described above is
(

n−δn
δn

)(

n−δn+ǫn
ǫn

)

(|A| − 2)ǫn, hence is

a lower bound on the number of PosESS |Yǫ,δ(XLB)|. The
7In [15], [16], Levenshtein showed the post-edit sets’ sizes for the cases

with only insertions or deletions. To the best of our knowledge, there is no
literature on the bounds for the scenario with both insertions and deletions.



corresponding lower bound on the optimal achievable rate R∗
ǫ,δ

– 1
n log |Yǫ,δ(XLB)|, is asymptotically (1− δ)H

(

δ
1−δ

)

+(1−

δ+ǫ)H
(

ǫ
1−δ+ǫ

)

+ǫ log (|A| − 2) by Stirling’s approximation,

which is at least H(δ) + H(ǫ) + ǫ log |A| − ǫ 2 log e
|A|−2 − λA ·

max(ǫ, δ)2 by Taylor expansion, where λA ≤ 4 log e is a

universal constant independent of ǫ, δ, |A|. �

V. ALGORITHM AND PERFORMANCE

We propose a unified coding scheme for both the RPES-

LtRRID and the APES-AID processes.8 The scheme is a com-

bination of dynamic programming (DP) and entropy coding.9

A. Algorithm

In this section we unify the notations for both RPES-LtRRID

and APES-AID processes by notations without bars.
The encoder Φn takes in the PreESS X and the PosESS Y

as inputs, and outputs a transmission Enc(X,Y) as follows.

The first subroutine of the encoder runs a dynamic program on

the input (X,Y) to output an edit pattern Ẽ with ǫ̃n insertions

and δ̃n deletions. This edit pattern Ẽ satisfies the condition that

(ǫ̃+ δ̃)n is the minimum number of edits needed to convert X

to Y. This computation dominates the time-complexity, taking

time O(n2(ǫ + δ)) (see [19]). The output edit pattern Ẽ is

represented as a pair of sequences (Õn+ǫ̃n, C̃ ǫ̃n), where the

edit operation pattern Õn+ǫ̃n ∈ {ῑ, ∆̄, η̄}n+ǫ̃n specifies the

edit operations and the insertion content pattern C̃ ǫ̃n ∈ Aǫ̃n

specifies the content of insertions. The encoder then uses a

Lempel-Ziv entropy code to compress Õn+ǫ̃n and C̃ ǫ̃n. The de-

coder decodes Õn+ǫ̃n and C̃ ǫ̃n by a corresponding Lempel-Ziv

entropy decoder, and reconstructs Y from (X, Õn+ǫ̃n, C̃ ǫ̃n).

B. Performance

In the RPES-LtRRID process, the number of deletions and

insertions may exceed the expected values δ
1−ǫn and ǫ

1−ǫ (n+
1) respectively, in which case more bits may in general need

to be transmitted. Moreover, the number of insertions can be

unbounded. We show that these events contribute a negligible

amount to the expected rate of communication as the block

length n tends to infinity, by using the Chernoff bound to show

that the probability the number of insertions/deletions is “much

more” than the expected value is exponentially small in the

block length n, while the amount contributed to the rate is

asymptotically negligible in the block length n. See Section

IV-B1 in [18] for details. The remainder of our argument holds

for both APES-AID and RPES-LtRRID processes.
It is well-known in the literature (see for instance [19]) that it

is possible to use dynamic programming to find the the minimal

total number of insertions and deletions needed to convert one
8With slight modification to the “run-length” compression scheme in [10]

for the RPES-LtRRID process, the rate achieved matches the lower bound up
to all first order terms (including the “nature’s secret” term). However, in this
work we focus on a “universal” scheme for both random and arbitrary models.

9Using DP to find the edit distance between two sequences has been
considered before in the literature (see for instance [19]). Our contribution
here is to demonstrate that for large alphabets and a small number of edits, this
algorithmic procedure results in an expected description length that matches
information-theoretic lower bounds up to lower-order terms.

sequence to the other. In our models, it can be further deduced

that the number ǫ̃n of insertions and the number δ̃n of deletions

output by the DP are both minimized, for the following reason.

For each edit pattern that converts X to Y, the number of

insertions (KI) and the number of deletions (KD) are jointly

subject to the constraint KD − KI = |X| − |Y|, where the

lengths of two source sequences |X| and |Y| are fixed given

the two sequences. Hence, minimizing KD +KI over all the

edit patterns that converts X to Y minimizes both KD and KI .
A natural upper bound on the number of bits required to

specify an edit sequence with at most ǫ̃n insertions and at

most δ̃n deletions follows by noting (as shown in Appendix

C in [18]) that the entropy code used to compress the sequence

requires a rate of at most H(δ̃) +H(ǫ̃) + (log e)ǫ̃2 +O(ǫ̃4).
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