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Abstract—Ever-increasing amounts of data are created
and processed in internet-scale companies such as Google,
Facebook, and Amazon. The efficient storage of such copi-
ous amounts of data has thus become a fundamental and
acute problem in modern computing. No single machine can
possibly satisfy such immense storage demands. Therefore,
distributed storage systems (DSS), which rely on tens of
thousands of storage nodes, are the only viable solution.
Such systems are broadly used in all modern internet-scale
systems. However, the design of a DSS poses a number
of crucial challenges, markedly different from single-user
storage systems. Such systems must be able to reconstruct
the data efficiently, to overcome failure of servers, to correct
errors, etc. Lots of research was done in the last few years
to answer these challenges and the research is increasing in
parallel to the increasing amount of stored data.

The main goal of this paper is to consider codes which
have two of the most important features of distributed storage
systems, namely, locality and availability. Our codes are array
codes which are based on subspaces of a linear space over
a finite field. We present several constructions of such codes
which are q-analog to some of the known block codes. Some
of these codes possess independent intellectual merit. We
examine the locality and availability of the constructed codes.
In particular we distinguish between two types of locality and
availability, node vs. symbol, locality and availability. To our
knowledge this is the first time that such a distinction is given
in the literature.

I. INTRODUCTION

Designing efficient mechanisms to store, maintain, and

efficiently access large volumes of data is a highly relevant

problem. Indeed, ever-increasing amounts of information

are being generated and processed in the data centers of

Amazon, Facebook, Google, Dropbox, and many others.

The demand for ever-increasing amounts of cloud storage

is supplied through the use of Distributed Storage Systems

(DSS), where data is stored on a network of nodes (hard

drives and solid-state drives).

In the DSS paradigm, it is essential to store data re-

dundantly, in order to tolerate inevitable node failures [1],

[8], [20]. Currently, the resilience against node failures

is typically afforded by replication, where several copies

of each data object are stored on different storage nodes.

However, replication is highly inefficient in terms of stor-

age capacity. Recently, erasure-correcting codes have been
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used in DSS to reduce the large storage overhead of

replicated systems [3], [5], [12].

Apart from storage space, other metrics should be

considered when designing an actual DSS. However, in

contrast with storage space, these metrics are adversely

affected by the straightforward use of simple erasure-

correcting codes. One such metric is the repair bandwidth:

the amount of data that needs to be transferred when a

node has failed, and is thus replaced. This metric is highly

relevant as a prohibitively large fraction of the network

bandwidth in a DSS may be consumed by such repair

operations. Let us term all the information stored by a

DSS as the file. Traditional erasure-correcting codes, and

in particular maximum distance separable (MDS) codes,

usually require that all the file be downloaded in order

to regenerate a failed node. Recently, Dimakis et al. [4]

established a tradeoff between the repair bandwidth and the

storage capacity of a node, and introduced a new family of

erasure-correcting codes, called regenerating codes, which

attain this tradeoff. In particular, they proved that if a large

number of storage nodes can be contacted during the repair

of a failed node, and only a fraction of their stored data is

downloaded, then the repair bandwidth can be minimized.

Local repairability of a DSS is an additional property

which is highly sought. The corresponding performance

metric is termed the locality of the coding scheme: the

number of nodes that must participate in a repair process

when a particular node fails. Local repairability is of signif-

icant interest when a cost is associated with contacting each

node in the system. This is indeed the case in real world

scenarios, for example as the result of network constraints.

Codes which enable local repairs of failed system nodes

are called locally repairable codes (LRCs). These codes

were introduced by Gopalan et al. in [9]. LRCs which

also minimize the repair bandwidth, called codes with local

regeneration, were considered in [13], [14], [18].

Regenerating codes and LRCs are attractive primarily

for the storage of cold data: archival data that is rarely

accessed. On the other hand, they do not address the chal-

lenges posed by the storage of frequently accessed hot data.

For example, hot-data storage must enable efficient reads

of the same data segments by several users in parallel. This

property is referred to as availability. Codes which provide

both locality and availability were first proposed in [19].

Regenerating codes are described in terms of stored
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information in nodes (servers). In other words, regenerating

codes are usually array codes [22]. Reconstructing the

files and repairing failed nodes are the main tasks of

regenerating codes. LRCs and codes with availability are

usually described as block codes, and access and/or repair

is described in terms of symbols.
In this work we combine the two approaches and discuss

two types of locality (availability, respectively), node lo-

cality (availability) which resembles the first approach and

symbol locality (availability) which resembles the second

approach. To our knowledge, such a combined approach

was not considered in the literature before.
Our solution approach will be based on array codes,

constructed via subspaces of a finite vector space. A

subspace approach for DSS was considered for the first

time in [10] and later in [17]. Our approach is slightly

different from the approach in these two papers. We will

design array codes based on subspaces and analyze their

locality and availability properties.
The rest of this paper is organized as follows. Prelim-

inaries are given in Section II. Our subspace approach,

constructions of codes, and analysis of their locality and

availability, are presented in Section III-B. For lack of space

we omit all proofs. They will be provided soon in an arXiv

version of this work.

II. PRELIMINARIES

Let Fq denote the finite field of size q. For a natural num-

ber m ∈ N, we use the notation [m] � {1, 2, . . . , m}. We

use lower-case letters to denote scalars. Overlined letters

denote vectors, which by default are assumed to be column

vectors. Matrices are denoted by upper-case letters. Most

literature denotes codewords (which are usually vectors)

by overlined lower-case letters. However, since we also

have codewords which are arrays (matrices), these will be

denoted by bold lower-case letters. Thus, typically, we shall

have a generator matrix G, whose jth column is gj, and

whose (i, j)th entry is gi,j. An array code will usually be

denoted by C, whose typical codeword will be denoted

by c. We use 0 to denote the scalar zero, 0 for the all-

zero vector, and 0 for the all-zero matrix. Also, given a

(possibly empty) set of vectors, v1, . . . , vm ∈ F
n
q , their

span is denoted by 〈v1, . . . , vm〉.
Our main object of study is a linear array code, formally

defined as follows: A [b × n, M, d] array code over Fq,

denoted C, is a linear subspace of b × n matrices over Fq.

Matrices c ∈ C are referred to as codewords. The elements

of a codeword are denoted by ci,j, i ∈ [b], j ∈ [n], and are

referred to as symbols. Columns of codewords are denoted

by cj, j ∈ [n]. We denote by M � dim(C) the dimension

of the code as a linear space over Fq. The weight of an

array is defined as the number of non-zero columns, i.e.,

for c ∈ C,

wt(c) �
∣∣{cj : cj �= 0, j ∈ [n]

}∣∣ .

Finally, the minimum distance of the code, denoted d, is

the defined as the minimal weight of a non-zero codeword,

d � min
c∈C
c �=0

wt(c).

We make two observations to avoid confusion with other

notions of error-correcting codes. The first observation is

that by reading the symbols of codewords, column by

column, and within each column, from first to last entry,

we may flatten the b × n codewords to vectors of length

bn. This results in a code over Fq of length bn, dimension

M, but more often than not, a different minimum distance,

since the above definition considers non-zero columns and

not non-zero symbols. Assume G is an M × bn generator

matrix for the flattened code. By abuse of notation, we shall

also call G the generator matrix for the original code C.

Note that in G, columns (j − 1)b + 1, . . . , jb, correspond

to the symbols appearing in the jth codeword column in C.

We shall call these b columns in G by the jth thick column

of G, similarly to [13]. Thus, G is a matrix comprised

of n thick columns, corresponding to the n columns of

codewords in C.

The second observation is that we may use the well

known isomorphism F
b
q
∼= Fqb , and consider each column

of a codeword as a single element from Fqb . We get

an Fq-linear code over Fqb (sometimes called a vector-

linear code), of length n, minimum distance d, but with a

dimension (taken as usual over Fqb) not necessarily M.

In a typical distributed-storage setup, we would like to

store a file containing M sectors. We choose Fq such that it

is large enough to contain all possible sectors as symbols.

The file is encoded into an array c ∈ C from a [b×n, M, d]
array code. Each codeword column of c is stored in a

different node. The minimum distance d of the code ensures

that any failure of at most d − 1 nodes may be corrected.

Two important properties of codes for distributed storage

are locality and availability. An important feature of this

paper is the distinction between symbol locality and node

locality (respectively, availability).

Let C be a [b × n, M, d] array code. We say a codeword

column j ∈ [n] has node locality rn, if its content may

be obtained via linear combinations of the contents of

the recovery-set columns. More precisely, there exists a

recovery set S = {j1, . . . , jrn} ⊆ [n] \ {j} of rn other

codeword columns, and scalars a
(i)
�,m ∈ Fq, i, � ∈ [b],

m ∈ [rn], such that for all i ∈ [b],

ci,j =
b

∑
�=1

rn

∑
m=1

a
(i)
�,mc�,jm (1)

simultaneously for all codewords c ∈ C. If all codeword

columns have this property, we say the code has node

locality of rn.

Similarly, we say the code has symbol locality rs, if for

every coordinate, i ∈ [b] and j ∈ [n], there exists a recovery

set S = {j1, . . . , jrs} ⊆ [n] \ {j} of rs other codeword

columns, and scalars a�,m ∈ Fq, � ∈ [b], m ∈ [rs], such

that for every codeword c ∈ C,

ci,j =
rs

∑
m=1

b

∑
�=1

a�,mc�,jm . (2)

Thus, each code symbol may be recovered from the code

symbols in rs other codeword columns. It is obvious that

rs � rn.
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Once locality is defined, we can also define availability.

The node availability, denoted tn, (respectively, the symbol

availability, denoted ts) is the number of pairwise-disjoint

recovery sets (as in the definition of locality) that exist

for any codeword column (respectively, symbol). Note

that each recovery set should of size at most rn (respec-

tively, rs).

We also recall some useful facts regarding Gaussian

coefficients. Let V be a vector space of dimension n
over Fq. For any integer 0 � k � n, we denote by [Vk ]
the set of all k-dimensional subspaces of V. The Gaussian

coefficient is defined for n, k, and q as[
n

k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Whenever the size of the field, q, is clear from the context,

we shall remove the subscript q.

It is well known that the number of k-dimensional sub-

spaces of an n-dimensional space over Fq is given by [nk].
In a more general form, the number of k′-dimensional

subspaces of V which intersect a given k-dimensional

subspace of V in an i-dimensional subspace is given by

q(k′−i)(k−i)

[
n − k

k′ − i

][
k

i

]
. (3)

Additionally, the Gaussian coefficients satisfy the following

recursions, [
n

k

]
=

[
n − 1

k

]
+ qn−k

[
n − 1

k − 1

]

= qk

[
n − 1

k

]
+

[
n − 1

k − 1

]
. (4)

For more on Gaussian coefficients, the reader is referred to

[23, Chapter 24].

III. A SUBSPACE APPROACH TO LRCS

Let C be a [b× n, M, d] array code over Fq. Throughout

this section we further assume that b � M. We now

describe an approach to viewing such array codes which

will lead to the main results of this section.

Denote V � F
M
q the M-dimensional vector space

over Fq. Let G be a generator matrix for the (flattened)

array code C. For each j ∈ [n], we define Vj ∈
⋃b

k=0 [
V
k ],

to be the column space of the jth thick column of G, i.e.,

Vj �
〈

g(j−1)b+1,, g(j−1)b+2, . . . , gjb

〉
.

We say Vj is associated with the jth thick column of G,

or equivalently, associated with the jth column of the

codewords of C.

The following equivalence is fundamental to the con-

structions and analysis of this section.

Lemma 1. Let C be a [b × n, M, d] array code over Fq,

and let Vj, j ∈ [n], be the subspaces associated with the

codeword columns. Then S = {j1, . . . , jm} ⊆ [n] \ {j} is a

recovery set for codeword column j ∈ [n], if and only if

Vj ⊆ Vj1 + Vj2 + · · ·+ Vjm .

Similarly, S is a recovery set for symbol (i, j), i ∈ [b], if

g(j−1)b+i ∈ Vj1 + Vj2 + · · ·+ Vjm ,

where g(j−1)b+i is the ith column in the jth thick column of

a generating matrix G for C.

With this equivalence, we may obtain the node/symbol

locality/availability using subspace properties of the thick

columns of a generating matrix.

A. Generalized Simplex Codes via Subspaces

We start with a construction of array codes which may

be considered as a generalization and a q-analog of the

classical simplex code, the dual of the Hamming code (see

[15, p. 30]).

Construction A. Fix a finite field Fq, positive integers

b � M, and V = F
M
q . Construct a b× [Mb ] array code whose

set of columns are associated with the subspaces [Vb ], each

appearing exactly once.

We make a note here, which is also relevant for the

constructions to follow. Once we fix the set of subspaces

associated with the codeword columns, the code is con-

structed in the following way: for each j ∈ [n], and

associated subspace Vj, we arbitrarily choose a set of

b vectors from F
M
q that form a basis for Vj. These b

vectors are placed (in some arbitrary order) as the columns

comprising the jth thick column of a generator matrix G.

The resulting matrix G generates the constructed code1.

We are now ready for the first claim on the properties

of the codes from Construction A.

Theorem 2. The array code obtained from Construction A

is a [b × [Mb ], M, d] array code, with

d =

[
M

b

]
−

[
M − 1

b

]
= qM−b

[
M − 1

b − 1

]
.

Additionally, except for the all-zero array codeword, all

other codewords have the same constant weight d.

We observe that the codes of Construction A form a

generalization of simplex codes. When we choose b = 1
in Construction A, the simplex code is obtained, a fact that

was used in the proof of Theorem 2.

Lemma 3. The array code obtained from Construction A,

with parameters b < M, has node locality of rn = 2, and

symbol locality of

rs =

{
1 b > 1,

2 b = 1.

We note that we ignored the case of b = M in the

previous lemma, since then the array codewords have a

single column, and locality is not defined.

We now turn to consider availability. Symbol availability

is trivial.

1Permuting the thick columns in the construction results in equivalent
codes. If a canonical representation is required, we may choose the basis
of each thick column to be in reduced row echelon form.

2017 IEEE International Symposium on Information Theory (ISIT)

831



Corollary 4. The array code obtained from Construction A,

with parameters 1 � b < M, has symbol availability

ts =

{
[M−1

b−1 ]− 1 1 < b < M,
qM−1−1

2 b = 1.

Unlike locality, it appears that determining the node

availability is a difficult task. We consider only the simplest

non-trivial case of b = 2.

Lemma 5. The array code obtained from Construction A,

with parameters 2 = b < M, has node availability

tn =
1

2

([
M

2

]
− 1

)
,

when q is even, and

tn �
1

2

([
M

2

]
− 1 − q(q2 + q − 1)

[
M − 2

2

])
,

when q is odd.

B. Codes from Subspace Designs

In this subsection we focus on constructing codes by

using certain subspace designs. We first present a different

generalization of simplex codes by using spreads. The re-

sulting code is known, and we analyze it for completeness,

and for motivating another construction that uses subspace

designs.

Consider a finite field Fq and the vector space V � F
M
q .

A b-spread of V is a set {V1, V2, . . . , Vn} ⊆ [Mb ] such that

Vi ∩ Vj =
{

0
}

for all i, j ∈ [n], i �= j, and additionally,⋃
i∈[n] Vi = V = F

M
q . Thus, except for the zero vector, 0,

a spread is a partition of F
M
q into subspaces. It is known

that a b-spread exists if and only if b|M. Simple counting

shows that the number of subspaces in a spread is

n =
qM − 1

qb − 1
=

[M1 ]

[b1]
.

Let us start with a code obtained from a single spread.

This code was already described in [16], in the context of

self-repairing codes, and we bring it here for completeness.

Construction B. Fix a finite field Fq, positive integers b|M,

and V = F
M
q . Construct a b × [M1 ]/[

b
1] array code whose set

of columns are associated with the subspaces of a b-spread

of V, each appearing exactly once.

Theorem 6. The array code obtained from Construction B

is a [b× [M1 ]/[
b
1], M, qM−b] array code. Additionally, except

for the all-zero array codeword, all other codewords have the

same constant weight.

Lemma 7. The array code obtained from Construction B has

symbol locality rs = 2 and the bound on the node locality

2 � rn � min{b + 1, M/b}.

The code of Construction B is also a generalization of

the simplex code. Indeed, when we take b = 1 the resulting

generator matrix is that of a simplex code.

Corollary 8. When M = 2b, the code from Construction B

is an MDS array code with rn = rs = 2.

Up to this point we constructed codes by specifying

their generator matrix. We now turn to consider their dual

codes by reversing the roles of generator and parity-check

matrices.

The dual code of the code from Construction A has a

small distance d = 2, and is therefore not very interesting.

However, the code from Construction B presents a more

interesting situation.

Lemma 9. Let C be a code from Construction B. Then its

dual, C⊥, is a [b × [M1 ]/[
b
1], b[M1 ]/[

b
1] − M, 3] array code.

Additionally, C⊥ is a perfect array code.

We note that the code of Lemma 9 has already been

described as a perfect byte-correcting code in [6], [11].

At this point we stop to reflect back on Construction A

and Construction B. We contend that the two are in fact two

extremes of a more general construction using the q-analog

of Steiner systems.

Definition 10. Let Fq be a finite field. A q-analog of a

Steiner system (a q-Steiner system for short), denoted

Sq[t, k, n], is a set of subspaces, B ⊆ [
Fn

q

k
], such that every

subspace from [
F

n
q

t
] is contained in exactly one element of B.

In light of Definition 10, we note that the subspaces

associated with the columns of Construction A form a q-

Steiner system Sq[b, b, M]. Similarly, the subspaces associ-

ated with the columns of Construction B form a q-Steiner

system Sq[1, b, M]. Both are therefore extreme (and trivial)

cases of a more general construction we now describe.

Construction C. Fix a finite field Fq, and let B ⊆ [
F

M
q

b
] be a

q-Steiner system Sq[t, b, M]. Construct an array code whose

set of columns are associated with the subspace set B, each

appearing exactly once.

The main problem with the approach of Construction C

is the fact that we need a q-Steiner system. Such systems

are extremely hard to find [2], [21], with the only known

ones (different S2[2, 3, 13]), found by computer search [2]

(though we hope the recent flurry of activity will produce

new q-Steiner systems and make Construction C more

appealing).

An alternative approach uses a structure that is “almost”

a q-Steiner system, and is more readily available – a

subspace transversal design (see [7]).

Definition 11. Let Fq be a finite field. A subspace transver-

sal design of group size qm = qn−k, block dimension k, and

strength t, denoted by STDq(t, k, m) is a triple (V ,G,B),
where

1) V � [
F

n
q

1
] \ V

(n,k)
0 , called the points, where V

(n,k)
0 is

defined to be the set of all 1-dimensional subspaces of

F
n
q all of whose vectors start with k zeros, and where

|V| = [k1]q
m.

2) G is a partition of V into [k1] classes of size qm, called

the groups.

3) B ⊆ [
F

n
q

k
], called the blocks, is a collection of

subspaces that contain only points from V , with

|B| = qmt.
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4) Each block meets each group in exactly one point.

5) Each t-dimensional subspace of F
n
q , with points only

from V , which meets each group in at most one point,

is contained in exactly one block.

An STDq(t, k, m) = (V ,G,B) is called resolvable if the

set B may be partitioned into sets B1, . . . ,Bs, called parallel

classes, where each point is contained in exactly one block

of each parallel class Bi.

Unlike q-Steiner systems, subspace transversal designs

are known to exist in a wide range of parameters, as shown

in the following theorem [7].

Theorem 12. [7, Th. 7] For any 1 � t � k � m, and any

finite field Fq, there exists a resolvable STDq(t, k, m) =
(V ,G,B), where the block set B may be partitioned into

qm(t−1) parallel classes, each one of size qm, such that each

point is contained in exactly one block of each parallel class.

Construction D. Fix a finite field Fq, M � 2b, and let

(V ,G,B) be a STDq(t, b, M − b) with parallel classes

B1,B2, . . . ,Bs. Construct the following two array codes:

• An array code Cpar whose set of columns are associ-

ated with the subspaces in a single parallel class, Bi,

each appearing exactly once.

• An array code C whose set of columns are associated

with the subspaces in B, each appearing exactly once.

The code Cpar is in fact an auxiliary code we shall use

to prove the parameters of the code C, and is perhaps of

interest on its own.

Theorem 13. Let Cpar be the code from Construction D.

Then Cpar is a [b × qM−b, M, qM−b − qM−2b] array code,

with 2b − 1 codewords of full weight qM−b, and the other

non-zero codewords of weight qM−b − qM−2b. Moreover,

the symbol locality of Cpar is rs = 2, and its node locality

is

rn =

{
3 q = 2,

2 q > 2.

Corollary 14. Let Cpar be the code from Construction D.

Then its dual code, C⊥
par is a [b × qM−b, bqM−b − M, 3]

array code that is asymptotically perfect.

Example 15. Let b = 3, M = 6, q = 2. A generator

matrix G for the [2 × 8, 6, 7] MDS array code Cpar from

Construction D is given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

100 100 100 100 100 100 100 100
010 010 010 010 010 010 010 010
001 001 001 001 001 001 001 001
000 100 001 010 101 011 111 110
000 010 101 011 111 110 100 001
000 001 010 101 011 111 110 100

⎞
⎟⎟⎟⎟⎟⎟⎠

.

�

We now move on to examine the second code of Con-

struction D. To avoid degenerate cases, we consider only

t � 2.

Theorem 16. Let C be the code from Construction D, with

t � 2. Then C is a [b × q(M−b)t, M, d] array code

d = q(M−b)(t−1)(qM−b − qM−2b).

The symbol and node locality of the code satisfy rs = 1, and

rn � 2. Its symbol availability is ts = q(M−b)(t−1)− 1.

REFERENCES

[1] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker, “Total
recall: system support for automated availability management,”
Networked Sys. Design and Implem. (NSDI), pp. 337–350, 2004.

[2] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy, and A. Wasser-
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