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Abstract—We study the size (or volume) of balls in the metric
space of permutations, Sn, under the infinity metric. We focus
on the regime of balls with radius r = ρ · (n−1), ρ ∈ [0, 1],
i.e., a radius that is a constant fraction of the maximum possible
distance. We provide new bounds on the size of such balls. These
bounds reduce the asymptotic gap between the upper and lower
bound to at most 0.06 bits per symbol.

I. INTRODUCTION

Given a metric space (M, d), perhaps one of the most basic

constructs is that of a ball

Br(x) �
{

x′ ∈ M | d(x, x′) � r
}

,

where x ∈ M is the ball’s center and r is the ball’s radius.

Since many coding-theoretic problems may be viewed as the

study of packing or covering of a metric space by balls,

properties of balls and their parameters have been studied

extensively in a wide range of metrics [10], [11], [31].

An important feature of a ball is its size (or volume), i.e.,

the number of points in the ball. It is an important component

in many bounds on code parameters, most notably, the ball-

packing bound and the Gilbert–Varshamov bound [31]. Thus,

the exact size, the asymptotic size, or bounds on the size of

balls in various metrics are of interest.

Lately, metric spaces over permutations have received in-

creased attention. This is motivated, in particular, by the recent

application of rank modulation to non-volatile memories [22]:

in such applications, the charge levels of memory cells are

compared against each other, and a permutation is induced by

the relative ranking of the cells’ charge levels. For designing

error-correcting codes or covering codes over the space of

permutations, one needs to choose a suitable metric and so

several metrics have been studied for the space of permuta-

tions, including Hamming’s metric [1], [3], [4], [7], [8], [13],

[14], [24], [33], Kendall’s τ-metric [2], [5], [6], [9], [23], [32],

[44], [46], and Ulam’s metric [18].

This paper focuses on the infinity metric, whose definition

will follow in the next section. Spaces of permutations with

this metric have been used for error-correction [28], [37], [40],

[46], code relabeling [41], anticodes [35], covering codes [17],

[44], and snake-in-the-box codes [45]. It is therefore surprising
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that the asymptotic size of a ball in this metric space is (to

the best of our knowledge) unknown, and a considerable gap

exists between the known lower and upper bounds.

The goal of this paper is to reduce the gap between the

lower and upper bounds on the asymptotic size of balls in

the space of permutations with the infinity metric. To that

end, we exploit a well-known connection between the size of

the aforementioned balls, and permanents of binary Toeplitz

matrices. We carefully employ recent advances in bounds on

permanents of doubly-stochastic matrices to obtain the desired

results, along with using some older bounds on permanents.

The paper is organized as follows. In Section II we present

notations and definitions, in Section III we analyze the asymp-

totic gap between the known bounds on the size of balls, in

Section IV we present the new bounds, and we conclude in

Section V with a discussion of the results and some open

questions.

II. NOTATION

For the rest of this paper, n will denote a positive integer.

With this, we define [n] � {1, 2, . . . , n} and let Sn be the set

of all permutations over [n]. The identity permutation in Sn

is denoted by Idn. Additionally, the composition of any two

permutations f , g ∈ Sn is denoted by f g and represents the

mapping i �→ f (g(i)).
For any f , g ∈ Sn, the infinity metric (or infinity distance)

between them, denoted d∞( f , g), is defined as

d∞( f , g) � max
i∈[n]

∣∣ f (i)− g(i)
∣∣.

Since d∞( · , · ) is the only metric we will be using, we shall

simply denote it by d( · , · ). Observe that for any f , g ∈ Sn,

we have 0 � d( f , g) � n− 1.

We define the ball of radius r centered at f ∈ Sn as the set

Br,n( f ) � {g ∈ Sn | d( f , g) � r} .

The infinity metric over Sn is right invariant [12], i.e., for all

f , g, h ∈ Sn we have d( f h, gh) = d( f , g). Thus, the size of

a ball depends only on r and n, and not on the choice of the

center. We will therefore denote by |Br,n| the size of a ball of

radius r in Sn.

1731978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015



For an n× n matrix, M = (mi,j), the permanent of M is

defined as

per(M) � ∑
f∈Sn

∏
i∈[n]

mi, f (i).

A particular matrix of interest is the following binary

Toeplitz matrix Ar,n = (ai,j) of size n× n defined by

ai,j �

{
1 |i− j| � r

0 otherwise
, i, j ∈ [n]. (1)

It is well known [25], [27], [34], [40] that

per(Ar,n) = ∑
f∈Sn

∏
i∈[n]

ai, f (i)

=
∣∣ { f ∈ Sn | ∀i ∈ [n] : |i− f (i)| � r} ∣∣

=
∣∣ { f ∈ Sn | d(Idn, f ) � r} ∣∣

=
∣∣Br,n(Idn)

∣∣ = |Br,n| .
Note that for any fixed radius r, tight asymptotic bounds on

|Br,n| are known [26], [29], [34], [39]. However, in this paper

we are interested in the case of radius r = ρ · (n−1), where

ρ ∈ [0, 1] is a real constant. In expressions like r = ρ · (n−1)
we always implicitly assume that ρ is such that r is an integer.

We call ρ the normalized radius.

III. ANALYSIS OF KNOWN BOUNDS

Given any upper and lower bounds on the ball size,

ϕ(r, n) � |Br,n| � Φ(r, n),

we are interested in the following measure of asymptotic gap

between the two:

Definition 1. For bounding functions ϕ and Φ as above, we

define

GapΦ
ϕ (ρ) � lim sup

n→∞

1

n
log2

Φ
(
ρ · (n−1), n

)
ϕ
(
ρ · (n−1), n

) ,

for any real constant ρ ∈ [0, 1].

The following proposition summarizes, to the best of our

knowledge, the tightest known bounds for balls in (Sn, d∞).

Proposition 2. It holds that

ϕ1(r, n) � |Br,n| � Φ1(r, n),

where

ϕ1(r, n) �

{
(2ρn)n

22ρnen · 2o(n) 0 � r � n−1
2

nn

en22n(1−ρ) · 2o(n) n−1
2 � r � n− 1

,

Φ1(r, n) �

⎧⎨
⎩

(22ρ+1ρn)n

en(2ρ+1) · 2o(n) 0 � r � n−1
2

nn

en(3−2ρ)ρ2ρn · 2o(n) n−1
2 � r � n− 1

.

Proof: These bounds are a rearrangement into asymptotic

form of the following results:

• For the range 0 � r � n−1
2 , the upper and lower bounds

were given in [25], [27].

• For the full range of possible radii, the upper bound was

given in [40].

• For the full range of possible radii, the lower bound was

given in [17].

Note that [27] conjectured a stronger lower bound for the

range 0 � r � n−1
2 .

Our first goal is to analyze the gap between the upper bound

Φ1 and the lower bound ϕ1. In order to do so, we recall

Stirling’s approximation of n! (see, e.g., [19])

n! =
√

2πn
(n

e

)n
2O(1/n).

Corollary 3. It holds that

GapΦ1
ϕ1
(ρ) =

{
(4−2 log2 e) · ρ 0 � ρ � 1

2

2(1−ρ)(1−log2 e)− 2ρ log2 ρ 1
2 � ρ � 1

.

Proof: See [36].

The result of Corollary 3 is visualized by curve (a) in Fig. 1.

IV. NEW BOUNDS

In this section we present new bounds on the size of balls

in (Sn, d∞).

• We first use a new lower bound on the permanent of non-

negative matrices based on the Bethe permanent. This

lower bound will imply improved bounds in the entire

range of normalized radii, 0 � ρ � 1.

• We then focus on a well-known lower bound on the per-

manent of non-negative matrices, where the matrix must

be such that there are diagonal matrices D and D′ with

positive diagonal elements such that left-multiplication

by D and right-multiplication by D′ yields a doubly-

stochastic matrix. This approach will enable us to further

reduce the asymptotic gap between the lower and upper

bounds, but so far only for the range 1
2 � ρ � 1.

A. Bethe-Permanent-Based Lower Bound

We recall that a doubly-stochastic matrix is a square n× n
matrix with non-negative real entries for which the sum of

each row and each column is 1. Let perB(M) be the Bethe

permanent of an n× n-matrix with non-negative entries [42].

The following theorem is due to Gurvits [20]. (See also the

discussion in [42].)

Theorem 4. Let M � (mi,j) be an n × n matrix with non-

negative entries and per(M) > 0. Let Q � (qi,j) be any n× n
doubly-stochastic matrix. Then

log2 per(M) � log2 perB(M) �

∑
i,j∈[n]

(
−qi,j log2

qi,j

mi,j
+ (1− qi,j) log2(1− qi,j)

)
.

For Theorem 4 to be meaningful, we note that qi,j = 0
whenever mi,j = 0, i.e., the support of Q should be a subset

of the support of M.
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In our case, we are interested in M = Ar,n as defined in

(1). Our goal is to find a doubly-stochastic matrix Q to use

with Theorem 4.

For convenience, let us define the function H̃ : [0, 1]→ R

as

H̃(x) � −x log2 x + (1−x) log2(1−x).

We note that H̃ is not the binary entropy function since the

second summand appears with a flipped sign.

Theorem 5. Fix some r, 0 � r � n− 1. It holds that

|Br,n| � ϕ2(r, n),

where for 0 � r � n−1
2 we define

log2 ϕ2(r, n) � r(r + 1)H̃

(
2

2r + 1

)

+ (n(2r + 1)− 2r(r + 1))H̃

(
1

2r + 1

)
,

whereas for n−1
2 � r � n− 1 we define

log2 ϕ2(r, n) � (n− r− 1)(n− r)H̃

(
2

n

)

+ (n2 − 2(n− r− 1)(n− r))H̃

(
1

n

)
.

Proof: See [36].

The lower bound ϕ2(r, n) presents an asymptotic improve-

ment over the lower bound ϕ1(r, n), as shown in the following

corollary.

Corollary 6. It holds that

GapΦ1
ϕ2
(ρ) =

⎧⎪⎨
⎪⎩
(3−2 log2 e) · ρ 0 � ρ � 1

2

2(1−ρ)(1−ρ− log2 e)

−2ρ log2 ρ 1
2 � ρ � 1

.

Proof: With the help of Theorem 5, it is a simple exercise

to show that

ϕ2(ρ · (n−1), n) =

{
(2ρn)n

2ρnen · 2o(n) 0 � ρ � 1
2

nn

en22n(1−ρ)2
· 2o(n) 1

2 � ρ � 1
.

Together with the asymptotic form of Φ1(r, n), which was

given in the proof of Corollary 3, the claim follows immedi-

ately.

The result of Corollary 6 is visualized by curve (b) in Fig. 1.

B. Sinkhorn-Balancing-Based Lower Bound

The following theorem is well known.

Theorem 7. Let M � (mi,j) be an n × n matrix with non-

negative entries and per(M) > 0. Additionally, we require that

there are two diagonal matrices D and D′ with positive diagonal

elements such that D ·M ·D′ is a doubly-stochastic matrix. Let

Q � (qi,j) be an n× n doubly-stochastic matrix. Then

log2 per(M) � log2

n!

nn
+ ∑

i,j∈[n]

(
−qi,j log2

qi,j

mi,j

)
. (2)

Proof: Let D and D′ be given by

D � diag(d1, . . . , dn),

D′ � diag(d′1, . . . , d′n),

where di, i ∈ [n], and d′j, j ∈ [n], are positive real numbers.

Note that the element in the i-th row and the j-th column of

D · M · D′ is given by di ·mi,j · d′j. Then

log2 per(M)

= log2 per(D · M · D′)− ∑
i∈[n]

log2(di)− ∑
j∈[n]

log2(d
′
j)

� log2

n!

nn
− ∑

i∈[n]
log2(di)− ∑

j∈[n]
log2(d

′
j)

� log2

n!

nn
− ∑

i∈[n]
log2(di)− ∑

j∈[n]
log2(d

′
j)

− ∑
i,j∈[n]

qi,j log2

qi,j

di ·mi,j · d′j

= log2

n!

nn
− ∑

i,j∈[n]
qi,j log2

qi,j

mi,j
,

where the first inequality follows from van der Waerden’s con-

jecture (proven by Falikman [16] and by Egorychev [15]) and

where the second inequality follows from the non-negativity

of relative entropy.

We note that D and D′ are auxiliary matrices in Theorem 7.

Only their existence matters, while their entries do not play a

role in (2). Additionally, for Theorem 7 to be meaningful, we

note that qi,j = 0 whenever mi,j = 0, i.e., the support of Q
should be a subset of the support of M. The right-hand side

of (2) can be maximized with the help of Sinkhorn’s balancing

algorithm [38], see, e.g., the discussions in [21], [30], [43].)

As in Section IV-A, we are interested in M = Ar,n as

defined in (1). Our goal is to find a doubly-stochastic matrix Q
to use with Theorem 7. Such a matrix is found in the upcoming

Lemma 8 and it is used in Theorem 9 to establish a lower

bound on log2 per(Ar,n), and with that a lower bound on

log2 |Br,n|.
Lemma 8. Fix some r, n−1

2 � r � n−1. The matrix

Q∗ � (q∗i,j) which maximizes the right-hand side of (2) for

M = Ar,n � (ai,j), is given by

q∗i,j = ai,j · C · exp2(λi) · exp2(λ
′
j), i, j ∈ [n], (3)

where

• if r = n − 1, then C � 1/n, λi � 0 for i ∈ [n], and

λ′j � 0 for j ∈ [n];

• if n−1
2 � r � n−2, then

λi �

⎧⎪⎨
⎪⎩
((n−r)− i) · log2(αr,n) 1 � i � n− r

0 n− r � i � r + 1

(i− (r+1)) · log2(αr,n) r + 1 � i � n

,

λ′j � λj , j ∈ [n],

C � (αr,n−1) · α−(n−r)
r,n �

αr,n−1

(2r−n+2)− (2r−n) · αr,n
,
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Figure 1. (a) GapΦ1
ϕ1
(ρ) of Corollary 3; (b) GapΦ1

ϕ2
(ρ) of Corollary 6; (c) GapΦ1

ϕ3
(ρ) of Corollary 12.

and αr,n is the unique positive solution of the equation

αn−r
r,n + (2r−n) · αr,n − (2r−n+2) = 0.

In either case, note that

• λn+1−i = λi , i ∈ [n],
• λ′n+1−j = λ′j , j ∈ [n].

Proof: See [36].

Theorem 9. Fix some r, n−1
2 � r � n−1. We have the

following lower bound on log2 |Br,n|:
• For r = n− 1:

log2 |Br,n| � log2(n!).

(Because |Br,n| = n!, this lower bound is tight. )

• For n−1
2 � r � n−2:

log2 |Br,n| � log2(n!)− n log2(n)− n · log2(αr,n−1)

+ (n− r) · (2r− n + 2) · log2(αr,n),

where αr,n was specified in Lemma 8.

Proof: See [36].

Note that the lower bound in Theorem 9 contains the

constant αr,n. In order to get rid of this constant, the up-

coming Lemma 10 suitably approximates this constant and

Theorem 11 will then show the updated expression for the

lower bound.

Lemma 10. Let r = ρ · (n−1), with 1
2 < ρ < 1 a constant.

Then αr,n from Lemma 8 is

αr,n = 1 +

(
t̂ + Θ

(
1

n

))(
2

1
(n−1)(1−ρ)+1 − 1

)
,

where

t̂ �
1

ln(2)

⎛
⎝2(1− ρ)

2ρ− 1
−W

⎛
⎝ (1− ρ) exp

(
2(1−ρ)
2ρ−1

)
2ρ− 1

⎞
⎠
⎞
⎠ ,

(4)

and where W( · ) denotes Lambert’s function, i.e., W( · ) is

defined by z = W(z) exp
(
W(z)

)
.

Proof: See [36].

Theorem 11.

Let r = ρ · (n−1), with 1
2 < ρ < 1 a constant. It holds that

|Br,n| � ϕ3(r, n) · 2o(n),

where

ϕ3(r, n) �
nn · 2t̂(2ρ−1)n · (1− ρ)n

(et̂ ln(2))n
,

and where t̂ is given by (4).

Proof: See [36].

Finally, the following corollary computes the asymptotic

gap between the upper bound Φ1 and the lower bound ϕ3.

Corollary 12. For 1
2 < ρ < 1,

GapΦ1
ϕ3
(ρ) = log2

(
t̂ ln(2)

)− t̂(2ρ− 1)− log2(1− ρ)

− 2(1− ρ) log2(e)− 2ρ log2(ρ).

Proof: The proof is straightforward and is therefore

omitted.

The result of Corollary 12 is visualized by curve (c) in

Fig. 1.
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V. CONCLUSION

As is evidenced by Fig. 1, we have been able to significantly

reduce the asymptotic gap between the best known upper and

lower bounds on |Br,n|. One wonders if this asymptotic gap

can be closed even further. In particular:

• In the case of the Bethe-permanent-based lower bound

(Section IV-A), can one find analytically tractable matri-

ces Q that yield better lower bounds?

• In the case of the Sinkhorn-balancing-based lower bound

(Section IV-B), can one find an analytically tractable

matrix Q also for the case 0 � r � n−1
2 ? (For the

case n−1
2 � r � n−1, no improvement is possible as

Lemma 8 found the matrix Q that maximizes the right-

hand side of (2).)
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