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Abstract—In this work we consider the communication of
information in the presence of synchronization errors. Specifi-
cally, we consider permutation channels in which a transmitted
codeword x = (x1, . . . , xn) is corrupted by a permutation π ∈ Sn
to yield the received word y = (y1, . . . , yn) where yi = xπ(i). We

initiate the study of worst case (or zero error) communication
over permutation channels that distort the information by apply-
ing permutations π which are limited to displacing any symbol
by at most r locations, i.e. permutations π with weight at most r
in the ℓ∞-metric. We present direct and recursive constructions,
as well as bounds on the rate of such channels for binary and
general alphabets. Specific attention is given to the case of r = 1.

I. INTRODUCTION

Permutation channels have received some attention in re-

cent years due to their relevance in different applications of

networking technologies and various read channels. Under this

setup, a vector of symbols is transmitted in some order, but

due to synchronization errors, the symbols received are not

necessarily in the order in which they were transmitted, e.g.,

[7], [8], [20] (permutation channels), [9], [17] (the bit-shift

magnetic recording channel), and [13] (the Trapdoor channel).

We can think of the channel as applying a permutation to

the transmitted vector. However, not all permutations may be

equally likely, or even feasible. In this work we focus on

channels that can only displace symbols a limited amount

of positions away from their origin. Such permutations are

exactly those that have a limited weight in the ℓ∞-metric over

permutations.

When the transmitted vectors are in themselves permuta-

tions, this channel has been studied as the limited-magnitude

rank-modulation channel. In particular, error-correcting codes

were studied [6], [18], [19], as well as systematic codes [22],

anticodes [16], covering codes [3], [21], and various other

related combinatorial problems [5], [11], [15].

Unlike the rank modulation case, this work considers the

transmission of general vectors over the channel, and in

particular, allows repeated symbols and small alphabets. More

specifically, for a finite alphabet Σ, the transmitted codeword

x = (x1, . . . , xn) may be any element in Σn. The code-

word x is corrupted by a permutation π ∈ Sn to yield

y = (y1, . . . , yn) where yi = xπ(i). We consider the worst

case (or zero error) communication model over permutations
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π for which ∀i : |i −π(i)| 6 r for a pre-specified magnitude

r, i.e., π is r-bounded by the ℓ∞-metric. We refer to such

channels as ℓ∞-limited permutation channels, LPC∞(r).
In this work we initiate the study of LPC∞(r) for general

alphabets Σ and magnitudes r under the zero error (worst

case) setting. Although similar models have been studied in

the literature, to the best of our knowledge, the study of

zero error LPC∞(r) has not been explicitly addressed. Most

closely related models include the permutation model of [9],

[17] in which Σ = {0, 1} but the limitation |i − π(i)| 6 r
on permutations π holds only for i such that xi = 1, [8]

which has a model similar to ours but applies a random

permutation instead of a worst case one, [7] in which random

synchronization errors of limited ℓ∞-norm are applied to

vectors of natural numbers, and [20] in which the channel

is governed by a distribution over Sn.

We present direct and recursive code constructions, encod-

ing and decoding algorithms, bounds on code parameters, and

constructions for covering codes for LPC∞(r). Specifically,

our model and preliminaries are given in Section II. In

Section III we study the combinatorial properties of LPC∞(r)
including the average and precise size of balls according to

the ℓ∞-metric. In Section IV we present codes for LPC∞(r).
Finally, in Section V we present general upper bounds on

the size of codes for LPC∞(r) via covering codes together

with the comparison of our lower and upper bounds for some

specific settings of parameters. Our main focus in several of

the sections above is on general |Σ| = q and r = 1, and only

at times do we address larger values of r. Due to the lack of

space some of the proofs in the paper are omitted.

II. PRELIMINARIES

Let us denote [n] = {1, 2, . . . , n}, and let Sn denote the

set of all permutations over [n]. A permutation π ∈ Sn is

written in vector notation π = [π1, π2, . . . , πn], and may be

considered a bijection π : [n] → [n] mapping π(i) = πi. The

identity permutation is denoted by Id = [1, 2, . . . , n].
Given two permutations, π, π

′ ∈ Sn, the ℓ∞-distance

between the two is defined as

d∞(π, π
′) = max

i∈[n]

∣

∣π(i)− π
′(i)

∣

∣ .

The ℓ∞-distance defines a metric [2]. The weight of a permu-

tation π ∈ Sn is defined as

wt(π) = d∞(π, Id).
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Thus, all the permutations of weight at most r form the ball

of radius r centered at the identity permutation. Balls in the

ℓ∞-metric over permutations have been studied in the past [5],

[11], [15].

We now formally introduce the ℓ∞-limited permutation

channel, LPC∞(r).

Definition 1. Let Σ be some finite alphabet. Assume a vec-

tor x = (x1, x2, . . . , xn) ∈ Σn has been transmitted. The

LPC∞(r) channel distorts it by applying to it a permuta-

tion of weight at most r. Thus, the received vector y =
(y1, y2, . . . , yn) ∈ Σn satisfies y = πx, i.e.,

yi = xπ(i) for all i ∈ [n],

for some permutation π ∈ Sn with wt(π) 6 r.

Definition 2. The ball of radius r centered at x ∈ Σn is

Br(x) = {y ∈ Σn | y = πx, π ∈ Sn, wt(π) 6 r} .

It follows that a vector x ∈ Σn transmitted over LPC∞(r)
may be received as any vector in Br(x). This gives rise to the

following definition of an error-correcting code for LPC∞(r).

Definition 3. Let Σ be a finite alphabet of size q, and C ⊆ Σn.

We say C is an (n, M; r)q-LPC∞ code if its size is |C| = M,

and for all c, c′ ∈ C, c 6= c′, we have

Br(c) ∩ Br(c
′) = ∅.

In an analogous fashion we also define covering codes.

Definition 4. Let Σ be a finite alphabet and C ⊆ Σn. We say

C is an (n, M)qR-LPC∞ covering code if its size is |C| = M,

and ⋃

c∈C

BR(c) = Σn.

The sizes of the largest code, and the smallest covering

code, are now defined. We use a notation similar to [1], [12].

Definition 5. Let Σ = Zq be the alphabet. Given n and r,

we denote by Aq(n; r) the largest M such that there exists an

(n, M; r)q-LPC∞ code over Σ. Similarly, given n and R, we

denote by Kq(n; R) the smallest M such that there exists an

(n, M)qR-LPC∞ covering code over Σ.

Let Σ be some finite alphabet. We recall some useful

notation commonly used in the theory of formal languages.

An n-string x = x1x2 · · · xn ∈ Σn is a finite sequence of

alphabet symbols, xi ∈ Σ. We say n is the length of x and

denote it by |x| = n. For two strings, x ∈ Σn and y ∈ Σm,

their concatenation is denoted by xy ∈ Σn+m. The set of all

finite strings over the alphabet Σ is denoted by Σ∗. For s ∈ Σ∗

and a non-negative integer k, we use sk to denote the sequence

obtained by concatenating k copies of s.

III. PROPERTIES OF THE LPC∞(r) SPACE

In this section we study several properties of the LPC∞(r)
space, including the size of balls, and the distance between

vectors.

Definition 6. The LPC∞-distance between x, y ∈ Σn, denoted

d(x, y), is defined as the minimum non-negative integer w such

that there exists a permutation π ∈ Sn, wt(π) = w, and y =
πx. If no such integer exists we say the distance is ∞.

We note that the distance function is symmetric since

wt(π) = wt(π−1) for all π ∈ Sn. Additionally, d(x, y) = 0
if and only if x = y. It is obvious that d(x, y) 6= ∞ if and only

if every symbol of the alphabet appears in x the exact same

times as it appears in y. Finally, the triangle inequality holds,

d(x, y) 6 d(x, z) + d(z, y), for all x, y, and z, provided none

of the distances in the inequality is ∞. To sketch the proof for

this, assume the minimal-weight permutations that determine

the distances are π1x = z, π2z = y, and πx = y. Then,

d(x, z) + d(z, y) = wt(π1) + wt(π2) = wt(π1) + wt(π−1
2 )

> wt(π1π2) > wt(π) = d(x, y),

where the first inequality is due to the triangle inequality in

the ℓ∞-metric over permutations, and the second is due to the

fact that π1π2x = y, but π1π2 is not necessarily the minimal-

weight permutation changing x into y. Thus, when restricting

ourselves to sets of vectors with the same composition, the

distance function d defines a metric.

To calculate the LPC∞-distance we use the following nota-

tion. For any symbol a ∈ Σ, we denote by na(x) the number

of occurrences of a in x, i.e.,

na(x) = |{i ∈ [n] | xi = a}| .

Additionally, the index of the jth occurrence of a in x is

denoted as La(j; x). More precisely, La(j; x) = i if xi = a
and a appears j − 1 times in the string x1x2 . . . xi−1. Using

this notation, our previous observation becomes: d(x, y) < ∞

iff na(x) = na(y) for all a ∈ Σ.

The next theorem states how to find d(x, y) and the corre-

sponding permutation connecting x and y.

Theorem 7. Let Σ be a finite alphabet, and x, y ∈ Σn such that

d(x, y) < ∞. Then

d(x, y) = max
a∈Σ

j∈[na(x)]

|La(j; x)− La(j; y)| .

In addition, finding π such that y = πx and wt(π) = d(x, y)
can be done in O(n) time.

On several occasions in the following sections, we will focus

specifically on (n; 1)q-LPC∞ codes. We therefore study in

more detail balls of radius 1. Assume the alphabet is Σ = Zq,

and let x = (x1, x2, . . . , xn) ∈ Z
n
q be some vector. The

number of permutations π ∈ Sn such that wt(π) 6 1 is

known to be the n-th Fibonacci number Fn (see [11], [15]),

where

Fi =

{

Fi = Fi−1 + Fi−2 i > 2

Fi = 1 i = 0, 1

Thus, we immediately get that

|B1(x)| 6 Fn.

However, it is also clear that applying distinct permutations to

x does not always result in distinct vectors.

Given two permutations π, π
′ ∈ Sn, wt(π) = wt(π′) 6 1,

we say they are x-equivalent, denoted π
x
∼ π

′, if πx = π
′x. It
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is obvious that
x
∼ is an equivalence relation, and that |B1(x)|

is the number of equivalence classes of
x
∼.

We also note that every permutation π ∈ Sn with wt(π) 6
1 can be written uniquely as a product of non-overlapping

adjacent transpositions, and more precisely,

π = ∏
i∈[k]

(ji, ji + 1), (1)

with ji + 1 < ji+1 for all i ∈ [k − 1]. Here, (a, b), a 6= b,

denotes in cycle notation the permutation exchanging a and b
while fixing all other elements. Additionally, Π, as it appears

in (1), when applied to permutations, denotes permutation

composition.

We also introduce a new operator on permutations, turning

each permutation π as in (1) into an x-reduced form,

rdcx(π) = ∏
i∈[k]

x ji
6=x ji+1

(ji, ji + 1).

Intuitively, the x-reduced form of π keeps only those transpo-

sitions that switch the positions of distinct symbols in x. By

definition we have the following simple observation: for every

x ∈ Z
n
q and every π ∈ Sn, wt(π) 6 1, we have

πx = rdcx(π)x. (2)

In addition, the operator rdcx(·) characterizes the equiva-

lence relation
x
∼.

Lemma 8. For x ∈ Z
n
q , π, π

′ ∈ Sn, wt(π), wt(π′) 6 1, we

have π
x
∼ π

′ if and only if rdcx(π) = rdcx(π′).

It now follows that |B1(x)| is exactly the number of x-

reduced permutations. As already observed, x-reduced permu-

tations are uniquely defined by a product of non-overlapping

adjacent transpositions, exchanging positions in x with distinct

symbols.

Given a vector x = (x1, x2, . . . , xn) ∈ Z
n
q , an antirun of

length ℓ+ 1 is a subsequence (xj, xj+1, . . . , xj+ℓ) such that

xj+i 6= xj+i−1 for all i ∈ [ℓ]. A maximum antirun is an antirun

that cannot be extended in either direction. Any sequence

of x ∈ Z
n
q can be partitioned uniquely into a sequence of

maximal antiruns. We call the sequence of the lengths of the

maximal antiruns in such a partition, the antirun profile of x,

and denote it as P(x).

Example 9. Let Σ = Z3, and take

x = (1, 1, 2, 0, 1, 0, 2, 2, 2, 2, 0, 0, 1, 2, 0).

We note that (x3, x4, x5) = (2, 0, 1) is an antirun, however it is

not a maximal antirun since it may be extended. The partition

of x into maximal antiruns produces

(1), (1, 2, 0, 1, 0, 2), (2), (2), (2, 0), (0, 1, 2, 0).

Thus, the antirun profile of x is

P(x) = (1, 6, 1, 1, 2, 4).

✷

Theorem 10. Let x ∈ Z
n
q be a vector with an antirun profile

P(x) = (ℓ1, ℓ2, . . . , ℓk). Then |B1(x)| = ∏i∈[k] Fℓi
.

We are interested in finding the extreme cases of the size

of radius-1 balls. Since for every x ∈ Z
n
q , the sum of the

entries in P(x) is also n, to find the maximum size of |B1(x)|,
we are interested in finding an integer partition of n, say

(ℓ1, ℓ2, . . . , ℓk), ℓi > 1, ∑i∈[k] ℓk = n, such that ∏i∈[k] Fℓi

is maximized. The following identity on Fibonacci numbers

is well known,

Fa+b = FaFb+1 + Fa−1Fb.

A simple rearrangement of this equality, also using the basic

recursion, we get

Fa+b = 2FaFb + FaFb−1 − Fa−2Fb > FaFb,

for all a, b > 1. Thus,

Theorem 11. The maximum radius-1 ball size is obtained when

x ∈ Z
n
q is made of a single maximal antirun, and then

|B1(x)| = Fn. There are exactly q(q − 1)n−1 such vectors

x. Conversely, the minimum size of a ball is easily seen to

be obtained when x ∈ Z
n
q is comprised of a single repeating

symbol from Zq, and then |B1(x)| = 1, and there are q such

vectors x.

Extensions for the average size of balls are also of interest

in code design and bounds, and will be included in the long

version of this paper.

IV. CODE CONSTRUCTIONS

In this section we present two constructions of different fla-

vor. The first is a direct construction, inspired by constrained-

coding theory. In contrast, the second construction is recursive

and requires seed codes.

A. Direct construction

The direct construction we present focuses on the binary

case. As we shall later see, the rate of any binary (n, M; 1)-
LPC∞ is asymptotically at most 2/3. Thus, we are interested

in finding codes with rate as close as possible to this upper

bound. Our approach to constructing such codes is motivated

by a similar problem which was studied by Shamai and Zehavi

in [17] and later by Krachkovsky in [9]. The problem studied

by them is an asymmetric version of the binary channel studied

here. While in the binary model of the LPC∞(r) channel,

every bit can change its location by at most r positions, in

the model studied in [9], [17] this constraint is applied only

to the bits having value 1. For example, for the word x =
000111, the ball of radius 1 under the LPC∞(1) channel is

{000111, 001011}, whereas in the asymmetric version of this

channel, it is the set {000111, 001011, 001101, 001110}.

Let us fix from now on Σ = {0, 1}. The construction in [9],

[17] consists of the following idea. Given a set of blocks B ⊆
Σ∗ (these blocks can be of any length), the code Cn(B) is

defined to be

Cn(B) =

{

b1 . . . bm

∣

∣

∣

∣

∣

b1, . . . , bm ∈ B,
m

∑
i=1

|bi| = n

}

. (3)
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Under this construction it is possible to derive that the asymp-

totic rate of this code family will be given by log2 λ, i.e.,

lim sup
n→∞

log2 |Cn(B)|

n
= log2 λ,

where λ is the largest solution of the equation

∑
b∈B

x−|b| = 1.

The main goal of the works [9], [17] was to study the

asymmetric version of the LPC∞(r) channel but for codes that

satisfy the run-length limited (RLL) constraint [4]. However, as

a special case, one can have no RLL constraint. In this case

the set of blocks B =
{

03i1 | i > 0
}

was used to generate

a code family with asymptotic rate ≈ 0.551 which attains

the capacity of the constraint. Since the error balls in the

LPC∞(r) distortion channel are subsets of the error balls of

the asymmetric version of this channel model, we could also

take the same set B and thus achieve at least the same rate.

Next, we will show how to improve upon this construction

and get an asymptotic rate of ≈ 0.5875.

Construction A. Define the block set B = B1 ∪B2 ∪B3 ∪B4,

where

B1 =
{

02+3i1 | i > 0
}

, B2 =
{

03+3i14 | i > 0
}

,

B3 =
{

12+3i0 | i > 0
}

, B4 =
{

13+3i04 | i > 0
}

.

The constructed code is Cn(B) as defined in (3). ✷

Theorem 12. For all n > 3, the code Cn(B) from Construction

A is an (n; 1)-LPC∞ code, and allows decoding in time Θ(n).

Corollary 13. The asymptotic rate of the code family Cn(B)
from Construction A is log2 λ ≈ 0.5875, where λ is the largest

solution of the equation x7 − 3x4 − 2 = 0.

The proof of Corollary 13 follows standard techniques (see,

e.g., [14]). We also mention that in the other extreme case

in which q = |Σ| is large (w.r.t. r) we have codes with

rate approaching 1. Such codes are reminiscent of network

protocols that add meta-data to packets in order to correct

packets that arrive out of order.

Theorem 14. For (2r + 1)|q, there exist (n, M; r)q-LPC∞

codes with M =
( q

2r+1

)n
(and thus rate 1 − logq(2r + 1)).

B. Recursive construction

We present a recursive construction that may be combined

with seed codes either from a direct construction or from a

computer search.

Construction B. Let C be an (n, M; 1)q-LPC∞ code over the

alphabet Σ = Zq for some integer q > 2. Define

Ca =

{

c = (c1, c2, . . . , cn) ∈ C

∣

∣

∣

∣

∣

n

∑
i=1

ci ≡ a (mod q)

}

.

Obviously C0, C1, . . . , Cq−1 form a partition of C.

Let a1, a2, . . . , aℓ ∈ Zq be a sequence of integers such

that ai 6= ai+1, for all 1 6 i 6 ℓ − 1, or in the notation

of the previous section, the sequence is a single antirun. The

constructed code is

C′ = Ca1 × Ca2 × · · · × Caℓ .

We say all the words of Cai
have a sum of ai, and we say

(a1, a2, . . . , aℓ) is the signature of all the words in C′. ✷

Theorem 15. Let C be as in Construction B. Then the code

C′ from Construction B is an (nℓ, M′; 1)q-LPC∞ code, with

M′ = ∏
ℓ
i=1 |Cai |.

Example 16. Consider the binary (3, 4; 1)2-LPC∞ code C =
{000, 100, 110, 111}. By Section V this code is optimal. Using

Construction B we can create a family of LPC∞ codes with

parameters (6n, 4m; 1)2 for all m > 1. All the codes in this

family have rate 1
3 . ✷

Example 17. We can construct codes using a greedy computer

search in the following manner. Fix an alphabet, in this case,

Σ = Z2. Set a length n, and write a lexicographic list of all the

length-n vectors over Σ. Start with an empty set C0. At the ith
iteration, i = 1, 2, . . . , find the lexicographically-least vector

c ∈ Σn \ Ci−1 such that Ci−1 ∪ {c, c} is still an (n; 1)2-LPC∞

code, where c denotes the bit-wise complement of c.

Using such a procedure, for length n = 24 a computer search

resulted in an LPC∞-code C with parameters (24, 50220; 1)2.

This code has rate ≈ 0.650667. The code C has 25122 code-

words of even weight, and 25098 codewords of odd weight.

Using Construction B we can create a family of LPC∞-codes

with parameters (48m, 630511956m; 1)2 for all m > 1. All the

codes in the family have rate ≈ 0.608999 (which are the highest

rate binary codes presented in this work). ✷

V. BOUNDS ON CODE PARAMETERS

We now present a number of upper bounds on code size.

This first theorem shows a connection between Aq(n; r)
and Kq(n; r). While this connection is well-known in other

settings, the usual techniques of proving it do not work here

since the size of balls depends on their center. Nevertheless,

the proof is elementary.

Theorem 18. For all n and r,

Aq(n; r) 6 Kq(n; r).

This simple argument implies the following general bound.

Theorem 19. Let Σ = Zq be the alphabet, q > 2. Then for all

n > r > 1,

Aq(n; r) 6 Kq(n; r) 6

(

r + q

q − 1

)⌈n/(r+1)⌉

.

For r = 1 we may obtain improved upper-bounds (which

are tight for n = 3).

Theorem 20. Let Σ = Zq be the alphabet, q > 2, and r = 1.

Then for all 3|n,

Aq(n; r) 6 Kq(n; r) 6

[

q + 2

(

q

2

)

+ 2

(

q

3

)]n/3

.
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Here, for q = 2 we have (q
3) = 0.

In particular, for the binary case the last theorem provides

an asymptotic upper bound of 2/3 on the rate of (n; 1)-LPC∞

codes.

Thus far, we focused in this section and the previous

on codes with a constant error-correction capability. This is

motivated by the next corollary that shows that all other cases

have asymptotic rate 0.

Corollary 21. Let Σ = Zq be the alphabet, q > 2 a constant.

Let {Ci}i>1 be a sequence of codes, Ci being an (ni, Mi; ri)q-

LPC∞ code, and ni+1 > ni for all i ∈ N. If ri = ω(1), i.e.,

lim supi→∞ ri = ∞, then the asymptotic rate of the family is

lim sup
i→∞

logq Mi

ni
= 0.

A. Specific code parameters

As we have already seen, the size of the error balls depends

on the transmitted word and thus they are not all of the same

size. The irregularity of the error balls restricts us from using

classical ball-packing to obtain upper bounds on code size.

For r = 1 and the binary case, we use the techniques of [10]

(which employ a modified version of the ball-packing bound

for the deletion channel) to obtain upper bounds on A2(n; 1).
Table I summarizes our upper bounds results together with

the lower bound implied by the best codes we could find by

computer search. At times our results are tight.

TABLE I
UPPER AND LOWER BOUNDS ON A2(n; 1)

n Upper Bound Lower Bound

3 4 4
4 8 8
5 12 12
6 16 16
7 30 28
8 46 42
9 64 64
10 116 104
11 178 157
12 256 246
13 450 388
14 696 594
15 1024 930
16 1750 1454

VI. CONCLUSION

In this work we initiate the study of ℓ∞-limited permutation

channels LPC∞(r) for worst case errors and general alphabets

Σ. We present code constructions and upper bounds on code

size. The majority of our results are for the case of r = 1.

Despite significant efforts, our upper and lower bounds on

code size are not tight and should be viewed as initial steps in

a full understanding of LPC∞(r). For the case of binary codes

with r = 1 we conjecture that the optimal asymptotic rate is

2/3. This agrees with our upper bounds and our simulations

up to block length n = 24. The optimal rate of codes for

LPC∞(r) it left open and subject to future research.
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