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Abstract— It is now well known that the performance of a lin-
ear code C under iterative decoding on a binary erasure channel
(and other channels) is determined by the size of the smallest
stopping set in the Tanner graph for C. Several recent papers re-
fer to this parameter as the stopping distance s of C. This is some-
what of a misnomer since the size of the smallest stopping set in
the Tanner graph for C depends on the corresponding choice of
a parity-check matrix. It is easy to see that s < d, where d is the
minimum Hamming distance of C, and we show that it is always
possible to choose a parity-check matrix for C (with sufficiently
many dependent rows) such that s = d. We thus introduce a new
parameter, termed the stopping redundancy of C, defined as the
minimum number of rows in a parity-check matrix H for C such
that the corresponding stopping distance s(H) attains its largest
possible value, namely s(H) = d. We then derive general bounds
on the stopping redundancy of linear codes. We also examine
several simple ways of constructing codes from other codes, and
study the effect of these constructions on the stopping redundan-
cy. Specifically, for the family of binary Reed-Muller codes (of
all orders), we prove that their stopping redundancy is at most
a constant times their conventional redundancy. We show that the
stopping redundancies of the binary and ternary extended Golay
codes are at most 34 and 22, respectively. Finally, we provide up-
per and lower bounds on the stopping redundancy of MDS codes.

I. INTRODUCTION

The recent surge of of renewed interest in the binary erasure
channel (BEC) is due in large part to the fact that it is the prime
example of a channel over which the performance of iterative
decoding algorithms can be analyzed precisely. In particular, it
was shown in [3] that the performance of an LDPC code (and,
in fact, any linear code) under iterative decoding on the BEC
is completely determined by certain combinatorial structures
called stopping sets. A stopping set S in a code C is a subset
of the variable nodes in a Tanner graph for C such that
all the neighbors of S are connected to S at least twice. The
size s of the smallest stopping set was termed the stopping
distance of C in a number of recent papers [5], [7]. The
stopping distance plays an important role in understanding the
performance of a code under iterative decoding over the BEC,
akin to the role played by the minimum Hamming distance d
for maximum-likelihood decoding. Just as one would like to
maximize the minimum distance d if maximum-likelihood or
algebraic decoding is to be used, so one should try to maximize
the stopping distance s in the case of iterative decoding.
There is, however, an important difference between the min-
imal distance d and the stopping distance s. While the former
is a property of a code C, the latter depends on the specific
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Tanner graph for C or, equivalently, on the specific choice of
a parity-check matrix H for C. In order to emphasize this, we
will henceforth use s(H) to denote the stopping distance and
d(C) to denote the minimum distance.

In algebraic coding theory, a parity-check matrix H for a lin-
ear code C usually has n — dim(C) linearly independent rows.
However, in the context of iterative decoding, it has been alre-
ady observed in [8], [10] and other papers that adding linearly
dependent rows to H can be advantageous. Certainly, this can
increase the stopping distance s(H). Thus, throughout this pa-
per, a parity-check matrix for C should be understood as any
matrix H whose rows span the dual code C. Then the re-
dundancy r(C) of C may be defined as the minimum number
of rows in a parity-check matrix for C. Analogously, we define
the stopping redundancy p(C) of C as the minimum number of
rows in a parity-check matrix H for C such that s(H) = d(C).
This work may be thought of as the first investigation of the
trade-off between the parameters p(C), #(C), and d(C).

In the next section, we first show that the stopping redun-
dancy p(C) is well-defined. That is, given any linear code C,
it is always possible to find a parity-check matrix H for C such
that s(H) = d(C). In fact, the parity-check matrix consisting
of all the nonzero codewords of the dual code C' has this
property. Hence p(C) < 2"(©) — 1 for all binary linear codes.
We then show that if d(C) < 3, then any parity-check matrix
H for C satisfies s(H) = d(C), so p(C) = r(C) in this case.
The main result of SectionIl is an extension of this simple
observation to a general upper bound on the stopping redund-
ancy of linear codes (Theorem4).

In SectionIII, we study several simple ways of constructing
codes from other codes, such as the direct-sum construction
and code extension by adding an overall parity-check. We
investigate the effect of these constructions on the stopping
redundancy. Note that although we have limited our discussion
to binary codes, most of the results in Sections II and III extend
straightforwardly to linear codes over an arbitrary finite field.

We continue in SectionIV with an in-depth analysis of the
well-known (u, 1 + v) construction, and in particular its ap-
plication in the recursive definition [6, p. 374] of binary Reed-
Muller codes. By slightly modifying this construction, we es-
tablish a strong upper bound on the stopping redundancy of
Reed-Muller codes of arbitrary orders. Specifically, we prove
that if C is a Reed-Muller code of length 2" and order r, then
p(C) < d(C)r(C)/2. Thus for any constant d(C), we have
an increase in redundancy by only a constant factor.
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In Section V, we study the (24,12, 8) extended binary Golay
code Gpy4. We prove that p(Gpq) < 34 by providing specific
parity-check matrices for this code. We take Go4 as a test case,
and compare the performance of three different decoders: a
maximum-likelihood decoder, an iterative decoder using the
conventional 12 x 24 double-circulant parity-check matrix of
[6, p.65], and an iterative decoder using the 34 X 24 parity-
check matrix with maximum stopping distance. In each case,
exact analytic expressions for the probability of decoding
failure are derived using a computer program (see Figure 1).

We conclude in Section VI with a brief discussion and a list
of open problems. Some of our results on stopping redundancy
of linear codes that are not included here due to space limita-
tions are also briefly mentioned in Section VI.

II. GENERAL BOUNDS

We begin with rigorous definitions of the stopping distance and
the stopping redundancy. Let C be a binary linear code and let
H = [h; ;] be a parity-check matrix for C. The corresponding
Tanner graph T for C is a bipartite graph with each column
of H represented by a variable node and each row of H re-
presented by a check node in such a way that the j-th variable
node is connected to the i-th check node if and only if /; ; # 0.
As already mentioned, a stopping set in T is a subset S of the
variable nodes such that all the check nodes that are neighbors
of a node in & are connected to at least two nodes in S. We
dispense with this graphical representation of stopping sets in
favor of an equivalent definition directly in terms of the under-
lying parity-check matrix H. Thus we say that a stopping set
is a set of columns of H with the property that the projection
of H onto these columns does not contain a row of weight one.
The resulting definition of the stopping distance — the smallest
size of a stopping set — bears a striking resemblance to the de-
finition of the minimum Hamming distance of a linear code.

Recall that the minimum distance of a linear code C can be
defined as the largest integer d(C) such that every d(C) — 1 or
less columns of H are linearly independent. For binary codes,
this is equivalent to saying that d(C) is the largest integer such
that every set of d(C) — 1 or less columns of H contains at
least one row of odd weight.

Definition 1. Let C be a linear code and let H be a parity-check
matrix for C. Then the stopping distance of H is defined as the
the largest integer s(H) such that every set of s(H) — 1 or less
columns of H contains at least one row of weight one.

The following corollary is an immediate consequence of jux-
taposing the definitions of s(H) and d(C) above.

Corollary 1. Let C be a linear code and let H be an arbitrary
parity-check matrix for C. Thens(H) < d(C).

Indeed, it is well known [3], [4], [5] that the support of every
codeword is a stopping set, which is another way to see that
s(H) < d(C) regardless of the choice of H. Thus given a lin-
ear code C, the largest stopping distance one could hope for
is d(C), no matter how cleverly the Tanner graph for C is con-
structed. The point is that this bound can be always achieved

by adding dependent rows to H (see Theorem 2). This makes
the notion of the stopping distance, as a property of a code C,
somewhat meaningless: without restricting the number of rows
in a parity-check matrix for C, we cannot distinguish between
the stopping distance and the conventional minimum distance.
This observation, in turn, leads to the following definition.

Definition 2. Let C be a linear code with minimum Hamming
distance d(C). Then the stopping redundancy of C is defined
as the the smallest integer p(C) such that there exists a parity-
check matrix H for C with p(C) rows and s(H) = d(C).

The following theorem shows that the stopping redundancy
is, indeed, well-defined.

Theorem 2. Let C be a linear code, and let H* denote the pari-
ty-check matrix for C consisting of all the nonzero codewords
of the dual code C*. Thens(H*) = d(C).

Proof: Let [C*] denote the n x |C| matrix consisting of
all the codewords of C. It is well known (cf. [6, p-139]) that
[C1] is an orthogonal array of strength d(C) — 1. This means
that any set of t < d(C) — 1 columns of [C] contains all the
vectors of length ¢ among its rows, each vector appearing the
same number of times. In particular, any set of d(C)—1 or less
columns of [C!] contains all the vectors of weight one. m

Theorem 2 also provides a trivial upper bound on the stop-
ping redundancy. In particular, it follows from Theorem 2 that
p(C) < 2"©) —1 for any binary linear code C. This bound
holds with equality in the degenerate case of the single-parity-
check code. The next theorem determines p(C) exactly for all
binary linear codes with minimum distance d(C) < 3.

Theorem 3. Let C be a binary linear code with minimum dist-
ance d(C) < 3. Then any parity-check matrix H for C satisfies
s(H) = d(C), and therefore p(C) = r(C).

Proof: If H contains an all-zero column, then it is obvious
that s(H) = d(C) = 1. Otherwise s(H) > 2, since then every
single column of H must contain a row of weight one. Now,
if d(C) = 3, then every two columns of H are distinct. This
implies that these two columns must contain either the 01 row
or the 10 row (or both). Hence s(H) =3. m

The following theorem, which is our main result in this sec-
tion, shows that Theorem 3 is, in fact, a special case of a gen-
eral lower bound on the stopping redundancy of linear codes.

Theorem 4. Let C be a binary linear code with minimum dist-
ance d(C) > 3. Then

o0 < () (D)4t (1) o

Proof: We first prove a slightly weaker result, which is con-
ceptually simpler. Namely, let us show that

012 () () () o

Let H be an arbitrary parity-check matrix for C with 7(C) lin-
early independent rows. Construct another parity-check matrix
H'’ whose rows are all the linear combinations of t rows of H,
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forallt =1,2,...,d(C) — 1. Clearly, the number of rows of
H' is given by the right-hand side of (2). Now let H;, respect-
ively H{, denote a matrix consisting of some ¢ columns of H,
respectively the corresponding t columns of H’. Observe that
for all t < d(C) — 1, the ¢ columns of H; are linearly indepen-
dent. This implies that the row-rank of Hy is ¢, and therefore
some f rows of H; must form a basis for Fﬁ Hence the 2f — 1
nonzero linear combinations of these t rows of H; generate all
the nonzero vectors in IE‘zt, including all the vectors of weight
one. But for t < d(C) — 1, the 2! — 1 nonzero linear combin-
ations of any t rows of H; are among the rows of Hj by con-
struction. This proves that s(H’) = d(C) and establishes (2).

To transition from (2) to (1), observe that we do not need to
have all the nonzero vectors of th among the rows of H.; it
would suffice to have at least one vector of weight one. Given
a set S C I and a positive integer m, let mS denote the set
of all vectors obtained as a linear combination of at most m
vectors from S. Define p(t) as the smallest integer with the
property that for any basis B of F}, the set p(t)B contains at
least one vector of weight one. Then in the construction of H’,
it would suffice to take all the linear combinations of at most
u(d(C) —1) rows of H. Clearly pu(t) <t —1 for all ¢ (in fact,
p(t) =t —1 for all t), and the theorem follows. m

The bound of (1), while much better than p(C) < 21(C) 1,
is still too general to be tight for most codes. Nevertheless, we
can conclude from Theorem4 that when d(C) is a constant,
the stopping redundancy is only polynomial in the (conven-
tional) redundancy and, hence, in the length of the code.

An obvious question is whether we can do substantially bet-
ter than Theorem 4. At least in the case of Reed-Muller codes,
we shall see in SectionIV that the answer is yes.

III. CONSTRUCTIONS OF CODES FROM OTHER CODES

In this section, we examine several simple ways of construct-
ing codes from other codes. While for most such constructions,
it is trivial to determine the redundancy of the resulting code,
we find it considerably more difficult to determine the resulting
stopping redundancy, and resort to bounding it.

We start with two simple examples. The first example (Theo-
rem 5) is the well-known direct-sum construction or, equiva-
lently, the (u,v) construction. The second one (Theorem 6) is
the (u, u) construction, or concatenation of a code with itself.
Both theorems have simple constructive proofs which we omit.

Theorem 5. Let C1, Cy be (n1,k1,d1), (12, ko, d2) binary lin-
ear codes, respectively. Then C3 = {(u,v) : ue€Cy,veCy}
is an (n1 + ny, k1 + ko, min{dy, dy }) code with

p(C3) < p(Cqy) +p(Cy) A3)

Theorem 6. Let Cq be an (n, k,d) binary linear code. Then the
code Co = {(u,u) : ueCyq}isa(2n,k, 2d) code with

p(C2) < p(Cy) +n )

Here is an interesting observation about Theorems 5 and 6.
It follows from (3) and (4) that if the constituent codes are
optimal, in the sense that their stopping redundancy is equal to

their redundancy, then the resulting code is also optimal. This
indicates that the bounds in (3) and (4) are tight.

In contrast, the innocuous construction of extending a linear
code C by adding an overall parity-check [6, p.27] appears to
be much more difficult to handle. The next theorem deals only
with the special case where d(C) = 3.

Theorem 7. Let C be an (n,k, 3) binary linear code. Then the
extended code C' is an (n + 1,k,4) code with

p(C") < 2p(C) = 2r(C') -2 ©))

Proof: Let H be an arbitrary r(C) X n parity-check matrix
for C. We construct a parity-check matrix for C’ as follows

Ho
H' = (H 1) ©

where H is the bitwise complement of H, while 0 and 1 are
the all-zero and the all-one column vectors, respectively. Label
the columns in H' by 1,2,...,1n+ 1, and let Z be a subset of
{1,2,...,n+1} with |Z| < 3. In fact, it would suffice to con-
sider the case where Z C {1,2,...,n} and |Z| = 3; all other
cases easily follow from the fact that s(H) = 3 by Theorem 3.

Let H(Z) and H(Z) denote the projections of H and H, re-
spectively, on the three positions in Z. If H(Z) contains a row
of weight one, we are done. If H(Z) contains a row of weight
two, we are also done — then the corresponding row in H(I )
has weight one. But otherwise, the only rows in H(Z) are
000 and 111, which means that the three columns in H(Z)
are identical, a contradiction since d(C) = 3. m

The construction in (5) and (6) is not optimal. For example,
if C’ is the (8, 4,4) extended Hamming code, it produces a pa-
rity-check matrix for C’ with 6 rows. However, C’ is also the
Reed-Muller code R(1,3) for which we give in the next sec-
tion a parity-check matrix H with s(H) = 4 and only 5 rows.

IV. REED-MULLER CODES

We now focus on the well-known (u, 4 + v) construction, in
particular in connection with the recursive definition of binary
Reed-Muller codes. Our goal is to derive a constructive upper
bound on the stopping redundancy of R (¥, m) — the binary
Reed-Muller code of order r and length 2™,

We begin by recalling several well-known facts. First, for
allr =0,1,...,m, the dimension of R(r,m) isk = Y_, (/)
and its minimum distance is d = 2"~". Let G(,m) be a gene-
rator matrix for R(r, m). Then, using the (1, 4+ v) construc-
tion, G(r, m) can be defined recursively, as follows:

def (G(r,m—1) G(r,m—1)

Glrm) = < 0 G(r—l,m—l)) ™
with the recursion in (7) being bootstrapped by G(m, m) = Ipm
and G(0,m) = (11---1) for all m. By convention, the code
R(—1,m) is the set {0} for all m. Then

R(r,m)* = R(m—r—1,m) 8)

for all m and all r = —1,0,1,...,m. It follows from (8) that
G(r,m) is a parity-check matrix for R(m—r—1,m), a code
with minimum distance 2'+1. Hence every 2/ — 1 columns
of G(r,m) are linearly independent.
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Our objective in what follows is to construct an alternative
parity-check matrix H(r,m) for R(m—r—1,m) = R(r,m)~*
such that s(H(r,m)) = 2'*1. Then the number of rows in
H(r,m) gives an upper bound on the stopping redundancy of
R(m—r—1,m). Here is the recursive construction that we use.

Recursive Construction A: For all positive integers m and
forall r =1,2,...,m — 2, we define:
H(r,m—1) H(r,m—1)

H
H(T’, Wl) — top dZEf 0 H(r—l,m—l) (9)

Hpot H(r—1,m-1) 0

with the recursion in (9) being bootstrapped as follows: for all
m =0,1,..., the matrices H(0,m), H(m—1,m), H(m,m)
are defined by

H(0,m) ¥ G(0,m) = (11---1) (10)
H(m—1,m) def G(m—1,m) (11)
H(m,m) ¥ G(m,m) = L (12)

We omit the proofs of the next two propositions and lemma.
Proposition 8. H(r, m) is a generator matrix for R(r,m) and,
hence, a parity-check matrix for R(m —r —1,m).
Proposition 9. The stopping distance of H(r,m) is 2"+1 for all
positive integers m and for ally = 0,1,...,m—1,

The remaining task is to compute the number of rows in the
matrix H(r, m). We denote this number as g(r,m).

Lemma 10. For allr = 0,1, ...,m — 1, the number of rows in
H(r,m) is given by

ol m) = i (m—r;l%—i)zi

i=0
We are now in a position to summarize the results of this sec-
tion in the following theorem.
Theorem 11. Forallm = 1,2,... and forallr = 0,1,...,m,
the stopping redundancy of R(r, m) is upper bounded by

mfzrfl (1, + i) 21’
i=0 !

Proof: Follows immediately from (8), Proposition 8, Propo-
sition9, and Lemma 10. m

p(R(r,m)) < (13)

To see how far Theorem 11 is from the (conventional) redun-
dancy of Reed-Muller codes, let us make a simple calculation.
For this, it will be more convenient to work with the dual code
C = R(r,m)",. Recall that the redundancy of C is ¥1_ ().

Comparing this to the bound on p(C) in (13), we find that

! m—r—l—i—i)i s (m)_ ;
C) < . 2 <2 L] = 2"r(C
o<t (" ¥ (7) =2
Therefore, for any fixed order r, the stopping redundancy of
R(r,m)" is at most the redundancy of R (r,m)" times a con-
stant. Alternatively, if we take C = R(r,m), then Theorem 11
implies that p(C) < d(C)r(C)/2. Thus for any fixed d(C),
the increase in redundancy is by a constant factor.

V. GOLAY CODES

The (24,12, 8) binary Golay code Gy is arguably the most re-
markable binary block code. It is often used as a benchmark
in studies of code structure and decoding algorithms.

There are several “canonical” parity-check matrices for Goy,
see [1],[2],[9] and other papers. Our starting point is the syst-
ematic double-circulant matrix Hp4 given in MacWilliams and
Sloane [6,p.65] and shown in Table I. It can be readily verified
that s(Hp4) = 4, which means that Hp4 achieves only half of
the maximum possible stopping distance. Curiously, the stop-
ping distance of the two “trellis-oriented” parity-check matri-
ces for Gog, given in [9, p.2060] and [1, p.1441], is also 4.

Computing the bound of Theorem4 for the special case of
Go4 produces the rather weak result: p(gz4) < 2509. Having
tried several methods to construct a parity-check matrix for
Go4 with stopping distance 8, our best result was achieved
using a greedy (lexicographic) computer search. Specifically,
with the 4095 nonzero vectors of Gy listed lexicographically,
we iteratively construct the parity-check matrix H§4, at each
iteration adjoining to H, the first vector on the list with the
highest score. Each vector receives i points to its score for
each yet uncovered i-set it covers, where i € {1, 2,..., 7}. The
resulting matrix is given in Table .

TABLE I
TWO PARITY-CHECK MATRICES FOR THE (24,12,8) GOLAY CODE a4

Hyy =

[SY SN NN
coococococococooom
coccocococooco~o
cococoocococo~oo
coocococococo~ooo
coococococoroooo
cocococo~ocoooo
cooccorococoooo
coco~ocoocoooo
coo~ococoocoooo
cor~ococococoococoo
o~mocococococococooo
—oococococococoooo
e = T p= it
e =1 T= TSIy
I Y I o)
[ 1= LYY R
O OO ORI O
—FOOOROR RO
—HOCHOR RO RO
HORORRORRROO
—RORRORRRO00
HOM MO OO0 R
= T= =Y

PR R R R S R R OO0 0000000000000 000000
PR O C0000OR RO 000000000000000
OO OO0 —HO000ORHHO00000000000D
O OO OO0 O0000OROORRHROO0000000
OO OO OORO0000000R—ORRRORRHRO00000
OO O00—R0ORH—OO0O—ORO0O0OR—~0000000
OO OO0 OOROOOORHOROORRHHRO000
OO0 0000000 OROHROOOR L HORORRORFOROOO
[ L= 1= 1= 1= 1= Ty O g T Y T Yy N
O OO0OHO0000000000O—0000ORRHROROO
OO COOORORROOOR R OO00000000 o0 M —
OO0 OORHOOHOHOROORROOO—RORROO K-
CCOCOHO—OROORO0000—R000HOOORRORRHORO
oo O000ORORO00OROROORORO0000RROO—
OO OORORRR R R OO O0000ROOO—
OO0 OO0 0000000ORROORROR RO
oo O000000ORHORROORO0ORHROORORORO
OO OO OOROOR—O0000000RHHOOOROOOO
0000000 O—OROOROOOOORRHRHEOROOORRO
L OO O OO0 OR OO0 00OHO00000ORORR,O
O OCO—HORO000OH—O000R00000000O— RO~
OO OO0 000000000000~ HOO00O
00000 OOHROOORORORHOOOROOROOO RO
OO0 OOR—rO00000—R0O0O—000R—ROOOOR RO

To evaluate the effect of increasing the stopping distance, it
would be interesting to compare the performance of iterative
decoders for Go4 based on Hpy or H£4, respectively. As a base-
line for such a comparison, it would be also useful to have
the performance of a maximum-likelihood decoder for Go4. In
what follows, we give analytic expressions for the performance
of the three decoders on the binary erasure channel (BEC).

Clearly, a maximum-likelihood decoder fails to decode (re-
cover) a given erasure pattern if and only if this pattern con-
tains the support of (at least one) nonzero codeword of Goy.
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TABLE 1T

NUMBER OF UNDECODABLE ERASURE PATTERNS
BY WEIGHT w IN THREE DECODERS FOR 924

w  Total Patterns Wy (w) W, (w) WH£4(w)
0 1 0 0 0
1 24 0 0 0
2 276 0 0 0
3 2024 0 0 0
4 10626 0 110 0
5 42504 0 2277 0
6 134596 0 19723 0
7 346104 0 100397 0
8 735471 759 343035 3598
9 1307504 12144 844459 82138
10 1961256 91080 1568875 585157
11 2496144 425040 2274130 1717082
12 2704156 1313116 2637506 2556402
24 24 24 24
>13 () () (%) ()
10°
= 107
E
s -10
Jé 10
Ay
5}
E 10"
R
0
_qg 10—2()
e
)
A 102+ maximum-likelihood decoder b
- - iterative decoder based upon H},
30 | T iterative decoder using Hy ‘
10 0 -1 2 3 -4
10 10 10 10 10

Erasure Probability

Fig. 1. The decoding failure probability of three decoders for Gp4: a max-
imum-likelihood decoder and iterative decoders based upon Hp4 and Hé4

Let Wpp (w) denote the number of such erasure patterns as
a function of their weight w. Then

24
Pr i {decoding failure} = Y Wy (w) pU(1—p)Hv
w=0
where p is the erasure probability of the BEC. In contrast, an
iterative decoder (based on Hy4 or H§4) fails if and only if the
erasure pattern contains a stopping set. Thus

24
Pr p,, {decoding failure} = Y Wy, (w) p”(1—p)** ¥
w=0

24
Y Way,(w) p?(1-p)** ™
w=0

where W, (w) and ¥ H§4(w) denote the number of erasure pat-
terns of weight w that contain a stopping set of Hp4 and H},,
respectively. It remains to compute ¥, , WH§4’ and Wyr.

Pr p; {decoding failure} =

Obviously, Wyp (w) = 0 for w < 7 and Yy (w) = (zaf‘)

for w > 13 (any 13 columns of a parity-check matrix for Goy
are linearly dependent). For the other values of w, we have

(16)759 8<w<11
Yy (w) = w—8
1771(20 + 720) + 2576  w = 12

where we made use of TableIV of [2]. To find Wp,,(-) and
v H£4(-), we used exhaustive computer search. These functions
are given in TableIl. The resulting probabilities of decoding
failure are plotted in Figure 1. Note that while we may add
rows to Hj, to eliminate more stopping sets, this would have
negligible effect since the slope of the performance curve is
dominated by the smallest w for which ¥ H£4(w) # 0.

VI. FURTHER RESULTS AND OPEN PROBLEMS

This paper only scratches the surface of the many interesting
and important problems that arise in the investigation of
stopping redundancy. Here is a representative sample:

¢ Determine the stopping redundancy of well-known codes
with substantial algebraic and/or combinatorial structure.
In particular, is it true that p(Gps) = 347 It appears that
proving lower bounds on the stopping redundancy, even
for specific codes such as Gy, is quite difficult.

o Is the construction devised for binary Reed-Muller codes
in Section IV optimal? More generally, for which families
of codes can one find parity-check matrices with only
O(r(C)) rows and stopping distance equal to d(C)?

o Are there codes with non-vanishing rate and normalized
distance, whose stopping redundancy is O(r(C))? We
can answer this with a no, in the case where the dual
codes also have non-vanishing normalized distance.
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