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Abstract— It is now well known that the performance of a lin-
ear code C under iterative decoding on a binary erasure channel
(and other channels) is determined by the size of the smallest
stopping set in the Tanner graph for C. Several recent papers re-
fer to this parameter as the stopping distance s of C. This is some-
what of a misnomer since the size of the smallest stopping set in
the Tanner graph for C depends on the corresponding choice of
a parity-check matrix. It is easy to see that s � d, where d is the
minimum Hamming distance of C, and we show that it is always
possible to choose a parity-check matrix for C (with sufficiently
many dependent rows) such that s = d. We thus introduce a new
parameter, termed the stopping redundancy of C, defined as the
minimum number of rows in a parity-check matrix H for C such
that the corresponding stopping distance s(H) attains its largest
possible value, namely s(H) = d. We then derive general bounds
on the stopping redundancy of linear codes. We also examine
several simple ways of constructing codes from other codes, and
study the effect of these constructions on the stopping redundan-
cy. Specifically, for the family of binary Reed-Muller codes (of
all orders), we prove that their stopping redundancy is at most
a constant times their conventional redundancy. We show that the
stopping redundancies of the binary and ternary extended Golay
codes are at most 34 and 22, respectively. Finally, we provide up-
per and lower bounds on the stopping redundancy of MDS codes.

I. INTRODUCTION

The recent surge of of renewed interest in the binary erasure
channel (BEC) is due in large part to the fact that it is the prime
example of a channel over which the performance of iterative
decoding algorithms can be analyzed precisely. In particular, it
was shown in [3] that the performance of an LDPC code (and,
in fact, any linear code) under iterative decoding on the BEC
is completely determined by certain combinatorial structures
called stopping sets. A stopping set S in a code C is a subset
of the variable nodes in a Tanner graph for C such that
all the neighbors of S are connected to S at least twice. The
size s of the smallest stopping set was termed the stopping
distance of C in a number of recent papers [5], [7]. The
stopping distance plays an important role in understanding the
performance of a code under iterative decoding over the BEC,
akin to the role played by the minimum Hamming distance d
for maximum-likelihood decoding. Just as one would like to
maximize the minimum distance d if maximum-likelihood or
algebraic decoding is to be used, so one should try to maximize
the stopping distance s in the case of iterative decoding.

There is, however, an important difference between the min-
imal distance d and the stopping distance s. While the former
is a property of a code C, the latter depends on the specific
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graph for C or, equivalently, on the specific choice of
-check matrix H for C. In order to emphasize this, we
nceforth use s(H) to denote the stopping distance and

denote the minimum distance.
gebraic coding theory, a parity-check matrix H for a lin-
e C usually has n−dim(C) linearly independent rows.
er, in the context of iterative decoding, it has been alre-
erved in [8], [10] and other papers that adding linearly
ent rows to H can be advantageous. Certainly, this can
e the stopping distance s(H). Thus, throughout this pa-
arity-check matrix for C should be understood as any
H whose rows span the dual code C⊥. Then the re-
cy r(C) of C may be defined as the minimum number
in a parity-check matrix for C. Analogously, we define
ping redundancy ρ(C) of C as the minimum number of
a parity-check matrix H for C such that s(H) = d(C).

ork may be thought of as the first investigation of the
ff between the parameters ρ(C), r(C), and d(C).
e next section, we first show that the stopping redun-
(C) is well-defined. That is, given any linear code C,
ays possible to find a parity-check matrix H for C such
) = d(C). In fact, the parity-check matrix consisting

he nonzero codewords of the dual code C⊥ has this
y. Hence ρ(C) � 2r(C) − 1 for all binary linear codes.
n show that if d(C) � 3, then any parity-check matrix

satisfies s(H) = d(C), so ρ(C) = r(C) in this case.
ain result of Section II is an extension of this simple
tion to a general upper bound on the stopping redund-
linear codes (Theorem 4).

ction III, we study several simple ways of constructing
rom other codes, such as the direct-sum construction
de extension by adding an overall parity-check. We
ate the effect of these constructions on the stopping

ancy. Note that although we have limited our discussion
y codes, most of the results in Sections II and III extend
forwardly to linear codes over an arbitrary finite field.
ontinue in Section IV with an in-depth analysis of the
own (u, u + v) construction, and in particular its ap-
n in the recursive definition [6, p. 374] of binary Reed-
codes. By slightly modifying this construction, we es-
a strong upper bound on the stopping redundancy of
uller codes of arbitrary orders. Specifically, we prove
is a Reed-Muller code of length 2m and order r, then
d(C)r(C)/2. Thus for any constant d(C), we have

ease in redundancy by only a constant factor.



In Section V, we study the (24, 12, 8) extended binary Golay
code G24. We prove that ρ(G24) � 34 by providing specific
parity-check matrices for this code. We take G24 as a test case,
and compare the performance of three different decoders: a
maximum-likelihood decoder, an iterative decoder using the
conventional 12 × 24 double-circulant parity-check matrix of
[6, p.65], and an iterative decoder using the 34× 24 parity-
check matrix with maximum stopping distance. In each case,
exact analytic expressions for the probability of decoding
failure are derived using a computer program (see Figure 1).

We conclude in Section VI with a brief discussion and a list
of open problems. Some of our results on stopping redundancy
of linear codes that are not included here due to space limita-
tions are also briefly mentioned in Section VI.

II. GENERAL BOUNDS

We begin with rigorous definitions of the stopping distance and
the stopping redundancy. Let C be a binary linear code and let
H = [hi, j] be a parity-check matrix for C. The corresponding
Tanner graph T for C is a bipartite graph with each column
of H represented by a variable node and each row of H re-
presented by a check node in such a way that the j-th variable
node is connected to the i-th check node if and only if hi, j �= 0.
As already mentioned, a stopping set in T is a subset S of the
variable nodes such that all the check nodes that are neighbors
of a node in S are connected to at least two nodes in S . We
dispense with this graphical representation of stopping sets in
favor of an equivalent definition directly in terms of the under-
lying parity-check matrix H. Thus we say that a stopping set
is a set of columns of H with the property that the projection
of H onto these columns does not contain a row of weight one.
The resulting definition of the stopping distance – the smallest
size of a stopping set – bears a striking resemblance to the de-
finition of the minimum Hamming distance of a linear code.

Recall that the minimum distance of a linear code C can be
defined as the largest integer d(C) such that every d(C) − 1 or
less columns of H are linearly independent. For binary codes,
this is equivalent to saying that d(C) is the largest integer such
that every set of d(C) − 1 or less columns of H contains at
least one row of odd weight.

Definition 1. Let C be a linear code and let H be a parity-check

matrix for C. Then the stopping distance of H is defined as the

the largest integer s(H) such that every set of s(H)− 1 or less

columns of H contains at least one row of weight one.

The following corollary is an immediate consequence of jux-
taposing the definitions of s(H) and d(C) above.

Corollary 1. Let C be a linear code and let H be an arbitrary

parity-check matrix for C. Then s(H) � d(C).

Indeed, it is well known [3], [4], [5] that the support of every
codeword is a stopping set, which is another way to see that
s(H) � d(C) regardless of the choice of H. Thus given a lin-
ear code C, the largest stopping distance one could hope for
is d(C), no matter how cleverly the Tanner graph for C is con-
structed. The point is that this bound can be always achieved
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ing dependent rows to H (see Theorem 2). This makes
ion of the stopping distance, as a property of a code C,
hat meaningless: without restricting the number of rows
ity-check matrix for C, we cannot distinguish between
ping distance and the conventional minimum distance.
servation, in turn, leads to the following definition.

ion 2. Let C be a linear code with minimum Hamming

e d(C). Then the stopping redundancy of C is defined

he smallest integer ρ(C) such that there exists a parity-

atrix H for C with ρ(C) rows and s(H) = d(C).

following theorem shows that the stopping redundancy
ed, well-defined.

m 2. Let C be a linear code, and let H∗ denote the pari-

k matrix for C consisting of all the nonzero codewords

ual code C⊥. Then s(H∗) = d(C).

f: Let [C⊥] denote the n × |C⊥| matrix consisting of
codewords of C⊥. It is well known (cf. [6, p.139]) that
an orthogonal array of strength d(C)− 1. This means
set of t � d(C)− 1 columns of [C⊥] contains all the

of length t among its rows, each vector appearing the
umber of times. In particular, any set of d(C)−1 or less
s of [C⊥] contains all the vectors of weight one.

rem 2 also provides a trivial upper bound on the stop-
dundancy. In particular, it follows from Theorem 2 that

2r(C) − 1 for any binary linear code C. This bound
ith equality in the degenerate case of the single-parity-
ode. The next theorem determines ρ(C) exactly for all
linear codes with minimum distance d(C)� 3.

m 3. Let C be a binary linear code with minimum dist-

C)� 3. Then any parity-check matrix H for C satisfies

d(C), and therefore ρ(C) = r(C).

f: If H contains an all-zero column, then it is obvious
) = d(C) = 1. Otherwise s(H) � 2, since then every

olumn of H must contain a row of weight one. Now,
= 3, then every two columns of H are distinct. This
that these two columns must contain either the 01 row

10 row (or both). Hence s(H) = 3.

following theorem, which is our main result in this sec-
ows that Theorem 3 is, in fact, a special case of a gen-
er bound on the stopping redundancy of linear codes.

m 4. Let C be a binary linear code with minimum dist-

C)� 3. Then

) �

(
r(C)

1

)
+

(
r(C)

2

)
+ · · ·+

(
r(C)

d(C) − 2

)
(1)

f: We first prove a slightly weaker result, which is con-
ly simpler. Namely, let us show that

) �

(
r(C)

1

)
+

(
r(C)

2

)
+ · · ·+

(
r(C)

d(C) − 1

)
(2)

e an arbitrary parity-check matrix for C with r(C) lin-
dependent rows. Construct another parity-check matrix
se rows are all the linear combinations of t rows of H,



for all t = 1, 2, . . . , d(C)− 1. Clearly, the number of rows of
H′ is given by the right-hand side of (2). Now let Ht, respect-
ively H′

t , denote a matrix consisting of some t columns of H,
respectively the corresponding t columns of H ′. Observe that
for all t � d(C)− 1, the t columns of Ht are linearly indepen-
dent. This implies that the row-rank of Ht is t, and therefore
some t rows of Ht must form a basis for Ft

2. Hence the 2t − 1
nonzero linear combinations of these t rows of Ht generate all
the nonzero vectors in Ft

2, including all the vectors of weight
one. But for t � d(C)− 1, the 2t − 1 nonzero linear combin-
ations of any t rows of Ht are among the rows of H′

t by con-
struction. This proves that s(H′) = d(C) and establishes (2).

To transition from (2) to (1), observe that we do not need to
have all the nonzero vectors of Ft

2 among the rows of H′
t; it

would suffice to have at least one vector of weight one. Given
a set S ⊆ Ft

2 and a positive integer m, let mS denote the set
of all vectors obtained as a linear combination of at most m
vectors from S . Define μ(t) as the smallest integer with the
property that for any basis B of Ft

2, the set μ(t)B contains at
least one vector of weight one. Then in the construction of H ′,
it would suffice to take all the linear combinations of at most
μ(d(C)− 1) rows of H. Clearly μ(t) � t− 1 for all t (in fact,
μ(t) = t − 1 for all t), and the theorem follows.

The bound of (1), while much better than ρ(C) � 2r(C) − 1,
is still too general to be tight for most codes. Nevertheless, we
can conclude from Theorem 4 that when d(C) is a constant,
the stopping redundancy is only polynomial in the (conven-
tional) redundancy and, hence, in the length of the code.

An obvious question is whether we can do substantially bet-
ter than Theorem 4. At least in the case of Reed-Muller codes,
we shall see in Section IV that the answer is yes.

III. CONSTRUCTIONS OF CODES FROM OTHER CODES

In this section, we examine several simple ways of construct-
ing codes from other codes. While for most such constructions,
it is trivial to determine the redundancy of the resulting code,
we find it considerably more difficult to determine the resulting
stopping redundancy, and resort to bounding it.

We start with two simple examples. The first example (Theo-
rem 5) is the well-known direct-sum construction or, equiva-
lently, the (u, v) construction. The second one (Theorem 6) is
the (u, u) construction, or concatenation of a code with itself.
Both theorems have simple constructive proofs which we omit.

Theorem 5. Let C1, C2 be (n1, k1, d1), (n2, k2, d2) binary lin-

ear codes, respectively. Then C3 = {(u, v) : u∈C1, v∈C2}
is an (n1 + n2, k1 + k2, min{d1, d2}) code with

ρ(C3) � ρ(C1) + ρ(C2) (3)

Theorem 6. Let C1 be an (n, k, d) binary linear code. Then the

code C2 = {(u, u) : u∈C1} is a (2n, k, 2d) code with

ρ(C2) � ρ(C1) + n (4)

Here is an interesting observation about Theorems 5 and 6.
It follows from (3) and (4) that if the constituent codes are
optimal, in the sense that their stopping redundancy is equal to
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dundancy, then the resulting code is also optimal. This
s that the bounds in (3) and (4) are tight.
ntrast, the innocuous construction of extending a linear
by adding an overall parity-check [6, p.27] appears to

h more difficult to handle. The next theorem deals only
e special case where d(C) = 3.
m 7. Let C be an (n, k, 3) binary linear code. Then the

d code C′ is an (n + 1, k, 4) code with

ρ(C′) � 2ρ(C) = 2r(C′) − 2 (5)

f: Let H be an arbitrary r(C)× n parity-check matrix
We construct a parity-check matrix for C′ as follows

H′ =

(
H 0
H 1

)
(6)

H is the bitwise complement of H, while 0 and 1 are
zero and the all-one column vectors, respectively. Label
mns in H′ by 1, 2, . . . , n + 1, and let I be a subset of

. . , n + 1} with |I| � 3. In fact, it would suffice to con-
e case where I ⊂ {1, 2, . . . , n} and |I| = 3; all other
asily follow from the fact that s(H) = 3 by Theorem 3.
(I) and H(I) denote the projections of H and H, re-

ely, on the three positions in I . If H(I) contains a row
ht one, we are done. If H(I) contains a row of weight
are also done — then the corresponding row in H(I)

ight one. But otherwise, the only rows in H(I) are
d 111, which means that the three columns in H(I)
ntical, a contradiction since d(C) = 3.

construction in (5) and (6) is not optimal. For example,
the (8, 4, 4) extended Hamming code, it produces a pa-
ck matrix for C′ with 6 rows. However, C′ is also the
uller code R(1, 3) for which we give in the next sec-
arity-check matrix H with s(H) = 4 and only 5 rows.

IV. REED-MULLER CODES

focus on the well-known (u, u + v) construction, in
lar in connection with the recursive definition of binary
uller codes. Our goal is to derive a constructive upper

on the stopping redundancy of R(r, m) — the binary
uller code of order r and length 2m.
egin by recalling several well-known facts. First, for
0, 1, . . . , m, the dimension of R(r, m) is k = ∑r

i=0 (m
i )

minimum distance is d = 2m−r. Let G(r, m) be a gene-
atrix for R(r, m). Then, using the (u, u + v) construc-
(r, m) can be defined recursively, as follows:

G(r, m)
def
=

(
G(r, m − 1) G(r, m − 1)

0 G(r−1, m−1)

)
(7)

e recursion in (7) being bootstrapped by G(m, m) = I2m

0, m) = (11 · · · 1) for all m. By convention, the code
m) is the set {0} for all m. Then

R(r, m)⊥ = R(m − r − 1, m) (8)

m and all r = −1, 0, 1, . . . , m. It follows from (8) that
) is a parity-check matrix for R(m−r−1, m), a code
inimum distance 2r+1. Hence every 2r+1 − 1 columns
m) are linearly independent.



Our objective in what follows is to construct an alternative
parity-check matrix H(r, m) for R(m−r−1, m) = R(r, m)⊥

such that s(H(r, m)) = 2r+1. Then the number of rows in
H(r, m) gives an upper bound on the stopping redundancy of
R(m−r−1, m). Here is the recursive construction that we use.

Recursive Construction A: For all positive integers m and
for all r = 1, 2, . . . , m − 2, we define:

H(r, m) =

⎛
⎜⎝Htop

Hbot

⎞
⎟⎠ def

=

⎛
⎜⎝

H(r, m − 1) H(r, m − 1)

0 H(r−1, m−1)

H(r−1, m−1) 0

⎞
⎟⎠ (9)

with the recursion in (9) being bootstrapped as follows: for all
m = 0, 1, . . ., the matrices H(0, m), H(m−1, m), H(m, m)
are defined by

H(0, m)
def
= G(0, m) = (11 · · · 1) (10)

H(m−1, m)
def
= G(m−1, m) (11)

H(m, m)
def
= G(m, m) = I2m (12)

We omit the proofs of the next two propositions and lemma.

Proposition 8. H(r, m) is a generator matrix for R(r, m) and,

hence, a parity-check matrix for R(m − r − 1, m).

Proposition 9. The stopping distance of H(r, m) is 2r+1 for all

positive integers m and for all r = 0, 1, . . . , m−1,

The remaining task is to compute the number of rows in the
matrix H(r, m). We denote this number as g(r, m).

Lemma 10. For all r = 0, 1, . . . , m − 1, the number of rows in

H(r, m) is given by

g(r, m) =
r

∑
i=0

(
m−r−1 + i

i

)
2i

We are now in a position to summarize the results of this sec-
tion in the following theorem.

Theorem 11. For all m = 1, 2, . . . and for all r = 0, 1, . . . , m,

the stopping redundancy of R(r, m) is upper bounded by

ρ
(
R(r, m)

)
�

m−r−1

∑
i=0

(
r + i

i

)
2i (13)

Proof: Follows immediately from (8), Proposition 8, Propo-
sition 9, and Lemma 10.

To see how far Theorem 11 is from the (conventional) redun-
dancy of Reed-Muller codes, let us make a simple calculation.
For this, it will be more convenient to work with the dual code
C = R(r, m)⊥. Recall that the redundancy of C is ∑r

i=0 (m
i ).

Comparing this to the bound on ρ(C) in (13), we find that

ρ(C) �

r

∑
i=0

(
m − r − 1 + i

i

)
2i

� 2r
r

∑
i=0

(
m
i

)
= 2rr(C)

Therefore, for any fixed order r, the stopping redundancy of
R(r, m)⊥ is at most the redundancy of R(r, m)⊥ times a con-
stant. Alternatively, if we take C = R(r, m), then Theorem 11
implies that ρ(C) � d(C)r(C)/2. Thus for any fixed d(C),
the increase in redundancy is by a constant factor.
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V. GOLAY CODES

4, 12, 8) binary Golay code G24 is arguably the most re-
le binary block code. It is often used as a benchmark
ies of code structure and decoding algorithms.
e are several “canonical” parity-check matrices for G24,
[2], [9] and other papers. Our starting point is the syst-
double-circulant matrix H24 given in MacWilliams and
[6,p.65] and shown in Table I. It can be readily verified

24
)

= 4, which means that H24 achieves only half of
ximum possible stopping distance. Curiously, the stop-
stance of the two “trellis-oriented” parity-check matri-
G24, given in [9, p. 2060] and [1, p.1441], is also 4.
puting the bound of Theorem 4 for the special case of
duces the rather weak result: ρ

(
G24

)
� 2509. Having

veral methods to construct a parity-check matrix for
th stopping distance 8, our best result was achieved
greedy (lexicographic) computer search. Specifically,

e 4095 nonzero vectors of G24 listed lexicographically,
atively construct the parity-check matrix H ′

24, at each
n adjoining to H′

24 the first vector on the list with the
score. Each vector receives i points to its score for

t uncovered i-set it covers, where i ∈ {1, 2, . . . , 7}. The
g matrix is given in Table I.

TABLE I

ARITY-CHECK MATRICES FOR THE (24, 12, 8) GOLAY CODE G24

H24 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

H′
24 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0
0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1
1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0
1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0
1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0
1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

aluate the effect of increasing the stopping distance, it
be interesting to compare the performance of iterative
rs for G24 based on H24 or H′

24, respectively. As a base-
such a comparison, it would be also useful to have

formance of a maximum-likelihood decoder for G24. In
llows, we give analytic expressions for the performance
hree decoders on the binary erasure channel (BEC).
rly, a maximum-likelihood decoder fails to decode (re-
a given erasure pattern if and only if this pattern con-
e support of (at least one) nonzero codeword of G24.



TABLE II

NUMBER OF UNDECODABLE ERASURE PATTERNS
BY WEIGHT w IN THREE DECODERS FOR G24

w Total Patterns ΨML(w) ΨH24(w) ΨH′
24
(w)

0 1 0 0 0
1 24 0 0 0
2 276 0 0 0
3 2024 0 0 0
4 10626 0 110 0
5 42504 0 2277 0
6 134596 0 19723 0
7 346104 0 100397 0
8 735471 759 343035 3598
9 1307504 12144 844459 82138

10 1961256 91080 1568875 585157
11 2496144 425040 2274130 1717082
12 2704156 1313116 2637506 2556402
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Fig. 1. The decoding failure probability of three decoders for G24: a max-
imum-likelihood decoder and iterative decoders based upon H24 and H′

24

Let ΨML(w) denote the number of such erasure patterns as
a function of their weight w. Then

Pr ML{decoding failure} =
24

∑
w=0

ΨML(w) pw(1−p)24−w

where p is the erasure probability of the BEC. In contrast, an
iterative decoder (based on H24 or H′

24) fails if and only if the
erasure pattern contains a stopping set. Thus

Pr H24{decoding failure} =
24

∑
w=0

ΨH24(w) pw(1−p)24−w

Pr H′
24
{decoding failure} =

24

∑
w=0

ΨH′
24
(w) pw(1−p)24−w

where ΨH24(w) and ΨH′
24
(w) denote the number of erasure pat-

terns of weight w that contain a stopping set of H24 and H′
24,

respectively. It remains to compute ΨH24 , ΨH′
24

, and ΨML.

Obvi
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are line
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ously, ΨML(w) = 0 for w � 7 and ΨML(w) = (24
w )

13 (any 13 columns of a parity-check matrix for G24
arly dependent). For the other values of w, we have

w) =

⎧⎪⎨
⎪⎩

(
16

w−8

)
759 8 � w � 11

1771(20 + 720) + 2576 w = 12

we made use of Table IV of [2]. To find ΨH24(·) and
, we used exhaustive computer search. These functions

en in Table II. The resulting probabilities of decoding
are plotted in Figure 1. Note that while we may add
H′

24 to eliminate more stopping sets, this would have
le effect since the slope of the performance curve is

ted by the smallest w for which ΨH′
24
(w) �= 0.

I. FURTHER RESULTS AND OPEN PROBLEMS

per only scratches the surface of the many interesting
portant problems that arise in the investigation of
g redundancy. Here is a representative sample:
termine the stopping redundancy of well-known codes
th substantial algebraic and/or combinatorial structure.
particular, is it true that ρ(G24) = 34? It appears that

oving lower bounds on the stopping redundancy, even
r specific codes such as G24, is quite difficult.
the construction devised for binary Reed-Muller codes
Section IV optimal? More generally, for which families
codes can one find parity-check matrices with only(
r(C)

)
rows and stopping distance equal to d(C)?

e there codes with non-vanishing rate and normalized
stance, whose stopping redundancy is O

(
r(C)

)
? We

n answer this with a no, in the case where the dual
des also have non-vanishing normalized distance.
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