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Abstract—When transmitting information over a noisy chan-
nel, two approaches are common: assuming the channel errors
are independent of the transmitted content and devising an error-
correcting code, or assuming the errors are data dependent
and devising a constrained-coding scheme that eliminates all
offending data patterns. In this paper we analyze a middle road,
which we call a semiconstrained system. In such a model, which
is an extension of the channel with cost constraints, we do not
eliminate the error-causing sequences entirely, but rather restrict
the frequency in which they appear.

We address several key issues in this study. The first is proving
closed-form bounds on the capacity which allow us to bound the
asymptotics of the capacity. In particular, we bound the rate at
which the capacity of the semiconstrained (0, k)-RLL tends to 1 as
k grows. The second key issue is devising efficient encoding and
decoding procedures that asymptotically achieve capacity with
vanishing error. Finally, we consider delicate issues involving the
continuity of the capacity and a relaxation of the definition of
semiconstrained systems.

I. INTRODUCTION

One of the most fundamental problems in coding and

information theory is that of transmitting a message over a

noisy channel and attempting to recover it at the receiving

end. Two common solutions to this problem were already

described in Shannon’s work [20]. The first solution uses an

error-correcting code to combat the errors introduced by the

channel. The theory of error-correcting codes has been studied

extensively, and a myriad of code constructions are known

for a wide variety of channels (for example, see [15]). The

second solution asserts that the channel introduces errors in

the data stream only in response to certain patterns, such as

offending substrings. It follows that removing the offending

substrings from the stream entirely will render the channel

noiseless. Schemes of this sort have been called constrained

systems, and they have also been extensively studied and used

(for example, see [7], [14]).

The two solutions may be viewed as two extremes: while

the first assumes the errors are data independent, the second

assumes the errors are entirely data dependent. Since the

situation may not be either of the extremes, existing solutions

may over-pay in rate. The goal of this paper is to define and

study a middle road we call semiconstrained systems.

Arguably, the most famous constrained system is the (d, k)-
RLL system, which contains only binary strings with at least

d 0’s between adjacent 1’s, and no k + 1 consecutive 0’s

(see [7] for uses of this system). In particular, (0, k)-RLL is

defined by the removal of a single offending substring, namely,

it contains only binary strings with no occurrence of k + 1

consecutive zeros, denoted 0k+1. Informally, a semiconstrained

(0, k)-RLL system has an additional parameter, p ∈ [0, 1], a

real number. A binary string is in the system if the frequency

that the offending pattern 0k+1 occurs does not exceed p.

When p = 1 this degenerates into a totally unconstrained

system that contains all binary strings, whereas when p = 0
this is nothing but the usual constrained system, which we call

a fully-constrained system for emphasis.

While the capacity of the semiconstrained (0, k)-RLL sys-

tem is known using the methods of [17], the expression

involves an optimization problem that does not lend itself to

finding other properties of the system, such as the rate at

which the capacity converges to 1 as k grows. This rate of

convergence is known when the system is fully constrained

[19]. Additionally, the capacity is known only in the one-

dimensional case, whereas the general bounds may be ex-

tended to the multi-dimensional case as well.

The first main contribution of this paper is establishing

analytic lower and upper bounds on the capacity of semicon-

strained (0, k)-RLL. These bounds are then used to derive the

rate at which the capacity of these systems converges to 1 as k
grows, up to a small constant multiplicative factor. The bounds

extend previous techniques from [19] as well as employ large-

deviations theory. These bounds are also extended to the multi-

dimensional case.

This paper is not motivated or limited solely by the case of

a single offending substring. We can define multiple offending

substrings, each equipped with its own limited empirical fre-

quency. Indeed, with a proper set of semiconstraints, variants

such as DC-free RLL are possible (see [13] and references

therein). Another motivating example is the system of strings

over Zq where the offending substring is q− 1, 0, q− 1. In the

case of multi-level flash memory cells, inter-cell interference

is at its maximum when three adjacent cells are at the

highest, lowest, and then highest charge levels possible [3].

By adjusting the amount of such substrings we can mitigate

the noise caused by inter-cell interference. Further restrictions,

such as the requirement for constant-weight strings (see the

recent [11]) correspond to a semiconstrained system.

Although coding schemes for some of these systems exist,

they are ad-hoc and tailored for each specific case, as in

[13] and [11]. A more general coding scheme exists [12]

for a channel with cost constraints model. However, it is not

optimal, and it addresses only scalar cost functions, which is

a different model than the semiconstrained systems we study.

The second main contribution of this paper is a general
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explicit encoding and decoding scheme. This coding scheme

is based on the theory of large deviations, and it asymptotically

achieves capacity, with a vanishing failure probability as the

block length grows. To that end, we also define and study a

relaxation of semiconstrained systems, allowing us to address

the issue of the existence of the limit in the definition of the

capacity, as well as the continuity of the capacity.

We would like to highlight some of the main differences

between this paper and previous works. In [9], [12] the

capacity of channels with cost constraints is investigated. Such

channels define a scalar cost function that is applied to each

sliding-window k-tuple in the transmission. The admissible

sequences are those whose average cost per symbol is less

than some given scalar constraint. In our paper, however,

we investigate sequences with a cost function which can

control separately the appearance of any unwanted word (not

necessarily of the same length).

The more general framework we study is similar to that

of [1], [16], [17]. In [16] some embedding theorems and

results concerning the entropy of a weight-per-symbol shift

of finite type are presented, where the weights are given by

functions which take values in R
d. In [1], some large-deviation

theorems are proved for empirical types of Markov chains that

are constrained to thin sets. We also mention [17], in which

an improved Gilbert-Varshamov bound for fully-constrained

systems is found. Thus, [17] studies certain semiconstrained

systems as means to an altogether different end. Using these

works, the exact capacity of semiconstrained systems, as

defined in this paper, may be calculated. However, key issues

we address are not covered by these papers, including the rate

of convergence of the capacity, the existence of the limit in

the capacity definition, and continuity of the capacity.

The paper is organized as follows. In Section II we give the

basic definitions and the notation used throughout the paper.

We also cite some previous work and derive some elementary

consequences. In Section III we introduce a relaxation called

weak semiconstrained systems, and study issues involving the

existence of the limit in the capacity definition. In Section IV

we present an upper and a lower bound on the capacity of

the (0, k, p)-RLL semiconstrained system, as well as bound

the capacity’s rate of convergence as k grows. Section V is

devoted to devising an encoding and decoding scheme for

weak semiconstrained systems. Due to space constraints, some

proofs are given in the appendix, and others are omitted. For

a full version the reader is referred to the preprint [6].

II. PRELIMINARIES

Let Σ be a finite alphabet and let Σ∗ denote the set of all the

finite sequences over Σ. The elements of Σ∗ are called words

(or strings). The length of a word ω ∈ Σ∗ is denoted by |ω|.
Assuming ω = ω0ω1 . . . ωℓ−1, with ωi ∈ Σ, a subword (or

substrings) is a string of the form ωiωi+1 . . . ωi+m−1, where

0 6 i 6 i + m 6 ℓ. For convenience, we define ωi,m =
ωiωi+1 . . . ωi+m−1. We say ω′ is a proper subword of ω ∈
Σ∗ if ω′ is a subword of ω, and |ω′| < |ω|.

Given two words, ω, ω′ ∈ Σ∗, their concatenation is

denoted by ωω′. Repeated concatenation is denoted using

a superscript, i.e., for any natural m ∈ N, ωm denotes

ωm = ωω . . . ω, where m copies of ω are concatenated.

For any two words τ, ω ∈ Σ∗, let T(τ, ω) denote

the frequency of τ as a subword of ω, i.e., T(τ, ω) =
1

|ω|−|τ|+1 ∑
|ω|−|τ|
i=0 [ωi,|τ| = τ]. Here, [A] denotes the Iverson

bracket, having a value of 1 if A is true, and 0 otherwise. If

|τ| > |ω| then we define T(τ, ω) = 0.

Definition 1. Let F ⊆ Σ∗ be a finite set of words, and let

P ∈ [0, 1]F be a function from F to the real interval [0, 1].
A semiconstrained system (SCS), X(F , P), is the following

set of words,

X(F , P) = {ω ∈ Σ∗ : ∀φ ∈ F , T(φ, ω) 6 P(φ)} .

We also define the set of words of length exactly n in

X(F , P) as Bn(F , P) = X(F , P)∩ Σn. An important object

of interest is the capacity of an SCS.

Definition 2. Let X(F , P) be an SCS. The capacity of

X(F , P), which is denoted by cap(F , P), is defined as

cap(F , P) = lim sup
n→∞

1

n
log2 |Bn(F , P)| .

If we had a closed-form expression for |Bn(F , P)|, we

could calculate the capacity of (F , P). Following the same

logic as [19], we replace the combinatorial counting prob-

lem with a probability-bounding problem. Assume pn de-

notes the probability that a random string from Σn, which

is chosen with uniform distribution, is in Bn(F , P). Then,

|Bn(F , P)| = pn · |Σ|n, and then cap(F , P) = log2 |Σ| +
lim supn→∞

1
n log2 pn.

Let Γ̄ denote the closure of a set Γ, and let Γ◦ denote its

interior. Let X be some Polish space equipped with the Borel

sigma algebra.

Definition 3. A rate function I is a mapping I : X →
[0, ∞] such that for all α ∈ [0, ∞), the level set φI(α) =
{x ∈ X : I(x) 6 α} is a closed subset of X .

Definition 4. Let {µn} be a sequence of probability mea-

sures. We say that {µn} satisfies the large-deviation prin-

ciple (LDP) with a rate function I, if for every Borel set

Γ ⊆ X , − infx∈Γ◦ I(x) 6 lim infn→∞
1
n log2 µn(Γ) 6

lim supn→∞
1
n log2 µn(Γ) 6 − infx∈Γ̄ I(x).

Let M1(Σ) denote the space of all probability measures on

some finite alphabet Σ.

Definition 5. Let Y = Y0, Y1, . . . be a sequence over some

alphabet Σ, and let y ∈ Σ∗. We denote by LY
n (y) the empirical

occurrence frequency of the word y in the first n places of Y ,

LY
n (y) = T(y, Y0,n+|y|−1). We denote by LY

n,k ∈ M1(Σ
k) the

vector of empirical distribution of Σk in Y , i.e., for a k-tuple

y ∈ Σk, the coordinate that corresponds to y in LY
n,k is LY

n (y).

Suppose Y = Y0, Y1, . . . are Σ-valued i.i.d. random vari-

ables, with q(σ) denoting the probability that Yi = σ, for
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all i. We assume that q(σ) > 0 for all σ ∈ Σ. We

denote by q(σ0, σ1, . . . , σk−1) the probability of the sequence

σ0, σ1, . . . , σk−1. The following theorem connects the empiri-

cal distribution with the large-deviation principle.

Theorem 6. [5, §3.1] Let ν ∈ X = M1(Σ
k), and let

Y = Y0, Y1, . . . be Σ-valued i.i.d. random variables, with

q(σ) > 0 denoting the probability that Yi = σ for σ ∈ Σ.

For every Borel set, Γ ⊆ X , define µn (Γ) = Pr[LY
n,k ∈

Γ]. Let us denote by ν1 ∈ M1(Σ
k−1) the marginal of

ν obtained by projecting onto the first k − 1 coordinates,

ν1(σ0, . . . , σk−2) = ∑σ∈Σ ν(σ0, . . . , σk−2, σ). Then the rate

function, I : X → [0, ∞], governing the LDP of the

empirical distribution LY
n,k with respect to Γ is, I(ν) =

∑σ∈Σk ν(σ) log2
ν(σ)

ν1(σ0,k−1)q(σk−1)
if ν is shift invariant, and ∞

otherwise, where ν ∈ X = M1(Σ
k) is shift invariant if

∑σ∈Σ ν(σ, σ1, . . . , σk−1) = ∑σ∈Σ ν(σ1, . . . , σk−1, σ).

Finally, the following corollary shows cases in which the

constraints in P are redundant. (proof omitted)

Corollary 7. Let F ⊆ Σk. If P(φ) > |Σ|−k
for all φ ∈ F ,

then cap(F , P) = log2 |Σ|.
III. THE EXISTENCE OF THE LIMIT IN THE CAPACITY

DEFINITION AND WEAK SEMICONSTRAINED SYSTEMS

Consider the following examples of binary semiconstraints.

Example 8. Let X(F , P) be an SCS with F = {0, 1} and

P(0) = P(1) = 1
2 . Note that in this example the limit in the

definition of the capacity does not exist. For an even number,

n, one can calculate |Bn(F , P)| and obtain ( n
n/2) which gives

cap(F , P) > 0. For an odd n we have that |Bn(F , P)| = 0. It

is easy to construct more examples in the same spirit. ✷

Example 9. Let X(F , P) be an SCS with F = {0, 1} and

P(0) = r, P(1) = 1 − r where r ∈ [0, 1] is an irrational

number. We have that the possible words are those with exactly

an r-fraction of zeros and a (1 − r)-fraction of ones. Since

the capacity is defined on finite words, for every n we obtain

Bn(F , P) = ∅, which implies that cap(F , P) = −∞. ✷

These two examples are interesting because the first shows

that the limit in the definition of the capacity does not always

exist, and the second one shows that the capacity is not a

continuous function of p. We therefore suggest a more relaxed

definition of semiconstrained systems.

Definition 10. Let F ⊆ Σ∗ be a finite set of words, and let P ∈
[0, 1]F . A weak semiconstrained system (WSCS), X(F , P), is

defined by

X(F , P) = {ω ∈ Σ∗ : ∀φ ∈ F , T(φ, ω) 6 P(φ) + ξ(|ω|)} ,

where ξ : N → R
+ is a function satisfying both ξ(n) = o(1)

and ξ(n) = Ω(1/n). Also Bn(F , P) = X(F , P)∩ Σn.

We can think of ξ(|ω|) as an additive tolerance to the

semiconstraints. The requirement that ξ(n) = o(1) is in the

spirit of having the WSCS X “close” to the SCS X. In the

other direction, however, if we were to allow ξ(n) = o(1/n),

then for large enough n, we would have gotten Bn = Bn, i.e.,

no relaxation at all. Thus, we require ξ(n) = Ω(1/n).

Definition 11. Let X(F , P) be a WSCS. The capacity of

X(F , P), which is denoted by cap(F , P), is defined as

cap(F , P) = lim sup
n→∞

1

n
log2

∣

∣Bn(F , P)
∣

∣ .

We show that under this definition of the capacity, the limit

superior is actually a limit. (for the proof, see [6])

Definition 12. Let F ⊆ Σ∗ be a finite set of words. Set k =
maxφ∈F |φ| and define the operator f : M1(Σ

k) → [0, 1]|F |

as follows. LetM be a |F | × |Σ|k matrix, where for φ ∈ F
and ω ∈ Σk, the (φ, ω) entry is given byMφ,ω = [ω0,|φ| =
φ]. Then, for any ν ∈ M1(Σ

k), we define f (ν) =Mν, where

ν is viewed as a vector indexed by Σk.

Theorem 13. Let X(F , P) be a WSCS, and

∆ =
{

ν ∈ [0, 1]F : ∀φ ∈ F , ν(φ) 6 P(φ)
}

.

Set k = maxφ∈F |φ|, and let X = Mσ(Σk) and Y = [0, 1]F

(which is isomorphic to [0, 1]|F |). Define the linear function

f : X → Y as in Definition 12. Then, if f−1(∆) ∩X 6= ∅ the

following equality holds (and the limit exists):

cap(F , P) = lim
n→∞

1

n
log2

∣

∣Bn(F , P)
∣

∣ = 1− inf
µ∈ f−1(∆)

I(µ),

provided the tolerance function for the WSCS satisfies ξ(n) >
2 |Σ|k−1 n−1, and where I is the rate function from Theorem 6.

The proof shows another important property, namely, the

continuity of the capacity as a function of P. Note that the

function f is continuous and the rate function is continuous

when reduced to its support. Thus, if P is not empty and P+ ǫ

is not empty, limǫ→0 cap(F , P + ǫ) = cap(F , P).

IV. BOUNDS ON THE CAPACITY OF (0, k, p)-RLL SCS

AND RATE OF CONVERGENCE

In this section we study closed-form bounds on the capacity

that allow us to analyze the asymptotics of the capacity of

semiconstrained systems, and prove bounds on the capacity

in the multi-dimensional case. To that end, we focus on the

family of semiconstrained (0, k)-RLL, since it is defined by a

single offending string of 0k+1. While the results are specific

to this family, we note that some of them may be extended to

general semiconstrained systems.

We consider the semiconstrained system X(F , P) defined

by F = {0k+1} and P(0k+1) = p, for some real constant

p ∈ [0, 1]. We call this semiconstrained system the (0, k, p)-
RLL SCS, and throughout this section we denote its capacity by

Ck,p. Thus, Ck,0 denotes the capacity of the fully-constrained

(0, k)-RLL system. We note that due to Corollary 7 we must

also take p 6 1
2k+1 or else the capacity is exactly 1. In the

case of fully-constrained (0, k)-RLL, the asymptotics of the

capacity, as k tends to infinity, are well known [10], [19].
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In order to obtain an upper bound on the capacity of

(0, k, p)-RLL SCS we employ a result of Janson [8]. The first

bound we present is the following: (proof in [6])

Theorem 14. For 0 < p 6 1
2k+1 , the capacity of the (0, k, p)-

RLL SCS is bounded by

Ck,p 6 1− 1

3− 2−k+1

(

log2 e

2k+1
+ p(k + 1)− p log2

e

p

)

.

The same method can be applied for the D-dimensional

(0, k, p)-RLL SCS, extending the results of [19]. The defini-

tion of semiconstrained systems is extended in the natural way

to higher dimensions. We obtain the following upper bound

on C
(D)
k,p : (proof omitted)

Theorem 15. The capacity of the D-dimensional (0, k, p)-RLL

SCS is bounded by the following.

C
(D)
k,p 6 1−

D
log2(e)

2k+1 + p(k + 1)− p log2
De
p

3− 2−k+1 + 2−k(D− 1)(k + 1)2
.

We return to the one-dimensional case. The upper bound of

Theorem 14 converges to 1 as k grows. We now find the rate

of this convergence. To that end we prove a stronger upper

bound on the capacity, that does not have as nice a form as

Theorem 14 in the finite case, but does have a nice asymptotic

form. (proof in [6])

Theorem 16. For p = p(k) let c = limk→∞
p

2−(k+1) , c ∈ [0, 1],
and let

bL =

{

3−
√

1+8c
2 log2 e− 2c log2

(

1+4c+
√

1+8c
8c

)

c > 0,

log2 e c = 0.

Then, 1 − Ck,p >
bL

2k+2 (1 + o(1)), where o(1) denotes a

function of k tending to 0 as k→ ∞.

We note that taking c = 0 in Theorem 16 gives 1− Ck,0 >
log2 e

4·2k (1 + o(1)), which coincides with the capacity’s rate of

convergence for the fully-constrained system [19].

We turn to consider a lower bound on the capacity of the

(0, k, p)-RLL SCS. We can extend the method of monotone

families that was used in [19] to obtain such a bound. However,

the result that we describe next, which is based on the theory of

large deviations, outperforms the monotone-families approach.

As in Theorem 6, the capacity of (0, k, p)-RLL SCS is

given by cap(F , p) = 1 − infν∈Γ I(ν), where Γ = {ν ∈
Mσ(Σk) : ν(1k+1) 6 p}. The main idea of the bound is that

by fixing some ν ∈ Γ we find a lower bound on the capacity.

We do, however, have to keep in mind that the measure we

choose must be shift invariant. (proof in [6])

Theorem 17. For all k > 1 and 0 6 p 6 2−(k+1),

Ck,p > 1− 1− p

2k+1 − 1
log2

(

2− 2p

1 + 2p(2k− 1)

)

− p log2

(

2p(2k+1− 1)

1 + 2p(2k− 1)

)

. (1)

The bound of Theorem 17 can now be used to prove an

asymptotic form when k→ ∞. (proof in [6])

Theorem 18. For p = p(k) let c = limk→∞
p

2−(k+1) , where

c ∈ [0, 1], and let bU = (1 + c)(1− H( 1
c+1 )), where H(·) is

the binary entropy function. Then, 1− Ck,p 6
bU

2k+1 (1 + o(1)).

The ratio between the bounds of Theorem 18 and Theo-

rem 16 is at most ≈ 1.5. Again, a higher-dimensional bound

may be obtained (proof omitted).

Theorem 19. The capacity of the D-dimensional (0, k, p)-RLL

SCS is bounded by C
(D)
k,p > 1 + D

(

C
(1)
k,p/D − 1

)

.

V. ENCODER AND DECODER CONSTRUCTION FOR WSCS

In this section we describe an encoding and decod-

ing scheme for general weak semiconstrained systems, that

asymptotically achieves capacity. The scheme relies on LD

theory, and its implementation is inspired by the coding

scheme briefly sketched in [2].

The encoder we present is a block encoder. We analyze it for

input that contains i.i.d. Bernoulli(1/2) bits. We first present

some notation, then describe the encoder and decoder, and

finally, analyze the scheme and show its rate is asymptotically

optimal, and its probability of failure tends to 0.

Several assumptions will be made in this section, all of them

solely for the purpose of simplicity of presentation. We will

make these assumptions clear. We further note that the results

easily apply to the general case as well.

Let (F , P) be a WSCS. The first assumption we make

is that the system is over the binary alphabet Σ = {0, 1}.
Another assumption we make is that F ⊆ Σk, i.e., every word

φ ∈ F is of the same length k (see [6]).

Solving the appropriate LD problem (see Theorem 6)

yields the capacity of the system, which is denoted by C =
cap(F , P), together with an optimal probability vector, p, of

length 2k. Each entry of the vector p corresponds to a k-tuple

and contains the probability that a k-tuple should appear in

order to achieve the capacity of the system, as well as satisfy

the constraints. We denote the entries p = (p0, p1, . . . , p2k−1).
Let G be the binary De-Bruijn graph of order k − 1,

i.e., the vertices are all the binary (k − 1)-tuples, and the

directed labeled edges are u = (u1, u2, . . . , uk−1)
uk−→

(u2, u3, . . . , uk) = u′, where ui ∈ Σ. Thus, each vertex has

2 outgoing edges labeled 0 and 1. Additionally, each edge

corresponds to a binary k-tuple.

For convenience, we define an operator R : Σ+ → Σ∗,
for u = (u1, u2, . . . , un) ∈ Σn, R(u) = (u2, u3, . . . , un) ∈
Σn−1. Thus, the edges of the De-Bruijn graph are of the form

u → R(ua), for all u ∈ Σk−1 and a ∈ Σ. Another operator

we require is L : Σ+ → Σ, L(u) = u1.

We can construct a Markov chain over G, whose transition

matrix, A, is a 2k−1× 2k−1 matrix whose i, j entry, Aij, is the

probability of choosing the edge going from vertex ui ∈ Σk−1

to vertex uj ∈ Σk−1 given that we are in state ui. At this point,

for simplicity of presentation, we assume that from each vertex

emanate exactly two outgoing edges with positive probability.
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Denote by v = (v0, v1, . . . , v2k−1−1) the stationary distri-

bution of the vertices of the Markov chain. We would like to

find a Markov chain on G whose stationary distribution of the

edges matches the vector p. We note that since the vector p
is shift invariant, the set of equations has a solution (see [4]).

Assume ω ∈ Σn is a sequence of n input bits at the

encoder, which are i.i.d. Bernoulli(1/2). The encoding process

is comprised of three steps: partitioning, biasing, and graph

walking.

Partitioning: The first step in the encoding process is parti-

tioning the sequence ω of n input bits into 2k−1 subsequences

of, perhaps, varying lengths, denoted ni, 0 6 i 6 2k−1 − 1.

Obviously, ni > 0 for all i, as well as ∑
2k−1−1
i=0 ni = n. Each

subsequence is to be associated with a vertex of the Markov

chain, or equivalently, with a (k− 1)-tuple. The first n0 bits

of the input are associated with state u0, the following n1 bits

are associated with state u1, and so on.

For every vertex ui, let uj be the vertex for which ui
0−→ uj,

i.e., uj = R(ui0), and denote by qi the entry Aij. For every

k-tuple i, let ñi = H(qi)vin/C. For all 0 6 i 6 2k−1 − 1
take ni = ⌊ñi⌉, where ⌊·⌉ denotes either a rounding down or

a rounding up. The rounding is done in such a manner as to

preserve the sum, ∑
2k−1−1
i=0 ñi = ∑

2k−1−1
i=0 ni (proof omitted).

Biasing: After obtaining 2k−1 subsequences, we take each

subsequence and bias it to create subsequences that are typical

for a Bernoulli(q) source, for some q. To that end, we use an

arithmetic decoding process on each subsequence.

Let ηi be the subsequence that corresponds to vertex ui. For

every i, we decode ηi using an arithmetic decoder with proba-

bility qi to obtain a new sequence η̂i distributed Bernoulli(qi).
We stop the decoder when the obtained sequence η̂i is of

length
⌈

ni/H(qi) + n
1
2+ǫ
⌉

bits for some known arbitrarily

small ǫ ∈ (0, 1
4 ). For every state ui, we call the obtained

sequence “the information bits.”

The resulting arithmetically-decoded sequence, η̂i, corre-

sponds to a closed segment in [0, 1]. If there exists a state

ui for which η̂i corresponds to a segment of length greater

than 2−ni , an error is declared. For a detailed description of

arithmetic coding see [18].

Graph walking: The encoder now has the sequences η̂i,

which are of various lengths. The encoder appends to each

sequence η̂i an extra
⌈

n
1
2+2ǫ

⌉

bits distributed Bernoulli(qi).

These extra bits carry no information and are used for padding

only. Then, the encoder starts the transmission as described in

Algorithm 1.

The decoding process mirrors the encoding. Details may be

found in [6]. Additionally, the following theorem summarizes

the properties of the procedures. (proof in [6])

Theorem 20. The encoding procedure described above pro-

duces the desired WSCS, asymptotically achieves capacity, and

has a vanishing failure probability.
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