
Encoding Semiconstrained Systems

Ohad Elishco

Electrical and Computer Engineering

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

ohadeli@bgu.ac.il

Tom Meyerovitch

Department of Mathematics

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

mtom@math.bgu.ac.il

Moshe Schwartz

Electrical and Computer Engineering

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

schwartz@ee.bgu.ac.il

Abstract—Semiconstrained systems were recently suggested
as a generalization of constrained systems, commonly used in
communication and data-storage applications that require certain
offending subsequences be avoided. In an attempt to apply
techniques from constrained systems, we study sequences of
constrained systems that are contained in, or contain, a given
semiconstrained system, while approaching its capacity. In the
case of contained systems we describe to such sequences resulting
in constant-to-constant bit-rate block encoders and sliding-block
encoders. Surprisingly, in the case of containing systems we show
that a “generic” semiconstrained system is never contained in a
proper fully-constrained system.

I. INTRODUCTION

Many communication and data-storage systems employ con-

strained coding. In such a scheme, information is encoded in

sequences that avoid the occurrence of certain subsequences.

Perhaps the most common example is that of (d, k)-RLL

which comprises of binary sequences that avoid subsequences

of k + 1 1’s, or two 1’s that are separated by less than d 0’s.

For various other examples the reader is referred to [5] and

the many references therein.

The reason for avoiding such subsequences is mainly due

to the fact that their appearance contributes to noise in the

system. However, by altogether forbidding their occurrence,

the possible rate at which information may be transmitted is

severely reduced. By relaxing the constraints and allowing

some appearances of the offending subsequences, the rate

penalty may be reduced. So rather than imposing combina-

torial constraints on all substrings of the output, we impose

statistical constraints on substrings that are sampled from

the output at a uniform random offset. Such an approach

was studied, for example, in the case of channels with cost

constraints [6], [8].

A general approach was suggested in [2], [4], in which

a semiconstrained system (SCS) was defined by a list of

offending subsequences, and an upper bound (called a semi-

constraint) on the frequency of each subsequence appearing.

Note that fully-constrained coding is a special case of semi-

constrained coding.

A careful choice of semiconstraints also allows the study of

systems that, up to now, were studied in an ad-hoc manner

only. As examples we mention DC-free RLL coding [10],

constant-weight ICI coding for flash memories [7], [12], and

coding to mitigate the appearance of ghost pulses in optical

communication [13], [14].

One of the most important questions, given a SCS, is how to

encode any unconstrained input sequence into a sequence that

satisfies all the given semiconstraints. The various encoding

schemes suggested in [7], [10], [12]–[14] are ad-hoc and

do not apply to general SCS. The encoding scheme for

channels with cost constraints given in [8] (which overlap

somewhat with SCS) is indeed general, however it is not

capacity achieving. Later, within the scope of channels with

cost constraints, and motivated by partial-response channels,

[9], [16] briefly report on capacity-achieving schemes.

Under the assumption that the input stream consists of

i.i.d. uniformly-random bits, a general capacity-achieving en-

coding scheme for SCS was described in [2], [4]. The scheme

involved a maxentropic Markov chain over a modified De-

Bruijn graph. Input symbols were converted via an arithmetic

decoder to a biased stream of symbols which were used to

generate a path in the graph, which in turn generated symbols

to be transmitted. A reverse operation was employed at the

receiving side. Additionally to the assumption on the distri-

bution of the input, to enforce a constant-to-constant bit rate,

the encoder has a probability of failure (albeit, asymptotically

vanishing). Thus, not all input streams may be converted to

semiconstrained sequences.

Compared with SCS, for “conventional” fully-constrained

systems there is a general method for constructing encoders

working arbitrarily close to capacity: The celebrated state-

splitting algorithm. However, as we explain in the following

sections, this method fails even on very simple SCS, due to

the fact that in most cases they do not form regular languages.

In this work we consider the problem of encoding an

arbitrary input string into a sequence that satisfies all the given

semiconstraints. We do not make statistical or combinatorial

assumptions on the input, only that it is sufficiently long.

Specifically, we show the following: For every given SCS that

satisfies certain mild assumptions and every ǫ > 0 we present

a fully-constrained system that is “eventually-contained” in

the given SCS, with capacity decrease of at most ǫ. This

allows us to construct either block encoders or sliding-block

encoders, trading encoder anticipation for number of states. In

the other direction, we show that no proper constrained system

with forbidden words can contain a given SCS (under certain

mild assumptions). We also observe that any encoding scheme

for a SCS that works for arbitrary input and has both finite

memory and finite anticipation must produce sequences that

satisfy some fully constrained system.

The paper is organized as follows. In Section II we present

the definition and notation used throughout the paper. In

Section III we study sequences of constrained systems that

2016 IEEE International Symposium on Information Theory

978-1-5090-1805-5/16/$31.00 ©2016 IEEE 395



are contained in a given SCS and approach its capacity from

below. In Section IV we do the reverse, and study constrained

systems containing a given SCS. We present conclusions and

other results in Section V. Due to page limitation proofs are

sketched or omitted. For a more detailed version with full

proofs, the reader is referred to [3].

II. PRELIMINARIES

A. Semiconstrained Systems

Let Σ be a finite alphabet and let Σ∗ denote the set of all

the finite sequences over Σ. The elements of Σ∗ are called

words (or strings). The length of a word ω ∈ Σ∗ is denoted

by |ω|. Given two words, ω, ω′ ∈ Σ∗, their concatenation

is denoted by ωω′. Repeated concatenation is denoted using

a superscript, i.e., for any natural m ∈ N, ωm denotes

ωm = ωω . . . ω, where m copies of ω are concatenated. By

convention, ω0 = ε, where ε the unique empty word of length

0. By extension, if S ⊆ Σ∗ is a set of words, then Sm denotes

the set

Sm = {ω1ω2 . . . ωm : ∀i, ωi ∈ S} ,

with S0 = {ε}, S∗ =
⋃

i>0 Si, and S+ =
⋃

i>1 Si.

The set of k-length subwords of ω is defined by

subk(ω) =
{

β ∈ Σk : ω = αβγ for some α, γ ∈ Σ∗
}

.

For ω ∈ Σ∗ and k 6 |ω|, frk
ω ∈ P(Σk) is defined as the

uniform measure on subk(ω) (taken in the multiset sense),

where P(Σk) denotes the set of all probability measures on

Σk. We can naturally identify

P(Σk) =







η ∈ [0, 1]Σ
k

: ∑
φ∈Σk

η(φ) = 1







.

It follows that for all β ∈ Σk,

frk
ω(β) =

1

|ω| − k + 1
|{(α, γ) : α, γ ∈ Σ∗, αβγ = ω}|

Definition 1. Let F ⊆ Σ∗ be a finite set of words, and let

P ∈ [0, 1]F be a function from F to the real interval [0, 1].
A semiconstrained system (SCS) is the pair (F , P). The set of

admissible words for (F , P) is defined by,

B(F , P) =
{

ω ∈ Σ∗ : ∀φ ∈ F , fr
|φ|
ω (φ) 6 P(φ)

}

.

For convenience we also define the set of admissible words

of length exactly n as

Bn(F , P) = B(F , P)∩ Σn.

An important figure of merit associate with any set of words

S ⊆ Σ∗ is its capacity.

Definition 2. Let Σ by a finite alphabet and S ⊆ Σ∗. The

capacity of S, denoted cap(S), is defined as

cap(S) = lim sup
n→∞

1

n
log2 |S ∩ Σn| .

Thus, in the case of a SCS (F , P), the capacity cap(B(F , P))
intuitively measures the exponential growth rate of the number

of words that satisfy the constraints F and P as a function of

the word length.

A relaxation of semiconstrained systems was also suggested

in [2], [4].

Definition 3. Let F ⊆ Σ∗ be a finite set of words, and let

P ∈ [0, 1]F . The set of weakly-admissible words for (F , P) is

defined by

B(F , P) =
{

ω ∈ Σ∗ : ∀φ ∈ F , fr
|φ|
ω (φ) 6 P(φ) + ξ(|ω|)

}

,

where ξ : N → R
+ is a function satisfying both ξ(n) = o(1)

and ξ(n) = Ω(1/n). Also Bn(F , P) = B(F , P) ∩ Σn.

We note that B(F , P) was called a weak semiconstrained

system (WSCS) in [2], [4], though we shall prefer to use the

term weakly-admissible words for (F , P). It was also shown

there that it suffices to consider only sets F ∈ Σk, i.e., all the

offending patterns are of the same length k. We shall follow

suit, and assume from now on, without loss of generality, that

F ⊆ Σk.

A SCS (F , P) can naturally be identified with a subset of

P(Σk),

Γ(F , P) =
{

η ∈ P(Σk) : ∀φ ∈ Σk, η(φ) 6 P(φ)
}

.

If F and P are understood from the context we shall sim-

ply write Γ. The admissible words for the SCS (F , P) are

therefore

B(F , P) =
{

ω ∈ Σ∗ : frk
ω ∈ Γ(F , P)

}

.

A particular set of probability measures of interest to

us is the set of shift-invariant probability measures. We

say η ∈ P(Σk) is shift-invariant if for all φ ∈ Σk−1,

∑a∈Σ η(aφ) = ∑a∈Σ η(φa). We denote the set of shift-

invariant probability measures by Psi(Σ
k), which is a closed

subset of P(Σk). These are precisely the probability measures

that arise as marginals of shift-invariant measures on ΣN

or ΣZ . For a discussion see [1]. In particular, we have the

following lemma.

Lemma 4. Fix a finite alphabet Σ, and k > 2. If Γ ⊆ P(Σk) \
Psi(Σ

k) is closed, and B(Γ) = {ω ∈ Σ∗ : frk
ω ∈ Γ}, then

cap(B(Γ)) = −∞, i.e., B(Γ) is a finite set.

Lemma 4 motivates us to study probability measures that are

shift invariant. For a set Γ ⊂ Psi(Σ
k) we denote by int(Γ) the

interior of Γ, and by cl(Γ) the closure of Γ, both relatively to

Psi(Σ
k). We say Γ ⊂ P(Σk) is fat if cl(int(Γ∩Psi(Σ

k))) =
cl(Γ ∩ Psi(Σ

k)).
We recall the following result [2], [4]:

Theorem 5. Let F ⊆ Σk and P ∈ [0, 1]F . If Γ(F , P) is fat,

cap(B(F , P)) = cap(B(F , P)) = 1 − inf
η∈Γ(F ,P)

H(η|η′),

where H(·|·) is the relative entropy function, and η′(φa) =
∑a′∈Σ η(φa′)/ |Σ|, for all φ ∈ Σk−1 and a ∈ Σ. Additionally,

cap(B(F , P)) and cap(B(F , P)) are continuous and convex

in P, and the limits in their definitions exist.

2016 IEEE International Symposium on Information Theory

396



B. Fully-Constrained Systems

As noted in the introduction, “conventional” constrained

systems are a special case of semiconstrained systems. They

can be viewed as SCS of the form (F , P) where P(φ) = 0 for

all φ ∈ F . We will refer to those as fully-constrained systems.

Let G = (V, E) be a finite directed graph, where we

allow parallel edges. A labeling function L : E → Σq

assigns a length-q label over the alphabet to each edge. By

simple extension, the label of a directed (non-empty) path

in the graph γ = e1 → e2 → · · · → en is defined

as L(γ) = L(e1)L(e2) . . .L(en). Finally, we define the

language presented by the graph G, denoted L(G), to be the

labels of all finite directed paths in G.

Constrained systems have been widely studied [5], [11]. In

particular, it is well known that B(F , 0) = L(G) for some

finite directed labeled graph G in the manner described above.

An immediate consequence is the fact that B(F , 0) is a regular

language in the Chomsky hierarchy of formal languages [15].

We do note, however, that not all regular languages (which

correspond to languages of sofic subshifts) are constrained

systems (which are defined by a finite number of forbidden

words, and correspond to subshifts of finite type).

A wide variety of tools exist for manipulating constrained

systems, including the state-splitting algorithm (see [11]). In

essence, under mild assumptions, given a constrained system

B(F , 0) = L(G), and two positive integers p and q that

satisfy p/q < cap(B(F , 0)), we can find another constrained

system B(F ′, 0) = L(G′) with the following properties:

• L(G′) ⊆ L(G).
• cap(B(F ′, 0)) = p/q, also called the rate of the encoder.

• G′ is a p : q encoder for L(G) with finite anticipation

a ∈ N ∪ {0}, i.e., the out-degree of each vertex is 2p,

the edges labels in G′ are from Σq, and paths of length

a + 1 that start from the same vertex and generate the

same word agree on the first edge.

Unfortunately, even for very simple semiconstraints,

B(F , P) is not a regular language in general. As an example,

for Σ = {0, 1}, F = {1}, and P(1) = p, it is easily seen

that for any rational 0 < p < 1, the semiconstrained system

B(F , P) is a non-regular context-free language, whereas for

any irrational p the system is not even context free [15, §4.9,

Exercise 25]. Thus, the wonderful machinery of the state-

splitting algorithm cannot be applied directly for general SCS.

Another important property of languages associated to fully-

constrained systems is that these languages are factorial. This

means that a subsword of an admissible word is also an

admissible word. Factoriality implies for instance that the

sequence 1
n log |B(F , 0)| is subadditive, so the lim sup in the

definition of the capacity is actually a limit by Fekete’s lemma.

The factoriality property is not shared by SCS in general.

III. APPROACHING CAPACITY FROM BELOW

In this section we study the problem of finding a sequence

of fully-constrained systems that are contained in a given

semiconstrained (or weakly semiconstrained) system, with

the additional requirement that the capacity of the former

approaches that of latter in the limit. We present two such

sequences which induce (perhaps after state splitting) two

possible encoders for the SCS or WSCS.

It will be easier for us to describe fully-constrained sys-

tems that are only eventually contained in the desired SCS.

Formally, given two infinite subsets, S1, S2 ∈ Σ∗, we say

S1 is eventually contained in S2, denoted S1 ⊆e S2, if

|S1 \ S2| < ∞. A fully-constrained system that is eventually

contained in a given SCS may easily be transformed into

another fully-constrained system that is contained (in the usual

sense) in the given SCS by removing the words that are

inadmissible in the SCS.

A. Block Encoders for SCS

The first sequence of fully-constrained systems we construct

are each presented by a graph with a single state. Such graphs

are called block encoders.

Let (F , P) be a SCS with a fat Γ(F , P). The condition

on Γ(F , P) guarantees that it can be slightly shrunk while

remaining not empty. More formally, for any ǫ ∈ [0, 1)F we

define the function P − ǫ by (P − ǫ)(φ) = P(φ)− ǫ(φ) for

every φ ∈ F . If Γ(F , P) is fat then there exists ǫ ∈ [0, 1)F

such that Γ(F , P − ǫ) 6= ∅ and Γ(F , P − ǫ) is fat. It is also

obvious that Γ(F , P − ǫ) ⊆ Γ(F , P). We say such an ǫ is

(F , P)-admissible. If ǫ ∈ (0, 1)F , i.e., ǫ(φ) > 0 for all φ ∈
F , we denote it as ǫ > 0. Otherwise, we write ǫ > 0.

Construction A. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F .

For every m ∈ N we construct Rm(F , P) ⊆ Σ∗ by defining

Rm(F , P) = Bm(F , P)∗. ✷

By definition, Rm(F , P) from Construction A is a regular

language. It may be presented as the language of the following

graph G: the graph contains a single vertex, all the edges are

self loops and are labeled by the words of Bm(F , P), i.e., the

length-m words in B(F , P).

Theorem 6. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Then for any (F , P)-admissible ǫ > 0, there

exists Mǫ ∈ N such that for all m > Mǫ

Rm(F , P − ǫ) ⊆ B(F , P).

Proof sketch: We upper bound the frequency of offending

sequences, and connect m with ǫ. This is also used later when

constructing encoders.

The following theorem shows that the sequence of systems

Rm(F , P − ǫ) has a capacity that approaches cap(B(F , P −
ǫ)) as m grows.

Theorem 7. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Then for every (F , P)-admissible ǫ > 0 the

following limit exists and

lim
m→∞

cap(Rm(F , P − ǫ)) = cap(B(F , P − ǫ)).

Proof sketch: We find cap(Rm(F , P − ǫ)) explicitly,

and use the fat Γ(F , P) to show that the limit exists and is

cap(B(F , P− ǫ)).

2016 IEEE International Symposium on Information Theory

397



If ǫ1, ǫ2 ∈ (0, 1)F , we say ǫ1 6 ǫ2 if ǫ1(φ) 6 ǫ2(φ)
for all φ ∈ F . We note that if ǫ2 is (F , P)-admissible and

ǫ1 6 ǫ2, then ǫ1 is also (F , P)-admissible. Additionally, if

ǫ1, ǫ2, . . . is a sequence of (F , P)-admissible functions, we

say limi→∞ ǫi = 0 if limi→∞ ǫi(φ) = 0 for all φ ∈ F .

Corollary 8. For any SCS (F , P) with a fat Γ(F , P) there exist

block encoders with rate arbitrarily close to cap(B(F , P)).

While the block encoders we constructed are quite simple,

and have rate p/q arbitrarily close to cap(B(F , P)), we do

however point a major drawback. The edges are labeled by

words from Σm. Thus, the encoder is not p : q but mp/q :
m. For a fair comparison with the next construction, if we

transform this to an encoder with labels from Σ (e.g., via

a standard tree argument), the anticipation becomes Ω(m),
which is undesirable.

B. Sliding-Block Encoders

Unlike Construction A, in which a sequence was a concate-

nation of independent blocks, the construction we now present

has a sliding-window restriction.

Construction B. Let (F , P) be a SCS, F ∈ Σk, P ∈ [0, 1]F .

For every m ∈ N we construct Nm(F , P) ⊆ Σ∗ by defining

Nm(F , P) = {ω ∈ Σ∗ : subm(ω) ⊆ B(F , P)}. ✷

We observe that Nm(F , P) from Construction B is a fully-

constrained system. Indeed, it is defined by a finite set of

forbidden words, Σk \ Bm(F , P).
For the purpose of building an encoder, we construct a

labeled graph G that presents Nm(F , P). The vertex set is

defined as V =
⋃m−1

i=0 Σi. The edges, with labels from Σ, are

given by

a0a1 . . . ai
ai+1
−−→ a0a1 . . . aiai+1,

for all 0 6 i 6 m − 2 and aj ∈ Σ for all j, as well as

a0a1 . . . am−2
am−1
−−→ a1 . . . am−2am−1,

for all a0a1 . . . am−2am−1 ∈ B(F , P) and aj ∈ Σ for all j.
It is easily observed that every path of length m − 1 labeled

by ω ∈ Σm−1 ends in the vertex labeled by ω. From then on,

by simple induction, assuming ω′ω is a label of a path with

ω ∈ Σm−1, then the path ends in the vertex ω and a letter

a ∈ Σ may be generated following that path if and only if

ωa ∈ B(F , P).

Theorem 9. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Then for any (F , P)-admissible ǫ > 0, and for

all m > k,

Nm(F , P − ǫ) ⊆e B(F , P).

Proof sketch: We upper bound the frequency of offending

words, showing it exceeds the semiconstraints at most as a

vanishing function of the length of the word. Apart from

proving the claim, it assists in the proof of the next theorem,

and in constructing encoders later on.

A stronger statement than that of Theorem 9 may be made

in the case WSCS, in which ǫ is removed.

Theorem 10. Let (F , P) be a SCS, F ⊆ Σk, P ∈
[0, 1]F , with a fat Γ(F , P), and tolerance function ξ(n) =
maxφ∈F (P(φ)(k − 1)(n − k + 1)). Then for all m > k,

Nm(F , P) ⊆e B(F , P).

Theorem 11. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Then

lim sup
m→∞

cap(Nm(F , P)) = cap(B(F , P)).

Proof sketch: We upper bound the capacity using

weakly-admissible words with Theorem 10 and Theorem 5.

For the lower bound we prove that for large enough m,

cap (Nm2 (F , P)) > cap(Rm(F , P − ǫ)), and carefully take

appropriate limits.

The graph G that presents Nm(F , P), as described above,

is (m, 0)-definite, i.e., all the paths that generate a given word

of length m + 1 symbols agree on the edge that generated the

last symbol. The graph is not necessarily an encoder (due to an

unequal out-degree), but by using the state-splitting algorithm

on G we may generate a p : q encoder. Compared with the

block encoder from the previous section however, this encoder

may have an exponential number of states (in m).

C. A Short Case Study

As a short case study we provide the following exam-

ple. Consider the SCS over Σ = {0, 1}, which is de-

fined by F = {11}, and P(11) = 0.205. This SCS was

called the (0, 1, 0.205)-RLL SCS in [4], and its capacity is

cap(B(F , P)) ≈ 0.98. We investigate the encoders presented

thus far, with an intention of building an encoder with rate 3
4 .

We first focus on the block encoder associated with

Rm(F , P). Choosing ǫ = 0.005, a quick use of the proof of

Theorem 6 shows that we need m > 16 in order to satisfy the

semiconstraints, i.e., we need to take blocks from B16(F , 0.2).
This is indeed tight, since for any 5 6 m′ 6 15 we have ω =
1⌊0.2m⌋0m′−1−⌊0.2m⌋1 ∈ Bm′(F , 0.2), and fr2

ωi(11) > 0.205
for large enough i. Similar arguments hold for m′ 6 4. Taking

m = 16 is adequate, since |B16(F , 0.2)| = 32274 giving a

rate of ≈ 0.93. As expected, a graph with this amount of edges

is unwieldy, requiring large look-up tables or enumerative-

coding techniques.

On the other hand, the encoder associated with Nm(F , P)
is much simpler. We can choose m = 5 without exceeding

the semiconstraints since the upper bound on the frequency

of 11 approaches 0.2 as the length of the word increases (see

proof of Theorem 9). We first construct the modified De-Bruijn

graph of order m− 1 = 4 where we allow only one appearance

of the pattern 11. Since we would like to build an encoder

with rate 3
4 , we take the graph to its 4th power, and keep the

appropriate irreducible subgraph. Combining vertices with the

same follower sets we obtain the graph presented in Fig. 1.

Using the state splitting algorithm we split the vertex 0000 and

obtain the following graph which can be used as an encoder

after removing some edges. Using the proof of Theorem 9, any

word of length longer than 41 satisfies the semiconstraints.

2016 IEEE International Symposium on Information Theory

398



v1

v2

v3v4

v5

Figure 1. The appropriate irreducible subgraph of the 4th power of the
modified De-Bruijn graph after combining states with the same follower sets.
To reduce notation length, 4-tuples of bits are written in hexadecimal notation.
The state combinations are given by v1 = {0, 2, 4, 8, A, C}, v2 = {1, 5, 9},
v3 = {3, B}, v4 = {6}, and v5 = {D}. The parallel edges’ labels are
L(v1 → v1) = {0, 2, 4, 8, A, C}, L(v1 → v2) = L(v2 → v2) =
L(v4 → v2) = {1, 5, 9}, L(v1 → v3) = L(v4 → v3) = {3, B},
L(v1 → v4) = L(v2 → v4) = L(v4 → v4) = L(v5 → v4) = {6},
L(v1 → v5) = {D}, L(v2 → v1) = L(v4 → v1) = {0, 2, 4, 8, A},
L(v2 → v3) = L(v3 → v3) = L(v5 → v3) = {3}, L(v3 → v1) =
L(v5 → v1) = {0, 2, 4}, L(v3 → v2) = L(v5 → v2) = {1, 5}.

IV. APPROACHING CAPACITY FROM ABOVE

In this section we consider the dual question to the one

asked in Section III. We now ask which fully-constrained

systems, presented as the language of a directed labeled

graph, contain a given semiconstrained system. Additionally,

we would like to know whether the capacity of a sequence

of those fully-constrained system can approach the capacity

of the semiconstrained system in the limit. As we shall soon

see, the answer is quite pessimistic. We first give an auxiliary

lemma, and then proceed to prove the main theorem.

Lemma 12. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Then for all α ∈ Σ∗ there exists β ∈ Σ∗ such

that αβ ∈ B(F , P), i.e., any finite prefix may be completed to a

word in the semiconstrained system. Additionally, there exists

m ∈ N such that B(F , P) contains a word of length m and a

word of length m + 1.

Proof sketch: Since Γ(F , P) is fat and the rationals are

dense, we find a rational shift-invariant probability measure in

Γ(F , P). It is used to build a modified De-Bruijn graph over

which Eulerian cycles correspond to strings with the desired

statistics. Of these, we find a cycle with the correct prefix.

Theorem 13. Let (F , P) be a SCS, F ⊆ Σk, P ∈ [0, 1]F , with

a fat Γ(F , P). Let (F ′, 0) be any fully constrained system such

that B(F , P) ⊆ B(F ′, 0). Then B(F ′, 0) = Σ∗.

Proof sketch: Using Lemma 12 every graph presenting

B(F ′, 0) is shown to even single-letter labels, and must

generate every prefix, i.e., Σ∗.

V. CONCLUSIONS AND DISCUSSION

Other results, not reported in this paper, contain a treatment

of a natural extension that enables the analysis of probability

measures with 0 semiconstraints, i.e., a mix semiconstraints

and full constraints. In that case, for example, fully-constrained

systems containing the SCS are no longer the entire space Σ∗.

Additionally, the definition of semiconstraints is generalized

even further, and we define SCS simply by a set of allowed

probability measures, Γ ⊆ P(Σk). More importantly, we

expand on a connection between SCS and certain spaces of

infinite sequences. In the classical fully-constrained case, a

constrained system corresponds directly to a subshift of finite

type – a special type of compact invariant subset of ΣZ .

Thus, coding theory of fully-constrained systems is closely

related to symbolic dynamics. However, in the SCS case, any

reasonable space of sequences associated to a fat SCS would

be dense in ΣZ . This leads to problems in dynamics on certain

non-compact spaces, and naturally brings in ergodic-theory

considerations.

Other open questions remain. In particular, we mention the

lack of bounds on encoder parameters, such as number of

states and anticipation. We leave this problem for future works.

REFERENCES

[1] J.-R. Chazottes, J.-M. Gambaudo, M. Hochman, and E. Ugalde, “On
the finite-dimensional marginals of shift-invariant measures,” Ergodic

Theory Dyn. Syst., vol. 32, no. 5, pp. 1485–1500, 2012.
[2] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained sys-

tems,” in Proceedings of the 2015 IEEE International Symposium on

Information Theory (ISIT2015), Hong Kong, China SAR, Jun. 2015, pp.
246–250.

[3] ——, “Encoding semiconstrained systems,” arXiv preprint

arXiv:1601.05594, 2016.
[4] ——, “Semiconstrained systems,” IEEE Trans. Inform. Theory, 2016,

accepted.
[5] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon

Foundation Publishers, 2004.
[6] R. Karabed, D. Neuhoff, and A. Khayrallah, “The capacity of costly

noiseless channels,” IBM Research Report, Tech. Rep. RJ 6040 (59639),
Jan. 1988.

[7] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-free
codes,” in Proceedings of the 2014 IEEE International Symposium on

Information Theory (ISIT2014), Honolulu, HI, USA, Jul. 2014, pp. 1431–
1435.

[8] A. S. Khayrallah and D. L. Neuhoff, “Coding for channels with cost
constraints,” IEEE Transactions on Information Theory, vol. 42, no. 3,
pp. 854–867, 1996.

[9] V. Y. Krachkovsky, R. Karabed, S. Yang, and B. A. Wilson, “On
modulation coding for channels with cost constraints,” in Proceedings

of the 2014 IEEE International Symposium on Information Theory

(ISIT2014), Honolulu, HI, USA, Jun. 2014, pp. 421–425.
[10] O. F. Kurmaev, “Constant-weight and constant-charge binary run-length

limited codes,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 4497–
4515, Jul. 2011.

[11] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and

Coding. Cambridge University Press, 1985.
[12] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate

inter-cell interference in read/write cycles for flash memories,” IEEE

J. Select. Areas Commun., vol. 32, no. 5, pp. 836–846, May 2014.
[13] A. Shafarenko, A. Skidin, and S. K. Turitsyn, “Weakly-constrained codes

for suppression of patterning effects in digital communications,” IEEE

Trans. Communications, vol. 58, no. 10, pp. 2845–2854, Oct. 2010.
[14] A. Shafarenko, K. S. Turitsyn, and S. K. Turitsyn, “Information-theory

analysis of skewed coding for suppression of pattern-dependent errors in
digital communications,” IEEE Trans. Communications, vol. 55, no. 2,
pp. 237–241, Feb. 2007.

[15] J. Shallit, A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008.

[16] J. B. Soriaga and P. H. Siegel, “On the design of finite-state shaping
encoders for partial-response channels,” in Proceedings of the 2006

Information Theory and Application Workshop (ITA2006), San Diego,

CA, USA, Feb. 2006.

2016 IEEE International Symposium on Information Theory

399


