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Abstract—Mutation processes such as point mutation, inser-
tion, deletion, and duplication (including tandem and inter-
spersed duplication) have an important role in evolution, as
they lead to genomic diversity, and thus to phenotypic variation.
In this work, we study the expressive power of interspersed
duplication, i.e., its ability to generate diversity, via a simple but
fundamental stochastic model, where the length and the location
of the substring that is duplicated and the point of insertion of the
copy are chosen randomly. We investigate the properties of the
set of high-probability sequences in these stochastic systems. In
particular we provide results regarding the asymptotic behavior
of frequencies of symbols and strings in a sequence evolving
through interspersed duplication. The study of such systems is an
important step towards the design and analysis of more realistic
and sophisticated models of genomic mutation processes.

I. INTRODUCTION

There are millions of distinct species on Earth [6] and

individuals within each species are also different from each

other. This vast amount of diversity is, for the most part, the

result of genomic mutation. The types of mutation include

point mutation, insertion/deletion, and duplication. Duplication

mutations, where a segment of DNA is copied and inserted

elsewhere in the genome, may in turn be of the tandem or

interspersed type. In tandem duplication, the copy is inserted

immediately after the original, while in interspersed repeats,

the copy may be inserted far from the original DNA segment.

Interspersed duplications are caused by transposons, which are

segments of DNA that can copy and insert themselves into new

positions of the genome.

The general goal of this work is to move towards better

understanding the effects of genomic interspersed duplica-

tion on generating novel sequences and creating biological

diversity. Among the aforementioned mutation processes, in-

terspersed duplication is of particular interest as it leads

to interspersed repeated sequences, which form 45% of the

human genome [5]. Here, we take a probabilistic approach

to model interspersed duplications and investigate their ability

to generate novelty and diversity. This complements our other

work [2]–[4], in which we consider the same problem from

a combinatorial point of view by studying the capacity of

duplication processes. Capacity, a concept adapted from the
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theory of constrained coding, represents the magnitude of the

set of possible sequences arising from these processes and thus

quantifies their generative power. In contrast, the probabilistic

view is concerned with identifying the probable outcomes

of stochastic duplication systems. Particularly, we seek to

find certain properties which the outcome of an interspersed-

duplication system will possess with high probability.

In our interspersed-duplication model, a string evolves

through random interspersed-duplication events, i.e., in each

step, a random segment of the string is duplicated and then

inserted in a random position in the string, independent of

the position of the original segment. To avoid complications

arising from boundary cases, we consider circular strings.

It is worth noting that in fact many bacteria have circular

chromosomes. While in practice, different mutation processes

work together to create novel sequences, the scope of this work

is limited to analyzing interspersed duplications in isolation.

This helps us to obtain a better understanding of the properties

of this type of mutation. We leave the study of more complex

systems that evolve through more than one mutation type to

future work.

Our analysis starts by considering how the frequencies

(multiplicities divided by the length of the evolving string) of

the alphabet symbols change as duplications occur. We show

that under general conditions, the frequencies are martingales

and thus converge almost surely. The same argument does not

apply to the frequencies of strings of length larger than one. To

analyze such frequencies, we use the stochastic approximation

method which enables modeling of a discrete dynamic system

by a corresponding continuous model described by ordinary

differential equations. We show then that for interspersed-

duplication systems, the frequencies of strings of length larger

than one are, in the limit, consistent with those of iid se-

quences; implying that in a certain sense, a sequence evolving

through interspersed duplication is unrecognizable from an iid

sequence. Note that an iid sequence has the maximum entropy

among sequences with a given symbol distribution.

The rest of the paper is organized as follows. Notation

and preliminaries are given in the next section. Section III

contains the analysis of the evolution of symbol frequencies

in the evolving string. In Section IV, we present the necessary

background and preliminaries for the use of stochastic approx-
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Figure 1. Interspersed duplication in a circular string, where the original

segment and copy are shown in different styles.

imation in this work. Sections V is devoted to the analysis of

substring frequencies in interspersed-duplication systems. We

close the paper with concluding remarks in Section VI.

II. PRELIMINARIES AND NOTATION

Let s be a circular string over some alphabet A, which

evolves over time through interspersed duplication. We use

A∗ to denote the set of all finite (linear) strings over A. In

our examples, we typically let A = {A,C,G,T}. In each step

of the process, first a length ℓ is chosen according to a fixed

and bounded distribution q = (qi)
K−1
i=1 , where qi denotes the

probability of the event ℓ = i and K is a positive integer

such that qi = 0 for i ≥ K and i ≤ 0. Then an ℓ-substring

s′ is chosen randomly and uniformly among all |s| substrings

of s that have length ℓ (recall that s is viewed as a circular

string and thus contains |s| such substrings). Then a copy of

s′ is inserted at a random position in s. For simplicity of

notation, the dependence of s on n is implicit. If there is

possibility of confusion, we denote the string s at time n with

s(n). An example of this process is given in Figure 1. As

another example, suppose s(n) = AGTTCAC, ℓ = 3, and s′ =
ACA, where s′ is underlined in s. Two possibilities for s(n+1),

after a single interspersed duplication, are AGTTACACAC and

AGTTCAACAC, where the inserted copy of s′ is over-lined.

The length of s at time n (that is, after n duplications)

is denoted by |s(n)| = Ln, with L0 being the length of the

initial string. For a string u, we use ui,j to denote the length-j
substring of u starting at ui. Furthermore, the concatenation

of two strings u and v is represented by uv. In this paper,

vectors are denoted by boldface letters such as x, and scalars

by normal letters such as x.

III. EVOLUTION OF SYMBOL FREQUENCIES

In this section, we study the evolution of symbol frequencies

as the evolving string s undergoes interspersed duplications.

The results of this section are in fact valid not only for

interspersed duplication, but also for any duplication process

in which for each i, all i-substrings of s have the same chance

of being duplicated.

For a string u ∈ A∗, let the number of appearances of u in

s at time n be denoted by µu
n, and its frequency by xu

n, where

xu
n = µu

n/Ln. We let {Fn} be the filtration generated by the

random variables
{

(xa
n)a∈A, Ln

}

.

Theorem 1. The random variables xa
n, where a is a symbol

of the alphabet, are martingales and converge almost surely.

Proof: Suppose a ∈ A. We have

E
[

xa
n+1|Fn

]

= E

[

µa
n+1

Ln+1

∣

∣

∣

∣

Fn

]

= E

[

E

[

µa
n+1

Ln+1

∣

∣

∣

∣

Fn, ℓ

]∣

∣

∣

∣

Fn

]

= E

[

µa
n + ℓxa

n

Ln + ℓ

∣

∣

∣

∣

Fn

]

= xa
n.

We thus have E
[

xa
n+1|Fn

]

= xa
n and so xa

n is a martingale.

Since it is nonnegative, by the martingale convergence theo-

rem, it converges almost surely.

The above theorem does not in fact require the distribution

q to be constant and bounded. Under our assumption that q
is so, we can in addition obtain the following result on the

probability of xa
n deviating from its starting value.

Theorem 2. For all a ∈ A and n ≥ 1 we have

P (|xa
n − xa

0 | ≥ λ) ≤ 2e−λ2L2
0/(2K

4) .

Proof: Since qi = 0 for i ≥ K and i ≤ 0,
µa
n−1

Ln−1+K ≤
µa
n

Ln
≤

µa
n−1+K

Ln−1+K . Thus

−
Kµa

n−1

Ln−1(Ln−1 +K)
≤

µa
n

Ln
−

µa
n−1

Ln−1
≤

K(Ln−1 − µa
n−1)

Ln−1(Ln−1 +K)
,

implying that

∣

∣xa
n − xa

n−1

∣

∣ ≤
Kmax

{

Ln−1 − µa
n−1, µ

a
n−1

}

Ln−1(Ln−1 +K)

≤
K

Ln−1 +K
≤

K

L0 + n− 1 +K
≤

K

L0 + n
.

Let cn = K
L0+n so that

∣

∣xa
n − xa

n−1

∣

∣ ≤ cn and note that

n
∑

i=1

c2i = K2
n
∑

i=1

1

(L0 + i)
2 ≤ K2

ˆ n

0

dt

(L0 + t)
2

=
K2

L0
−

K2

L0 + n
=

K2n

L0(L0 + n)
≤

K2

L0
·

By the Hoeffding-Azuma inequality, we have

P (|xa
n − xa

0 | ≥ λ) ≤ 2 exp
(

−λ2L2
0

2K4

)

.

The preceding theorem implies that it is unlikely for the

composition of a long DNA sequence to change dramatically

through uniformly random duplication events. Such changes,

if observed, are likely the result of context-dependent dupli-

cations or other biased mutations.

Unfortunately, this simple martingale argument does not

extend to more complex cases of xu
n, for example when u

is a substring of length more than 1. Therefore, for analyzing

such cases, we use the more flexible technique of stochastic

approximation as described in the sequel.

An illustration of the change in frequencies of symbols and

short strings versus the number of duplications is given in

Figure 2. It can be observed that the frequencies of A, C, G,
and T vary less as the number n of duplications increases. In

particular for large values of n, they become almost constant.

The frequencies of strings of length larger than 1 is discussed

in the following sections.
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IV. STOCHASTIC APPROXIMATION

FOR DUPLICATION SYSTEMS

In this section, we present a brief overview of the stochastic

approximation method adapted to duplication systems. For an

ordered set U, let µn = (µu
n)u∈U be a vector representing the

number of appearances of objects u ∈ U in the string s at

time n and let xn = µn

Ln
be the normalized version of µn. For

example, U can be the set of all strings over A with length

at most three. We also let {Fn} be the filtration generated by

the random variables {xn, Ln}. Our goal is to find out how

xn changes with n by finding a differential equation whose

solution approximates xn.

We state a set of conditions that must be satisfied for our

analysis. Let Eℓ[ · ] denote the expected value conditioned

on the fact that the length of the duplicated substring is ℓ
and let δℓ = Eℓ

[

µn+1|Fn

]

− µn. We consider the following

conditions. Among them, we assume (A1) and, for now, accept

the others without a proof.

(A1) There exists K ∈ N such that qi = 0 for i = 0 or i ≥ K .

(A2) µn+1 − µn, and thus δℓ, are bounded.

(A3) xn is bounded.

(A4) For each ℓ, δℓ is a function of xn only, so we can write

δℓ = δℓ(xn).

(A5) The function δℓ(xn) is Lipschitz.

To understand how xn varies, our starting point is its

difference sequence xn+1 − xn. We note that

xn+1 − xn = E[xn+1 − xn|Fn] + (xn+1 − E[xn+1|Fn]).
(1)

For the first term of the right side of (1), we have

E[xn+1 − xn|Fn] =

K−1
∑

ℓ=1

qℓ(Eℓ[xn+1|Fn]− xn)

=

K−1
∑

ℓ=1

qℓ

(

µn + δℓ(xn)

Ln + ℓ
−

µn

Ln

)

=
1

Ln

K−1
∑

ℓ=1

qℓhℓ(xn)
(

1 +O
(

L−1
n

))

=
1

Ln
h(xn)

(

1 +O
(

L−1
n

))

, (2)

where hℓ(x) = δℓ(x) − ℓx, h(x) =
∑K−1

ℓ=1 qℓhℓ(x), and

where we have used 1/(Ln + ℓ) =
(

1 +O
(

L−1
n

))

/Ln which

follows from the boundedness of ℓ (see (A1)).

Furthermore, for the second term of the right side of (1),

we have

xn+1 − E[xn+1|Fn] =
µn+1

Ln+1
− E

[

µn+1

Ln+1
|Fn

]

=
1 +O

(

L−1
n

)

Ln

(

µn+1 − E
[

µn+1|Fn

])

=
1

Ln

(

1 +O
(

L−1
n

))

Mn+1 (3)

where Mn+1 = µn+1 − E
[

µn+1|Fn

]

. Note that Mn is a

bounded martingale difference sequence.

From (1), (2), and (3), we find xn+1 = xn +
1
Ln

(

h(xn) +Mn+1 +O
(

L−1
n

))

, where we have used the

fact that h(xn)
(

1 +O
(

L−1
n

))

= h(xn) + O
(

L−1
n

)

. This

follows from the boundedness of h(xn), which in turn follows

from the boundedness of δ(xn).
The following theorem relates the discrete system describing

xn to a continuous system.

Theorem 3. [1, Theorem 2] The sequence {xn} converges

almost surely to a compact connected internally chain transi-

tive invariant set of the ode dxt/dt = h(xt).

Note the dual use of the symbol x in the theorem; the

meaning is however clear from the subscript. Recall that a set

A is an invariant set of an ode dzt/dt = f (zt) if it is closed

and zt′ ∈ A for some t′ ∈ R implies that zt ∈ A for all

t ∈ R. The invariant set A is internally chain transitive with

respect to the ode dzt/dt = f (zt), provided that for every

y ,y′ ∈ A and positive reals T and ǫ, there exist N ≥ 1 and

a sequence y0, . . . ,yN with yi ∈ A, y0 = y , and yN = y′

such that for 0 ≤ i < n, if z0 = yi, then for some t ≥ T , zt

is in the ǫ-neighborhood of yi+1.

V. INTERSPERSED DUPLICATION

Now, we use the technique presented in Section IV to extend

the results of Section III by analyzing the frequencies of strings

u ∈ A∗ in an interspersed-duplication system. Let ℓ′max ∈ N

and let U be an ordered set consisting of all strings of length

at most ℓ′max. The vectors xn and µn are defined as before

using U . Note that (A.2) follows from (A.1), and (A.3) from

the fact that xn ≤ 1.

Consider u ∈ U . In an interspersed-duplication system, for

ℓ < |u|, we have

δuℓ = −(|u| − 1)xu
n +

ℓ
∑

i=1

xu1,i

n x
ui+1,|u|−i

n

+

ℓ
∑

i=1

x
u1,|u|−i

n x
u|u|−i+1,i

n +

|u|−ℓ−1
∑

i=1

x
u1,iui+ℓ+1,|u|−ℓ−i

n x
ui+1,ℓ
n .

Here, the term −(|u| − 1)xu
n accounts for the expected number

of lost occurrences of u in s as a result of inserting the

duplicate substring. To illustrate, we assume A = {A,C,G,T}
and will use u = ACT and ℓ = 1. An occurrence of u = ACT

will be lost if for example an occurrence of the symbol G is

duplicated and inserted after A in this occurrence of u, since

it becomes AGCT. The probability that a certain occurrence

is lost equals
|u|−1
Ln

. Since there are µu
n such occurrences, the

expected number of lost occurrences of u equals µu
n
|u|−1
Ln

=
xu
n(|u| − 1). Note that if the symbol T is duplicated and

inserted after C in an occurrence of ACT, we still count the

original occurrence as lost, but count a new occurrence in the

resulting ACTT, as seen in what follows. We now explain the

first summation above. This summation represents the newly

created occurrences of u where the first i symbols come from

906



the duplicate and the next |u| − i are from the substring that

starts after the point of insertion of the duplicate. There are

µ
u1,i

n occurrences of u1,i. The duplicate ends with one of these

with probability µ
u1,i
n

Ln
= x

u1,i

n . Furthermore, the duplicate is

inserted before an occurrences of ui+1,|u|−i with probability

x
ui+1,|u|−i

n . Hence, the probability of a new occurrence created

in this way is x
u1,i

n x
ui+1,|u|−i

n , and so is the expected number

of such new occurrences. The role of the second summation

is similar, except that the duplicate provides the second part

of u. The last summation accounts for new occurrences of u
in which the duplicate substring forms a middle part of u of

length ℓ and previously existing substrings contribute a prefix

of length i and a suffix of length |u| − ℓ− i. In terms of our

running example with u = ACT and ℓ = 1, one such new

occurrence is created if C is duplicated and inserted after A

in an occurrence of AT. The probability of such an event is

x
u1,iui+ℓ+1,|u|−ℓ−i

n x
ui+1,ℓ
n = xAT

n xC
n, where i = 1.

For ℓ ≥ |u|, we have

δuℓ = −(|u| − 1)xu
n +

|u|−1
∑

i=1

x
u1,|u|−i

n x
u|u|−i+1,i

n

+

|u|−1
∑

i=1

xu1,i

n x
ui+1,|u|−i

n + (ℓ− |u|+ 1)xu
n

where the first two summations are similar to the first two sum-

mations for the case of ℓ < |u|, but a term corresponding to

the third summation is not present. The term (ℓ− |u|+ 1)xu
n

corresponds to the cases in which a new occurrence of u is

created as a substring of the duplicate substring. Note that δuℓ
depends only on xn and is Lipschitz since xn ∈ [0, 1]

|U|
. So

(A.4) and (A.5) hold.

Since hu
ℓ (x) = δuℓ (x) − ℓxu , we have for ℓ < |u| and

ℓ ≥ |u|, respectively,

hu
ℓ (x) = −(ℓ+ |u| − 1)xu +

ℓ
∑

i=1

xu1,i

n x
ui+1,|u|−i

n (4)

+

ℓ
∑

i=1

x
u1,|u|−i

n x
u|u|−i+1,i

n +

|u|−ℓ−1
∑

i=1

x
u1,iui+ℓ+1,|u|−ℓ−i

n x
ui+1,ℓ
n ,

hu
ℓ (x) = −2(|u| − 1)xu + 2

|u|−1
∑

i=1

xu1,ixui+1,|u|−i . (5)

Recall that hℓ(x) = (hv
ℓ (x))v∈U . So from (4) and (5),

we can find the ode dxt/dt = h(xt) =
∑K−1

ℓ=1 qℓhℓ(xt).
As an example, if ℓ′max = 2 and A = {A,C}, then

U = (A,C,AA,AC,CA,CC, AAA, . . . ,CCC) and some of the

equations of the ode system are

d

dt
xA

t =
d

dt
xC

t = 0,

d

dt
xAA

t = −2xAA

t + 2
(

xA

t

)2
,

d

dt
xAC

t = −2xAC

t + 2xA

t x
C

t ,

d

dt
xAAC

t = −(4− q1)x
AAC

t + 2xA

t x
AC

t + (2− q1)x
C

t x
AA

t . (6)

For a vector x that contains the elements (xa)a∈A and for

v ∈ A∗, define p(v,x) =
∏

a∈A(x
a)nv(a), where nv(a) is the

number of occurrences of a in v, and note that p(vw,x) =
p(v,x)p(w,x). We now turn to find the solutions to the ode

dxt/dt = h(xt).

Lemma 4. Consider the ode dxt/dt = h(xt) where h(x) =
∑K−1

ℓ=1 qℓhℓ(x) and the elements of hℓ(x) are given by (4)

and (5). The solution to this ode is

xv
t = p(v,x0) +

∑

i

bvi e
−dv

i t, v ∈ U, (7)

where x0 = xt|t=0; the range of i in the summation is finite;

and bvi and dvi are constants with dvi > 0.

Proof: We prove the lemma by induction. The claim (7)

holds for v ∈ A, since the equations for xa
t , a ∈ A, are of

the form dxa
t /dt = 0 and so xa

t = xa
0 . Fix u ∈ U such

that |u| > 1, and assume that (7) holds for all v ∈ U such

that |v| < |u|. We show that it also holds for u, i.e., xu
t =

p(u,x0) +
∑

i b
u
i e

−du
i t. Using the assumption, we rewrite (4)

and (5) as

hu
ℓ (xt) = −(ℓ + |u| − 1)(xu

t − p(u,x0)) +
∑

i

b
′

ie
−d

′

it

for ℓ < |u|, and

hu
ℓ (xt) = −2(|u| − 1)(xu

t − p(u,x0)) +
∑

i

b
′′

i e
−d

′′

i t

for ℓ ≥ |u|, where b
′

i, d
′

i, b
′′

i , d
′′

i are constants with d
′

i, d
′′

i > 0.

Hence, hu(xt) can be written as

hu(xt) = −cu(xu
t − p(u,x0)) +

∑

i

b
′′′

i e−d
′′′

i t,

where cu = 2|u|−2−
∑|u|−1

ℓ=1 qℓ(|u| − 1− ℓ), and b
′′′

i , d
′′′

i are

constants with d
′′′

i > 0. Thus the solution to the ode dxu
t /dt =

hu(xt) is

xu
t = e−cut

ˆ

ec
ut

′(

cup(u,x0) +
∑

i

b
′′′

i e−d
′′′

i t
′)

dt
′

+ b̄e−cut

= p(u,x0) +
∑

i

bui e
−du

i t,

where b̄, bui , d
u
i are some constants, with dui > 0 (note that

cu > 0 since |u| > 1). This completes the proof.

For example, the solutions to (6) with q1 = 0 are

xA

t = xA

0 , xC

t = xC

0 ,

xAA

t =
(

xA

0

)2
+ bAA1 e−2t, xAC

t = xA

0x
C

0 + bAC1 e−2t,

xAAC

t =
(

xA

0

)2
xC

0 + bAAC1 e−2t + bAAC2 e−4t,

where bAAC1 = xA
0 b

AC
1 + xC

0 b
AA
1 .

In the next theorem, we use Lemma 4 to characterize

the limits of the frequencies of substrings in interspersed-

duplication systems.

Theorem 5. Let U be an ordered set consisting of all strings

over the alphabet A of a certain maximum length and let
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xn = (xu
n)u∈U be the vector of frequencies of these strings at

time n in an interspersed-duplication system. The vector xn

converges almost surely. Furthermore, its limit x∞ satisfies

xu
∞ =

∏

a∈A

(xa
∞)

nu(a), for all u ∈ U.

Note that the existence of the limits xa
∞ of xa

n, for a ∈ A,

was also shown in Theorem 1.

Proof: From Theorem 3, we know that the limit set of

xn is an internally chain transitive invariant set of the ode

described by (4) and (5). Let this set, which consists of points

of the form y = (yv)v∈U , be denoted by A. Since for each

u ∈ U , xu
n ∈ [0, 1], we have that A ⊆ [0, 1]

|U|
. We now use

these facts to show that for each y ∈ A and u ∈ U , we have

yu = p(u,y).
Suppose to the contrary that there exist y ∈ A and u ∈

U such that yu 6= p(u,y). Among all possible choices of

such y and u, choose the ones where the length |u| of u
is minimum. Hence, yu 6= p(u,y) but zv = p(v, z) for all

v ∈ A∗ with |v| < |u|, and all z ∈ A. Then, similar to the

proof of Lemma 4, one can show that if x0 = z ∈ A, then

xu
t = p(u, z) + be−cut, where b = zu − p(u, z) and cu ≥ |u|.
By the definition of internal chain transitivity, for any ǫ > 0

and T > 0, there exist N ≥ 1 and a sequence y0, . . . ,yN with

yi ∈ A, y0 = yN = y such that for 0 ≤ i < n, if x0 = yi,

then there exists t ≥ T such that xt is in the ǫ-neighborhood

of yi+1. Suppose x0 = yi and suppose for t′ ≥ T , xt′ is in

the ǫ-neighborhood of yi+1. We have

yui+1 ≤ xu
t′ + ǫ ≤ p(u,yi) + (yui − p(u,yi))e

−cut′ + ǫ

≤ p(u,yi) + e−cuT + ǫ,

where we have used the fact that yui ≤ 1. Furthermore, since

yai+1 ≤ yai + ǫ for a ∈ A, we find

p
(

u,yi+1

)

− p(u,yi) ≥ (1 + ǫ)|u| − 1,

where we have again used the fact that yai ≤ 1 for a ∈ A. It

thus follows that

yui+1 − p
(

u,yi+1

)

≤ e−cuT + ǫ + (1 + ǫ)|u| − 1.

In particular, this holds for i = n− 1, i.e.,

yu − p(u,y) ≤ e−cuT + ǫ+ (1 + ǫ)
|u|

− 1.

But we can make the right side of the above inequality

arbitrary small by choosing T large enough and ǫ small

enough. Thus yu = p(u,y), which is a contradiction. Hence,

for each y ∈ A and u ∈ U , we have yu = p(u,y), and the

theorem follows.

In words, the theorem shows that for u ∈ A∗, the frequency

of u converges to the frequency of same in an iid sequence

where the probability of a ∈ A equals xa
∞. Figure 2 illustrates

an example, obtained via simulation, where the system starts

with s(0) = AGCGTATGCG and duplications of lengths 4

and 6 occur with equal probability. As the number n of

duplications increases, the frequency vector xn becomes more

compatible with that of an iid sequence. For example for

n
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Figure 2. Symbol frequencies vs the number of duplications in an
interspersed-duplication system, with s(0) = AGCGTATGCG, and q4 =

q6 = 1/2.

n = 15000, we have xAC
n = 0.0251 ≃ xA

nx
C
n = 0.0266,

xGT
n = 0.0872 ≃ xG

nx
T
n = 0.0880, and xGGG

n = 0.0992 ≃
(

xG
n

)3
= 0.1084

VI. CONCLUSION

We studied the limiting behavior of stochastic interspersed-

duplication systems in order to evaluate their ability in creating

biological diversity. We showed that the composition of long

sequences does not vary greatly in random duplication sys-

tems, given that all substrings of the same length are duplicated

with equal probability. We also established that frequencies

of sequences in interspersed-duplication systems tend to the

corresponding probabilities in sequences generated by iid

sources, which have the highest possible entropy for given

symbol probabilities. It thus seems plausible that diversity

may arise from random interspersed-duplication events. Since

this work was limited to the asymptotic analysis of these

systems, further research is required to quantify their finite-

time behavior. Furthermore, in this work we did not consider

the more realistic scenarios in which different duplications

have different probabilities.
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