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Abstract—DNA as a data storage medium has several advan-
tages, including far greater data density compared to electronic
media. We propose that schemes for data storage in the DNA of
living organisms may benefit from studying the reconstruction
problem, which is applicable whenever multiple reads of noisy
data are available. This strategy is uniquely suited to the medium,
which inherently replicates stored data in multiple distinct ways,
caused by mutations. We consider noise introduced solely by
uniform tandem-duplication, and utilize the relation to constant-
weight integer codes in the Manhattan metric. By bounding the
intersection of the cross-polytope with hyperplanes, we prove
the existence of reconstruction codes with greater capacity than
known error-correcting codes.

I. INTRODUCTION

DNA is attracting considerable attention in recent years as a

medium for data storage, due to its high density and longevity

[5]. Data storage in DNA may provide integral memory for

synthetic-biology methods, where such is required, and offer a

protected medium for long-period data storage [2]. In particu-

lar, storage in the DNA of living organisms is now becoming

feasible [23]; it has varied usages, including watermarking

generically modified organisms [21] or research material [15],

and even affords some concealment to sensitive information

[6]. Naturally, therefore, data integrity in such media is of

great interest.

Several recent works have studied the inherent constraints

of storing and retrieving data from DNA. While desired

sequences (over quaternary alphabet) may be synthesized

(albeit, while suffering from substitution noise), generally data

can only be read by observation of its subsequences, quite

possibly an incomplete observation [16]. Moreover, the nature

of DNA and current technology results in asymmetric errors

which depend upon the dataset [9]. The medium itself also

introduces other types of errors which are atypical in electronic

storage, such as symbol/block-deletion and adjacent transposi-

tions (possibly inverted) [10]. Finally, the purely combinatorial

problem of recovering a sequence from the multiset of all its

subsequences (including their numbers of incidence), was also

studied [1], as well as coding schemes involving only these

multisets (or their profile vectors – describing the incidence

frequency of each subsequence) [22].

Other works were concerned with data storage in the

DNA of a living organism. While this affords some level
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of protection to the data, and even propagation (through

DNA replication), it is also exposed to specific noise mech-

anisms due to mutations. Examples of such noise include

symbol insertions, deletion, substitutions (point-mutation), and

duplication (including tandem- and interspersed-duplication).

Therefore, schemes for data storage in live DNA must address

data integrity and error-correction.

In an effort to better understand these typical noise mech-

anisms, their potential to generate the diversity observed in

nature was studied. [11] classified the capacity and/or expres-

siveness of the systems of sequences over a finite alphabet

generated by four distinct substring duplication rules: end-

duplication, tandem-duplication, tandem-palindromic- dupli-

cation, and interspersed-duplication. Later, [12] fully char-

acterized the expressiveness of bounded tandem-duplication

systems, proved bounds on their capacity (and, in some cases,

even exact values).

The generative properties of interspersed-duplication were

also studied from a probabilistic point of view. [8] showed (un-

der assumption of uniformity) that the frequencies of incidence

for each subsequence converge to the same limit achieved by

an i.i.d. source, thus reinforcing the notion that interspersed-

duplication is–on its own–capable of generating diversity.

[7] specifically looked at tandem- and end-duplication, and

found exact capacities in the case of duplication length 1.

It also tightly bounded the capacity of complement tandem-

duplication, a process where the duplicated symbol is comple-

mented (using binary alphabet).

Finally, error-correcting codes for data affected by tandem-

duplication have been studied in [13], which presented a

construction of optimal-size codes for correcting any number

of errors under uniform tandem-duplication (fixed duplication

length), computing their (and thus, the optimal-) capacity. It

also presented a framework for the construction of optimal

codes for the correction of a fixed number of errors. In gen-

eral, it characterized the cases where the process of tandem-

duplication can be traced back uniquely. Later, [18] studied the

sphere-packing bound for unifrom tandem-duplication noise

(as well as related error-models).

However, classical error-correction coding ignores some

properties of the DNA storage channel; namely, stored infor-

mation is expected to be replicated, even as it is mutated.

This lends itself quite naturally to the reconstruction problem

[20], which assumes that data is simultaneously transmitted
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over several noisy channels, and a decoder must therefore

estimate that data based on several (distinct) noisy versions

of it. Solutions to this problem have been studied in several

contexts. It was solved in [20] for sequence reconstruction over

finite alphabets, where several error models were considered,

such as substitutions, transpositions and deletions. Moreover,

a framework was presented for solving the reconstruction

problem in general cases of interest in coding theory, utilizing

a graph representation of the error model. The problem was

also studied in the context of permutation codes with transpo-

sition and reversal errors [17]. Later, applications were found

in storage technologies [3], [4], since modern application

might preclude the retrieval of a single data point, in favor

of multiple-point requests. However, the problem hasn’t been

addressed yet for data storage in the DNA of living organisms,

where it may be most applicable.

In this paper, we study the reconstruction problem over

DNA sequences, with uniform tandem-duplication error. The

paper is organized as follows: In Section II we present

notations and definitions. In Section III we demonstrate that

reconstruction codes are error-correcting codes and find their

requisite minimal-distance, as a function of the reconstruction

parameters. In Section IV we then study bounds on the sizes

of such codes by an isometric embedding to constant-weight

codes in the Manhattan metric. Finally, in Section V we

show that by considering reconstruction codes we improve the

capacity of known error-correcting codes, and conclude with

closing remarks in Section VI. Throughout the paper proofs

and some auxiliary propositions have been omitted, due to

space restrictions; The reader is referred to the arXiv (preprint

arXiv:1801.06022) for a complete version.

II. PRELIMINARIES

Throughout this paper, though human DNA is composed of

four nucleotide bases, we observe the more general case of

sequences over a finite alphabet; since the alphabet elements

are immaterial to our discussion, we denote it throughout

as Zq . We observe the set of finite sequences (also: words)

over it Z
∗
q =

⋃∞
n=0 Z

n
q . For any two words u, v ∈ Z

∗
q , we

denote their concatenation uv. For each word x ∈ Z
n
q , we

denote its length |x| = n. We also take special note of

Z
>k
q =

{

x ∈ Z
∗
q

∣

∣ |x| > k
}

. For ease of notation, we let N

stand for the set of non-negative integers.

For 0 < k ∈ N, i ∈ N, we define a tandem-duplication of

duplication-length k by the mappings

Tk,i(x) =
{

uvvw x = uvw, |u| = i, |v| = k,

x otherwise.

If y = Tk,i(x) and y 6= x (which occurs whenever |x| > i+k),

we say that y is a descendant of x, and denote x =⇒
k

y. In

what follows, we focus on the uniform tandem-duplication

model (i.e., we fix k) because of its simplicity.

Further, given a sequence {xj}tj=0 ⊆ Z
∗
q such that for all

0 6 j < t, xj =⇒
k

xj+1, we say that xt is a t-descendant

of x0, and denote x0
t

=⇒
k

xt. For completeness, we also

denote x
0

=⇒
k

x. Finally, if there exists some t ∈ N such that

x
t

=⇒
k

y, we also denote x
∗

=⇒
k

y.

We denote the set of t-descendants of x ∈ Z
∗
q as

Dt
k(x) = {y ∈ Z

∗
q | x t

=⇒
k

y},

for some t ∈ N. We also denote the descendant-cone of x by

D∗
k(x) =

⋃∞
t=0D

t
k(x).

We say that x ∈ Z
>k
q is irreducible if it is not the descendant

of any word. We exclude from the definition shorter words,

for which the condition vacuously holds. We denote by Irrk
the set of all irreducible words, and Irrk(n) = Irrk ∩Zn

q .

It was shown in [14], [19] that for each word x ∈ Z
>k
q , a

unique irreducible word exists for which x is a descendant.

We call it the root of x, and denote it by Rk(x). This induces

an equivalence relation by x ∼k y if Rk(x) = Rk(y).
We also follow [14] in defining, for x ∈ Z

>k
q , Prefk(x) as

the length-k prefix of x, and Suffk(x) as its suffix. Using this

notation, we define an embedding φk : Z>k
q → Z

k
q × Z

∗
q by

φk(x) =
(

Prefk(x), Suff |x|−k(x)− Pref|x|−k(x)
)

.

It is seen in [14] that this mapping is indeed injective. Further,

it was shown that, defining ζk,i : Z
k
q × Z

∗
q → Z

k
q × Z

∗
q by

ζk,i(a, b) =

{

(a, b10
kb2) b = b1b2, |b1| = i,

(a, b) otherwise,

where 0 < k ∈ N, i ∈ N, we have φk(Tk,i(x)) = ζk,i(φk(x)).
The simplicity of ζk,i in comparison to Tk,i motivates

the analysis of tandem-duplications using the φk images of

sequence.

If b ∈ Z
∗
q is composed of the subsequences

b = 0s1w10
s2 · · ·wm0sm+1 ; w1, . . . , wm ∈ (Zq \ {0})∗

we define

µ(b) = 0s1 mod kw10
s2 mod k · · ·wm0sm+1 mod k,

σ(b) =
(⌊s1

k

⌋

, . . . ,
⌊sm+1

k

⌋)

.

We may note that wtH(b) = wtH(µ(b)), where wtH is the

Hamming weight, and σ(b) ∈ N
wtH(b)+1 = N

wtH(µ(b))+1.

We also observe that b is recoverable from σ(b), µ(b). It was

proven in [14] that if x, y ∈ Z
>k
q , φk(x) = (a1, b1) and

φk(y) = (a2, b2), then x ∼k y if and only if a1 = a2
and µ(b1) = µ(b2). Moreover, x ∈ Irrk if and only if

σ(b1) = (0, 0, . . . , 0). Note that, equivalently, we may say

that b contains no zero-runs of length k; such sequences are

called (0, k − 1)q-Run-Length-Limited, or (0, k − 1)q-RLL.

For x ∈ Irrk, φk(x) = (a, b), we denote m(x) = wtH(b)
and define ψx : D∗

k(x) → N
m(x)+1 by ψx(y) = σ(b′), where

φk(y) = (a, b′).
Finally, for n > k and x, y ∈ Z

n
q we define

dk(x, y) = min
{

t ∈ N
∣

∣ Dt
k(x) ∩Dt

k(y) 6= ∅
}

,

or dk(x, y) = ∞ if {t ∈ N | Dt
k(x) ∩Dt

k(y) 6= ∅} = ∅. It was

shown in [14, Lem. 14] that dk(x, y) = ∞ if and only if
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x 6∼k y, hence dk(·, ·) is finite on Dt
k(x), for any particular

x ∈ Z
>k
q . Furthermore, [14, Lem. 19] shows that for any

x ∼k y with |x| = |y| it holds that

dk(x, y) =
1
2 ‖σ(b1)− σ(b2)‖1 ,

thus dk(·, ·) defines a metric on Z
n
q for all n > k.

III. RECONSTRUCTION CODES

The reconstruction problem in the context of uniform

tandem-duplication errors can be stated as follows: suppose

data is encoded in C ⊆ Z
n
q , and suppose we later are able to

read distinct x0, x1, . . . , xN ∈ Dt
k(c) for some specific c ∈ C;

can we uniquely identify c?

A. Codes for reconstruction

It is apparent (see [20]) that to allow successful reconstruc-

tion we require codes to satisfy the following.

Definition 1 Take N, t, n > 0. We say that C ⊆ Z
n
q is a

uniform tandem-duplication reconstruction code, which we

abbreviate as an (N, t, k)q-UTR code, if

max
{

|Dt
k(c) ∩Dt

k(c
′)|
∣

∣ c, c′ ∈ C, c 6= c′
}

6 N.

We state this section’s main result in the following corollary.

Corollary 2 Take x ∈ Z
∗
q , n > |x|. Then C ⊆ D∗

k(x) ∩ Z
n
q is

an (N, t, k)q-UTR code if and only if

min{dk(c, c′) | c, c′ ∈ C, c 6= c′} > dN,t(m(x)),

where we make the notation

dN,t(m) = min

{

δ ∈ N

∣

∣

∣

∣

(

t− δ +m

m

)

6 N

}

.

Proof: (sketch) The claim follows from a calculation of

the size of intersection for two descendant-cones.

B. Size of reconstruction codes

In this section we aim to estimate the maximal size of

(N, t, k)q-UTR codes.

Definition 3 For m, r > 0 we denote the (m, r)−simplex

∆m
r =

{

(xi)
m+1
i=1 ∈ N

m+1

∣

∣

∣

∣

∑m+1

j=1
xj = r

}

.

Theorem 4 We take positive integers N, t and n > k. For

C ⊆ Z
n
q and x ∈ Irrk we denote Cx = C ∩D∗

k(x) and define

r(x) = n−|x|
k .

If Cx 6= ∅ then r(x) ∈ N and r(x) <
⌊

n
k

⌋

. Moreover, C is

an (N, t, k)q-UTR code if and only if for all x ∈ Irrk such

that Cx 6= ∅, the image ψx(Cx) ⊆ ∆
m(x)
r(x) satisfies

min
{

1
2 ‖c− c′‖1

∣

∣ c 6= c′ ∈ ψx(Cx)
}

> dN,t(m(x)).

We therefore see that finding error-correcting codes for uni-

form tandem-duplication, after restriction to each descendant-

cone, essentially amounts to finding error-correcting codes

in the Manhattan metric over ∆m
r . We start by notating the

maximal size of such codes:

Definition 5 For m, r > 0 and d > 0 we define

M(m, r, d) = max
{

|C|
∣

∣

∣
C ⊆ ∆m

r , min
c,c′∈C
c 6=c′

1
2 ‖c− c′‖1 > d

}

.

We now note that if C ⊆ Z
n
q , x, x′ ∈ Irrk(n − rk) (i.e.,

r(x) = r(x′) = r) and m(x) = m(x′), then Dn−rk
k (x) ∼=

Dn−rk
k (x′) (through, e.g., ψ−1

x′ ◦ ψx). It is therefore practical

to assume |Cx| = |Cx′ | = M(m, r, dN,t(m)) for all such

x, x′. This results in the following corollary, which concludes

this section:

Corollary 6 If C ⊆ Z
n
q is an (N, t, k)q-UTR code, and for

all x ∈ Irrk it holds that |Cx| =M(m, r, dN,t(m)), then

|C| =
⌊n/k⌋−1
∑

r=0

∑

m

M(m, r, dN,t(m)) · qk·

·
∣

∣

∣

{

b ∈ Z
n−(r+1)k
q

∣

∣

∣

b is (0,k−1)q- RLL
wtH(b)=m

}∣

∣

∣

IV. CODES ON THE SIMPLEX WITH THE MANHATTAN

METRIC

Corollary 6 motivates us to estimate the optimal size of

error-correcting codes in the Manhattan metric over the (m, r)-
simplex. This section is dedicated to that question; a key

component of which will be the evaluation of the requisite

minimal distance dN,t(m).

A. Sphere size

In this section we evaluate the size of Manhattan-metric

spheres in ∆m
r , then establish the Gilbert-Varshamov bound

in the asymptotic regime.

Definition 7 For m ∈ N and r ∈ Z, we denote the hyperplane

Am
r =

{

(xi)
m+1
i=1 ∈ Z

m+1

∣

∣

∣

∣

∑m+1

i=1
xi = r

}

.

We also denote the ball of radius d > 0 about x ∈ Am
r as

Bm
r (d;x) =

{

y ∈ Am
r

∣

∣

1
2 ‖y − x‖1 6 d

}

;

since the size of each ball is invariant in r, x, we denote

Bm(d) = Bm
0 (d; 0) for ease of notation.

In the following lemma we make an asymptotic evaluation

of |Bm(d)|:

Lemma 8 Take µ ∈ (0, 1) and fix d > 0. Suppose we’re given

a sequence of dimensions (mn)n>0 such that limn→∞
mn

n =
µ. Then limn→∞

1
n log2|Bmn(d)| = 0.

Using the Gilbert-Varshamov bound, we can now show the

following.

2018 IEEE International Symposium on Information Theory (ISIT)

2537



Theorem 9 Take µ ∈ (0, 1), ρ > 0 and integer se-

quences (mn)n>0, (rn)n>0 such that limn→∞
mn

n = µ and

limn→∞
rn
n = ρ. Also take a fixed d > 0. Then

lim
n→∞

1
n log2M(mn, rn, d) = (µ+ ρ)H

(

1

1 + ρ
µ

)

. (1)

B. Minimal distance of reconstruction codes

Next, given N, t > 0 and m > 0, we establish bounds on

dN,t(m) = min

{

δ ∈ N

∣

∣

∣

∣

(

t− δ +m

m

)

6 N

}

seen in Corollary 2.

Lemma 10 If N 6 m then dN,t(m) = t.

V. CAPACITY OF RECONSTRUCTION CODES

We can now determine the capacity of (N, t, k)q-codes, in

some asymptotic regimes. We define the rate of of a family

of codes (Cn), Cn ⊆ Z
n
q , as

R(Cn) = lim sup 1
n logq|Cn|,

and the capacity of (N, t, k)q-codes as the supremum of rates

of families of such codes. Since [13] showed that Irrk(n)
can correct any number of tandem-duplication errors, they are

trivially (N, t, k)q-codes for all N, t. In this section we prove

that reconstruction codes have strictly higher capacity.

First, we denote for any n, r ∈ N such that n > k and

r <
⌊

n
k

⌋

, and any N, t ∈ N

MN,t(n, r) =
∑

m

M(m, r, dN,t(m))·

·
∣

∣

∣

{

b ∈ Z
n−(r+1)k
q

∣

∣

∣

b is (0,k−1)q -RLL

wtH(b)=m

}
∣

∣

∣
.

We recall for all n, if rn = argmaxr MN,t(n, r), that by

Corollary 6 we have an (N, t, k)q-code C ⊆ Z
n
q with |C| >

qkMN,t(n, rn). Corollary 6 also implies that for all C ⊆ Z
n
q

it holds that |C| 6 n
k q

kMN,t(n, rn). We therefore focus on

maximizing lim sup 1
n logq MN,t(n, rn) by choice of rn.

In what follows, we take γ ∈ (0, 1) and set rn = 1−γ
k n− 1

for any n ∈ N for which rn ∈ N; we shall assume that such

n exist, and refer only to such indinces.

For all x ∈ Irrk(n − rnk) = Irrk(k + γn), recall that we

denoted φk(x) = (a, b) with b ∈ Z
γn
q in (0, k− 1)q-RLL. We

shall build a reconstruction code in the descendant cones of

only such x, which we denote Cγ .

Lemma 11 There exists a system S ⊆ (0, k − 1)q-RLL and

θ ∈
(

1
2 , 1
)

such that

capS = lim
l→∞

1
l logq

∣

∣S ∩ Z
l
q

∣

∣ = cap (0, k − 1)q-RLL

and for all b ∈ S it holds that wtH(b) > θ|b|.

Lemma 11 implies that there exists a subset Sk ⊆ Irrk such

that capSk = cap Irrk, and for every x ∈ Sk of length |x| =
k + γn we have m(x) > ⌈θ · γn⌉. For the rest of this section

we only build codes Cn
γ in the descendant cones of roots in

Sk. Note, then, that if we denote mn = ⌈θ · γn⌉ then the

resulting codes have rate

R(Cn
γ ) > γ cap(Irrk)+

+ lim sup 1
n logqM(mn, rn, dN,t(mn)) (2)

Theorem 12 As before, we denote rn = 1−γ
k n−1 and mn =

⌈θ · γn⌉. Then, assuming t is fixed and Nn = o(n), and if we

denote H(x) = xH
(

1
x

)

for x > 1,

lim
n

1
n logqM(mn, rn, dNn,t(mn)) =

=
θγ

log2 q
· H
(

1 +
1− γ

kθγ

)

Proof: (sketch) By Lemma 10 we have that dNn,t(mn)
is fixed. We note that limn→∞

rn
n = 1−γ

k and limn→∞
mn

n =
θγ, hence by Theorem 9 the claim is proven.

It’s worth noting that, in practical applications, we may

indeed expect the number of duplications t, which is dependent

on the period of time before data is read, to be fixed w.r.t. n.

The allowed uncertaintyNn will also likely be bounded, which

Theorem 12 accommodates.

Before moving on to show that generally R(Cn
γ ) may be

made to exceed cap(Irrk) by a careful choice of γ, we look

at the following example.

Example 13 Set q = k = 2. Then the Perron eigenvalue of

T2(1) is λ = 1+
√
5

2 , and

cap(Irr2) = log2(λ) = log2

(

1 +
√
5

2

)

≈ 0.6942.

In addition, any θ which is less than π1 = 1
2

(

1 + 1√
5

)

≈
0.7236 satisfies Lemma 11.

Alternatively, we may set q = 4 (for the special case of

human DNA) and duplication-length k = 2. Now the Perron

eigenvalue of T4(1) is given by λ = 3+
√
21

2 , hence

cap(Irr2) = log4(λ) = log4

(

3 +
√
21

2

)

≈ 0.9613.

Further, we may choose any θ which is less than π1 =
1
2

(

1 +
√

3
7

)

≈ 0.8273.

R(Cn
γ ) is shown as a function of γ ∈ (0, 1) for both cases

in Figure 1, under the assumptions of asymptotic regime made

in Theorem 12. The figure demonstrates that the capacity of

reconstruction codes (bounded from below by the maximum

of the curve) is greater than cap(Irrk). �

We now attempt to maximize R(Cn
γ ) by a proper choice of

γ. Theorem 12 motivates the following definition:

Definition 14 Take R, θ ∈
(

1
2 , 1
)

. We define R : (0, 1) → R

by

R(γ) = γR+
θγ

log2 q
H
(

1 +
1− γ

kθγ

)

.
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Figure 1. Rate R(Cn
γ ) in the cases (a) q = k = 2, θ = 0.7236, and (b)

q = 4, k = 2, θ = 0.8273. The value at γ = 1 equals cap(Irrk), which is
the capacity of known error-correcting codes (N = 0).

Analysis of R(γ) is simpler using the following change of

variable:

Definition 15 Define x : (0, 1) → (0,∞) by x(γ) = 1−γ
γ .

We observe that x is a decreasing diffeomorphism, and γ =
1

1+x(γ) .

We can now show that there always exists a choice of γ for

which we get R(Cn
γ ) > cap(Irrk):

Theorem 16 maxγ∈(0,1)R(γ) > R.

Proof: (sketch) Observe that R(γ) is continuously differ-

entiable and satisfies limγ→0R(γ) = 0, limγ→1R(γ) = R.

We can show that R′(γ) = 0 if and only if

q−kR =

(

1 +
x(γ)

kθ

)kθ−1

· x(γ)
kθ

(3)

This equation has a unique solution x0 = x(γ0), since the

RHS is a monotonic increasing function of x, vanishing at

x = 0 and unbounded as x grows. Moreover, 0 < x0 < kθ,

since kθ > 1, hence the RHS is greater than 1 at x = kθ.

Thus R(γ) has a unique local extremum in (0, 1).
It now suffices to show that R(γ) is concave, which may

be verified by examining the second derivative. Hence, the

extremum is a maximum, as claimed.

VI. CONCLUSION

We have proposed that reconstruction codes can be applied

to data-storage in the DNA of living organisms, due to the

channel’s inherent property of data replication.

We have showed, under the assumption of uniform

tandem-duplication noise, that reconstruction codes are error-

correcting codes with minimal distance dependent on the

reconstruction parameters. We then proved the existence of

such codes with rates surpassing that of know error-correcting

codes.

We believe that further research should focus on explicit

code constructions. It is also desirable to examine the prob-

lem under broader noise models, such as bounded tandem-

duplication, interspersed-duplication (perhaps inversed), as

well as combinations of multiple error models.
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