
Limited-Magnitude Error-Correcting Gray Codes

for Rank Modulation

Yonatan Yehezkeally

Electrical and Computer Engineering

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

yonatany@post.bgu.ac.il

Moshe Schwartz

Electrical and Computer Engineering

Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel

schwartz@ee.bgu.ac.il

Abstract—We construct Gray codes over permutations for
the rank-modulation scheme, which are also capable of cor-
recting errors under the infinity-metric. These errors model

limited-magnitude or spike errors, for which only single-error-
detecting Gray codes are currently known. Surprisingly, the
error-correcting codes we construct achieve better asymptotic
rates than that of presently-known constructions not having the
Gray property. We also cast the problem of improving upon these
results into the context of finding a certain type of auxiliary codes
in the symmetric group of even orders.

I. INTRODUCTION

Rank modulation is a method for storing information in non-

volatile memories [5], which has been researched in recent

years. It calls for storing information in relative values stored

in a group of cells rather than the absolute values of single

cells. More precisely, it stores information in the permutation

suggested by sorting a group of cells by their relative values,

e.g., charge levels in flash memory cells. It allows for increased

robustness against certain noise mechanisms (e.g., charge leak-

age in flash memory cells), as well as alleviating some inher-

ent challenges in flash memories (e.g., programming/erasure-

asymmetry and programming-overshoot).

Several error models have been studied for rank modulation,

including the Kendall τ-metric [1], [6], [8], [16], and the

ℓ∞-metric [7], [10]–[12]. In this paper we focus on the ℓ∞-

metric, which models limited-magnitude or spike noise, i.e.,

we assume that the rank of any given cell–its position when

sorting the group of cells–could not have changed by more

than a given amount. [7], [11] have presented constructions

for error-correcting codes under this metric, as well as ex-

plored some non-constructive lower- and upper-bounds on

the parameters of existing codes. [12] has since employed

methods of relabeling to optimize the minimal distance of

known constructions.

Gray codes were first discussed over the space of binary

vectors, where each pair of consecutive vectors differed by

a single bit-flip [2]; the concept has since been generalized

to include codes over arbitrary alphabets, requiring only that

codewords could be ordered in a sequence, where each code-

word is derived from the previous by one of a predefined set

of functions (see the survey [9]). In particular, in the context

of rank modulation, the use of Gray codes has been shown

This work was supported in part by ISF grant no. 130/14.

to reduce write-time by eliminating the risk of programming-

overshoot and allow integration with other multilevel-cells

coding schemes [5].

Gray codes with error-correction capabilities have some-

times been referred to as spread-d circuit codes (see [3]

and references therein). Specifically, in the context of rank

modulation, such codes were so far only studied for the case

of single-error-detection, where they were dubbed snake-in-

the-box codes (or, more appropriately, coil-in-the-box codes,

when they are cyclic). [13] studied these codes under both the

Kendall τ-metric and the ℓ∞-metric, and more recent papers

[4], [15] have nearly categorized and constructed optimally

sized coil-in-the-box codes under the former metric.

In this work we focus on the ℓ∞-metric and present a

construction of error-correcting Gray codes capable of cor-

recting an arbitrary number of limited-magnitude errors. The

allowed transitions between codewords are the “push-to-the-

top” operations, used in all previous works [4], [5], [13], [15].

The resulting codes will be shown to be larger than known

constructions in the case of fixed minimal distance, as well as

achieve better asymptotic rates than known codes in the case

of d = Θ(n).
The paper is organized as follows. In Section II we present

notations and definitions. In Section III we present our con-

struction, and we discuss its performance in comparison with

known constructions and bounds in Section IV. We conclude

in Section V by reviewing our results and suggest problems

for future study. Due to the page limit, proofs are sketched or

omitted. The reader is referred to [14] for the full version.

II. PRELIMINARIES

For n ∈ N, we let Sn be the Symmetric Group, the set

of all permutations on [n] = {1, 2, . . . , n} (i.e., bijections

σ : [n]
1−1
−→
onto

[n]), with composition as group action, στ(k) =

(σ ◦ τ) (k) = σ(τ(k)). Throughout the paper we shall denote

the identity permutation Id ∈ Sn defined for all k ∈ [n]:
Id(k) = k.

We use the cycle notation for permutations, i.e., for distinct
{

aj

}k

j=1
⊆ [n] we let σ = (a1, a2, . . . , ak) be the permutation

such that σ(aj) = a(j mod k)+1 and σ(b) = b for all b ∈

[n] \
{

aj

}k

j=1
. Trivially, every permutation can be represented

as a composition of disjoint cycles. It is also well known

that every permutation can be represented as a composition

2016 IEEE International Symposium on Information Theory

978-1-5090-1805-5/16/$31.00 ©2016 IEEE 2829

of transpositions, cycles of length 2, and that the parity of

the number of transpositions in that representation is unique

(although the representation itself is not). We therefore have

even and odd permutations, and the set of even permutations

forms a subgroup An 6 Sn named the Alternating Group.

We will say that C ⊆ Sn is parity-preserving if every two

elements σ, τ ∈ C have the same parity.

We also use the vector notation for permutations, σ =
[σ(1), σ(2), . . . , σ(n)]. This allows us to more easily notate,

for 1 6 i < j 6 n, the “push-to-the-ith-index” transition

ti↑j : Sn → Sn by

ti↑j

([

a1, a2, . . . , ai−1, ai, ai+1, . . . , aj−1, aj, aj+1, . . . , an
])

=
[

a1, a2, . . . , ai−1, aj, ai, ai+1, . . . , aj−1, aj+1, . . . , an
]

.

We follow [4], [5], [13], [15] (among others) in dubbing

“push-to-the-1st-index” transitions as “push-to-the-top” tran-

sitions, and we denote t↑j = t1↑j. Finally, we define the “push-

to-the-bottom” transition on the jth index, t↓j : Sn → Sn,

t↓j

([

a1, a2, . . . , aj−1, aj, aj+1, . . . , an
])

=

=
[

a1, a2, . . . , aj−1, aj+1, . . . , an, aj

]

.

Given any set S, and a collection of transitions T ⊆
{ f | f : S → S}, we define a T-Gray Code over S to be a

sequence C = (cr)
M
r=1 ⊆ S such that for all 1 6 r < r′ 6 M

we have cr 6= cq′ and such that for all 1 6 r < M there exists

tr ∈ T satisfying cr+1 = tr(cr) (we say that a sequence C is

contained in S, by abuse of notation, if cr ∈ S for all r. That is,

we may refer to a Gray Code as an unordered set–or simply

a code–when desired for simplicity). We call M = |C| the

size of the code, and t1, t2, . . . , tM−1 the transition sequence

generating C. If there exists t ∈ T such that c1 = t(cM)
we say that C is cyclic, and include tM = t in its generating

transition sequence. If C = S, we say that C is complete.

In this paper, we fix S = Sn. We say that C =
(c1, c2, . . . , cM) ⊆ Sn is a Gi↑(n, M) if it is a cyclic Gray code

with transition set T =
{

ti↑j | i < j 6 n
}

. When i = 1 we

refer to C as a “push-to-the-top” code and denote it G↑(n, M),
and we likewise denote “push-to-the-bottom” codes G↓(n, M).

It is worthwhile to note that when S is a group, and

T consists of the group action of some subset on S, and

C is a (complete- and/or cyclic-) Gray code generated by

t1, t2, . . . , tM−1 (, tM), then for all σ ∈ S we observe that

(σ, t1(σ), t2(t1(σ)), . . .) is also a (complete- and/or cyclic-

respectively) Gray code. In other words, the code is shift

invariant. In these cases we might refer to the transition

sequence generating the code as the code itself, when desirable

for simplicity. It is also of interest to observe that ti↑j(σ) =
σ ◦ (j, j− 1, . . . , i), i.e., “push-to-the-ith-index” transitions are

group actions.

When S is equipped with a metric d : S × S → R+,

and C ⊆ S has the property that for all σ, τ ∈ C either

σ = τ or d(σ, τ) > d, for some constant d > 0, then C
(when considered as an unordered set) is commonly referred

to as an error-correcting code with minimal distance d. If

d(·, ·) models an error mechanism, such that a single error

corresponds to distance 1, and 2p + q < d, it is well known

that C can then correct p errors, and detect q additional errors.

Error-correcting Gray codes have sometimes been referred

to as spread-d circuit codes (see [3] and references therein),

where they were traditionally defined by requiring that for all

cr, cr′ ∈ C, (r − r′ mod |C|) > d implies d(cr, cr′) > d.

In that way, e.g., spread-1 circuit codes are traditional Gray

codes. This eased requirement was made necessary since,

working with the Hamming distance dH in the n-cube, one

cannot have codewords at distance less than d in the code

sequence attain a distance of at least d. We shall depart from it

here to deal with Gray codes which are classic error-correcting

codes, but the codes presented in this paper are nevertheless

also, in particular, spread-d circuit-codes.

We shall focus on the ℓ∞-metric defined on Sn by

d∞(σ, τ) = max
j∈[n]

|σ(j)− τ(j)| .

That is, it is the metric induced on Sn by the embedding into

Z
n (and, indeed, R

n) implied by the vector notation, and

the ℓ∞-metric in these spaces. [11] studied error-correcting

codes in Sn with d∞, which it dubbed limited-magnitude

Rank-Modulation codes, and denoted a code C with minimal

distance d as an (n, |C| , d)-LMRM code. In our case, if a

Gi↑(n, M) is also an (n, M, d)-LMRM code, we shall denote

it a Gi↑(n, M, d) (likewise for G↑ and G↓).

Finally, we organize our notation of codes in Table I.

TABLE I
CODE NOTATIONS FOR C ⊆ Sn .

Notation Definition

Gi↑(n, M)
C = (cr)

M
r=1 ⊆ Sn such that for all r:

c(r mod M)+1 = ti↑jr(cr).

G↑(n, M) C is a G1↑(n, M).

G↓(n, M)
C = (cr)

M
r=1 ⊆ Sn such that for all r:

c(r mod M)+1 = t↓jr(cr).

(n, M, d)-LMRM
C ⊆ Sn, |C| = M and for all c1 6= c2 ∈ C:
d∞(c1, c2) > d.

Gi↑(n, M, d) C is a Gi↑(n, M) and an (n, M, d)-LMRM.

G↑(n, M, d) C is a G1↑(n, M, d).

Gaux
↑ (k, M)

C is a G↑(k, M), and for all q ∈ [k − 1]:
σ ∈ C =⇒ (q, k)σ 6∈ C.
(See Section III-A.)

III. CODE CONSTRUCTION

In this section we present the main construction of our

paper. In order to do so, we first describe a construction for

an auxiliary code which will be a component of the main

construction.

A. Auxiliary construction

We define auxiliary codes in Sk in the following way: we say

that C is Gaux
↑ (k, M) if it is G↑(k, M) and for all q ∈ [k − 1]

it holds that

σ ∈ C =⇒ (q, k)σ 6∈ C.

2016 IEEE International Symposium on Information Theory

2830

We study the existence of such codes for use in our construc-

tion. Firstly, note that the only existing Gaux
↑ (2, M) codes are

the singletons {Id} , {(1, 2)}. However, for k > 3 there do

exist Gaux
↑ (k, M) codes with M > 3, as one such example is

{

Id, t↑3 Id, t↑3
2 Id
}

. We also note the following:

Lemma 1 If C ⊆ Sk is Gaux
↑ (k, M), then M 6

|Sk |
2 .

This motivates us to examine another family of codes,

namely, parity-preserving codes, due to the following:

Lemma 2 If C ⊆ Sk is parity-preserving then |C| 6 |Sk|
2 .

Lemma 3 If C ⊆ Sk is a parity-preserving G↑(k, M), then C
is Gaux

↑ (k, M).

Parity-preserving Gaux
↑ (2m + 1, M) codes are known to

exist, nearly achieving the aforementioned bound:

Lemma 4 [4, Thm. 18] [15] For k > 2, there exist parity-

preserving G↑(2k + 1, M2k+1) codes with

M2m+1 = |A2m+1| − (2m − 1) =
(2m + 1)!

2
− (2m − 1).

To complete the picture for k = 1, we recall the Gaux
↑ (3, 3)

previously presented, generated by 3 t↑3 transitions, and note

its size 3 >
3!
2 − 1.

Although not declared, it is tacitly shown in the references

that such codes can be assumed to have t↑2m+1 as the first

transition in their generating transition sequence.

In comparison, as noted in [13], a parity-preserving

G↑(2m, M) must satisfy M 6
|S2m|
2m , as it must never employ

a t↑2m transition. We therefore examine more general Gaux
↑

codes. We begin by noting the following lemma:

Lemma 5 [5, Thm. 4,7] For all n > 1 there exist G↑(n, n!)
codes, that is, complete and cyclic “push-to-the-top” Gray

codes over the symmetric group Sn.

Relying on these codes, we observe:

Theorem 6 For all m > 2 there exists a Gaux
↑ (2m,

|S2m|
2m−1),

starting at Id and with a generating sequence starting with

t↑2m.

Proof sketch: Take a G↑(2m − 2, (2m − 2)!) C′, pro-

vided by Lemma 5. We follow the concept of [5, Thm. 7]

in extending C′ to S2m. Note that σ0 := t↑2m Id =
[2m, 1, . . . , 2m − 1]. If we take t↑i1, t↑i2, . . . , t↑i(2m−2)!

to be

the transition sequence generating C′, then the transition

sequence t↓2m+1−i1, t↓2m+1−i2, . . . , t↓2m+1−i(2k−2)!
of “push-

to-the-bottom” operations, applied iteratively to σ0, generates

C′′ ⊆ S2m, a G↓(2m, (2m − 2)!), all of whose elements’

vector notations begin with [2m, 1].
We note that t↓2m+1−j = t↑2m

2m−1t↑j, so expanding each

“push-to-the-bottom” transition of our code in this fashion we

get C ⊆ S2m, a G↑(2m, (2m− 2)!2m), where every block of

2m elements is comprised of cyclic shifts of some σ ∈ C′′.

We remark that, while Theorem 6 does not produce codes

much larger than the aforementioned bound, they do at least

allow us to permute the last element, and thus combine Lemma

4 and Theorem 6 into the following lemma:

Corollary 7 For all k > 3 there exist a Gaux
↑ (k, M̃k) starting

with Id and a t↑k transition, where

M̃k =











3 k = 3;
k!
2 − (k − 2) 3 < k ≡ 1 (mod 2);

k!
(k−1)

k ≡ 0 (mod 2).

B. Construction

We now present a construction of G↑(n,M, d) codes, for

d 6 n, which we base on Lemma 7 and Lemma 5.

It will simplify the presentation to assume n = kd for some

positive k, since in that case every congruence class modulo

d of [n] has size k, but the construction is applicable to any

n > d with natural amendments. We discuss these changes,

focusing on special cases, after presenting the construction.

We construct a G↑(n,M, d) code by an iterative process,

starting at the permutation

σ0(j) := d (j mod k) +

⌈

j

k

⌉

.

Note that for all 0 6 u < d and ku + 1 6 i < j 6 k(u + 1)
it holds that σ0(i) ≡ σ0(j) (mod d).

We obtain a transition sequence t↑r1
, t↑r2

, . . . , t↑rk!
which

generates the G↑(k, k!) provided by Lemma 5. We construct a

Gk(d−1)+1↑(n, k!) code which we denote Cd−1 by iteratively

applying to σ0 the transition sequence

tk(d−1)+1↑k(d−1)+r1
, tk(d−1)+1↑k(d−1)+r2

, . . .

. . . , tk(d−1)+1↑k(d−1)+rk!
.

Note that for every distinct σ, τ ∈ Cd−1, there exists j,
m(d − 1) < j 6 kd = n, such that σ(j) 6= τ(j). Since by

construction σ(j) ≡ τ(j) ≡ 0 (mod d), we observe

d∞(σ, τ) > |σ(j)− τ(j)| > d,

implying that Cd−1 is also a Gk(d−1)+1↑(n, k!, d).

Theorem 8 Let 0 < m 6 d − 1, and suppose that we have

Cm, a Gkm+1↑(n, M′, d) starting at σ0. Additionally, assume

the existence of an auxiliary code Gaux
↑ (k + 1, M̃k+1). Then

we can construct a Gk(m−1)+1↑(n, M̃k+1 · M′, d) starting at

σ0, which we denote Cm−1.

Proof sketch: Let t↑k+1, t↑i2, . . . , t↑iM
be the transition

sequence generating the Gaux
↑ (k + 1, M̃k+1) code provided by

Lemma 7. Note that t↑iM
t↑iM−1

· · · t↑i3t↑i2 = t↑k+1
−1.

We construct the code Cm−1 as follows: replace each

tkm+1↑j transition of Cm with tk(m−1)+1↑j, followed by

tk(m−1)+1↑k(m−1)+i2
, tk(m−1)+1↑k(m−1)+i3

, and so on un-

til tk(m−1)+1↑k(m−1)+iM
. Note that apart from the first

transition, every transition acts on an index j′ satisfying

k(m − 1) + 1 < j′ 6 km. Thus,

tkm+1↑j =

(

M

∏
r=2

tk(m−1)+1↑k(m−1)+ir

)

tk(m−1)+1↑j

2016 IEEE International Symposium on Information Theory

2831

(where the product is expanded right-to-left), therefore Cm−1

expands each “push-to-the-km + 1st-index” transition of Cm

into M “push-to-the-k(m− 1) + 1st-index” transitions.

To conclude this section, note that using Theorem 8 itera-

tively we obtain a code C0, which is a G↑(n, M̃k+1
d−1 · k!, d).

We now also note that if n 6≡ 0 (mod d) then n mod
d congruence classes modulo d of [n] are of size

⌈

n
d

⌉

, and

the rest are of size
⌊

n
d

⌋

. Defining σ0 by a vector notation

consisting of blocks comprised of congruence classes, we can

still apply Theorem 6 iteratively if we choose an appropriate

Gaux
↑ for each step, to achieve C0, a G↑ (n,M, d), where

M = M̃⌈n/d⌉+1
n mod d · M̃⌊n/d⌋+1

d−(n mod d)−1 ·
⌊n

d

⌋

!.

A special case is n < 2d, where all but (n mod d) congruence

classes are singletons. We will amend our construction by

starting it from

Cm−1 =
{

σ0, t2m−1↑2m+1σ0, t2m−1↑2m+1
2
σ0

}

,

where m = n mod d, effectively only cycling the single

member of the congruence class ≡ m + 1 (mod d) into

previous classes, fixing σ0(j) for j > 2m + 1.

C. Code size

We note the asymmetry in our construction between con-

gruence classes of odd and even sizes; indeed, a class of

size k > 2 (for all classes other than ≡ 0 (mod d), whose

contribution is based on the G↑(k, k!) code provided by

Lemma 5) contributes to the code size a factor of

M̃k+1 =











3 k = 2
(k+1)!

2 − (k − 1) 2 < k ≡ 0 (mod 2)
(k+1)!

k k ≡ 1 (mod 2)

It is therefore important to note that when
⌊

n
d

⌋

≡ 0
(mod 2), [n] has (n mod d) congruence classes modulo d of

odd size
⌈

n
d

⌉

, and d − (n mod d) classes of even size
⌊

n
d

⌋

.

We therefore construct a code C0 of size

|C0| =

(

(⌈n/d⌉+ 1)!

⌈n/d⌉

)n mod d

·
⌊n

d

⌋

!

·

(

(⌊n/d⌋+ 1)!

2
−
(⌊n

d

⌋

− 1
)

)d−(n mod d)−1

.

It is possible to achieve a slight gain by reordering σ0 so that

the last block consists of a congruence class of odd size, rather

than even, where the added complexity of index calculation is

inconsequential.

Likewise, when
⌊

n
d

⌋

≡ 1 (mod 2), [n] has (n mod d)
congruence classes modulo d of even size

⌈

n
d

⌉

, and d −
(n mod d) classes of odd size

⌊

n
d

⌋

, and we construct a code

C0 of size

|C0| =

(

(⌈n/d⌉+ 1)!

2
−
(⌈n

d

⌉

− 1
)

)n mod d

·
⌊n

d

⌋

! ·

(

(⌊n/d⌋+ 1)!

⌊n/d⌋

)d−(n mod d)−1

.

We also note the special case
⌊

n
d

⌋

= 1. In this case we only

permute (n mod d) = (n− d) congruence classes of [n], (and

each such class has 2 =
⌊

n
d

⌋

+ 1 elements). As mentioned,

we therefore construct a code of size |C0| = 3n mod d.

IV. COMPARISON TO KNOWN RESULTS

G↑(n, M, 2) codes were studied in [13, Thm. 24], where it

was shown that such codes can be constructed with sizes

M =
⌈n

2

⌉

!
(⌊n

2

⌋

+
(⌊n

2

⌋

− 1
)

!
)

.

The construction of Theorem 8 improves this size by a factor

of ≈
⌊

n
2

⌋

for n ≡ 1, 2 (mod 4), and ≈ 1
2

⌊

n
2

⌋2
for n ≡ 0, 3

(mod 4).
Examining error-correcting codes with the ℓ∞ metric which

are not necessarily Gray codes, we observe that the best known

general code construction to date, [11, Cst. 1, Thm. 2] and [7,

Sec. III-A], presented (n, M, d)-LMRM codes with sizes

M =
⌈n

d

⌉

!
n mod d ⌊n

d

⌋

!
d−(n mod d)

,

which our construction improves upon, more substantially the

more even-sized congruence classes modulo d [n] has.

We now go on to examine the case of d = Θ(n) as n grows

to infinity. For an (n, M, d)-LMRM code (and in particular a

G↑(n, M, d)), we follow the convention (e.g., [11]) of defining

the Rate of the code R = 1
n log2 M, and its normalized

distance δ = d
n .

The following was proven in [11]:

Lemma 9 [11, Thm. 23] For any (n, M, d)-LMRM code

R 6 2 − 2δ

⌊

1

δ

⌋

−

(

δ

⌊

1

δ

⌋

− δ

)

log2(δ)

−

(

1 + δ − δ

⌊

1

δ

⌋)

log2

(

1 + δ − δ

⌊

1

δ

⌋)

+ o(1).

Lemma 10 [11, Thm. 27] For any 0 < δ 6 1 the construction

of [11, Cst. 1, Thm. 2] and [7, Sec. III-A] yields codes with

R =

(

1 − δ

⌊

1

δ

⌋)

log2

(⌈

1

δ

⌉

!

)

+

(

δ + δ

⌊

1

δ

⌋

− 1

)

log2

(⌊

1

δ

⌋

!

)

.

Lemma 11 [11, Thm. 25] For any 0 < δ 6 1 there

exist (n, M, d)-LMRM codes satisfying d
n > δ with rate

R > fGV(δ) + o(1), where

fGV =

{

log2
1
δ
+ 2δ (log2 e − 1)− 1 0 < δ 6 1

2

−2δ log2
1
δ
+ 2(1− δ) log2 e 1

2 6 δ 6 1

We therefore aim to show that our construction can bridge

some of the gap between the given bounds and known con-

structions.

2016 IEEE International Symposium on Information Theory

2832

We find for C0, by substituting (n mod d) = n − d
⌊

n
d

⌋

and d = nδ, that for ⌊1/δ⌋ ≡ 0 (mod 2)

R =

(

1 − δ

⌊

1

δ

⌋)

log2

[⌈

1

δ

⌉

!

(

1 +
1

⌈1/δ⌉

)]

+

+

(

δ + δ

⌊

1

δ

⌋

− 1

)

log2

((⌊

1

δ

⌋

+ 1

)

!

)

−

(

δ + δ

⌊

1

δ

⌋

− 1

)

,

except when ⌊1/δ⌋ = 2, where we have

R = 3 (1 − 2δ) + (3δ − 1) log2(3)− o(1).

Similarly, for ⌊1/δ⌋ ≡ 1 (mod 2)

R =

(

1 − δ

⌊

1

δ

⌋)

log2

[(⌈

1

δ

⌉

+ 1

)

!

(

1 −
2(⌈1/δ⌉ − 1)

(⌈1/δ⌉+ 1)!

)]

+

(

δ + δ

⌊

1

δ

⌋

− 1

)

log2

(⌊

1

δ

⌋

!

(

1 +
1

⌊1/δ⌋

))

+ δ

⌊

1

δ

⌋

− 1 − o(1),

but, again, for ⌊1/δ⌋ = 1 we must calculate separately

R = (1 − δ) log2(3).

In conclusion, these asymptotic rates and bounds are shown

in Figure 1. We note in particular that the rate of codes

produced by Theorem 8 is strictly higher than that of pre-

viously known constructions (as in Lemma 10). Furthermore,

it produces codes with rates higher than those guaranteed by

the Gilbert-Varshamov-like Lemma 11 for δ sufficiently close

to 1
10 , 1

8 , 1
6 , and all δ greater than ≈ 0.21, whereas known

constructions only bypassed these rates for δ greater than

≈ 0.349.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

(b)

(c)

(d)R

δ

Figure 1. (a) The Gilbert-Varshamov-like lower bound of Lemma 11. (b) The
rate of codes from Lemma 10 constructed in [11]. (c) The rate of codes C0

constructed by Theorem 8. (d) The upper bound of Lemma 9.

V. CONCLUSION

In this paper we presented the class of Gaux
↑ (n, M) codes,

largely leveraging codes designed for the rank-modulation

scheme under the Kendall τ-metric, in order to aid in the

construction of error-correcting codes for the ℓ∞-metric. By

doing so, we were able to construct codes that achieve better

asymptotic rates than previously-known constructions, while

also incorporating the property of being Gray codes.

Furthermore, much as in the case of codes designed for

the Kendall τ-metric, our auxiliary construction suffers from

asymmetry between the cases of even- and odd-sized con-

gruence classes. This creates an anomaly in the asymptotic

rate in certain regions of δ, where a code with a higher

normalized distance also has a higher rate. As recent works

in that context indicate, this asymmetry is not necessarily

inherent to the problem at hand, but rather stems from a

limitation in the methods thus far utilized to solve it. We posit

that Gaux
↑ (2m, M) codes with M approaching

(2m)!
2 do exist,

a conjecture that we hope may incite further research.

REFERENCES

[1] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. Inform. Theory, vol. 56, no. 7, pp.
3158–3165, Jul. 2010.

[2] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.
[3] S. Hood, D. Recoskie, J. Sawada, and D. Wong, “Snakes, coils, and

single-track circuit codes with spread k,” J. Comb. Optim., vol. 30, no. 1,
pp. 42–62, Jul. 2015.

[4] M. Horovitz and T. Etzion, “Constructions of snake-in-the-box codes
for rank modulation,” IEEE Trans. Inform. Theory, vol. 60, no. 11, pp.
7016–7025, Nov. 2014.

[5] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[6] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[7] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. Inform. Theory, vol. 56,
no. 6, pp. 2611–2617, Jun. 2010.

[8] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” IEEE Trans. Inform. Theory, vol. 59, no. 2, pp. 1018–1029,
Feb. 2013.

[9] C. D. Savage, “A survey of combinatorial Gray codes,” SIAM Rev.,
vol. 39, no. 4, pp. 605–629, Dec. 1997.

[10] M.-Z. Shieh and S.-C. Tsai, “Decoding frequency permutation arrays
under Chebyshev distance,” IEEE Trans. Inform. Theory, vol. 56, no. 11,
pp. 5730–5737, Nov. 2010.

[11] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[12] ——, “On the labeling problem of permutation group codes for the
infinity metric,” IEEE Trans. Inform. Theory, vol. 58, no. 10, pp. 6595–
6604, Oct. 2012.

[13] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” IEEE Trans. Inform. Theory, vol. 58, no. 8, pp. 5471–
5483, Aug. 2012.

[14] ——, “Limited-magnitude error-correcting Gray codes for rank modu-
lation,” arXiv preprint arXiv:1601.05218, 2016.

[15] Y. Zhang and G. Ge, “Snake-in-the-box codes for rank modulation under
Kendall’s τ-metric,” IEEE Trans. Inform. Theory, vol. 62, no. 1, pp.
151–158, Jan. 2016.

[16] H. Zhou, M. Schwartz, A. Jiang, and J. Bruck, “Systematic error-
correcting codes for rank modulation,” IEEE Trans. Inform. Theory,
vol. 61, no. 1, pp. 17–32, Jan. 2015.

2016 IEEE International Symposium on Information Theory

2833

