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Abstract—The combination network is one of the simplest and
insightful networks in coding theory. The vector network coding
solutions for this network and some of its sub-networks are
examined. For a fixed alphabet size of a vector network coding
solution, an upper bound on the number of nodes in the network
is obtained. This bound is an MDS bound for subspaces over a
finite field. A family of sub-networks of combination networks
is defined. It is proved that for this family of networks, which
are minimal multicast networks, there is a gap in the minimum
alphabet size between vector network coding solutions and scalar
network coding solutions. This gap is obtained for any number
of messages and is based on coloring of the q-Kneser graph and
a new hypergraph generalization for it.

I. INTRODUCTION

Network coding has been attracting increased attention
for almost two decades since the seminal papers [1], [16].
Multicast networks have received most of this attention. A
recent survey on the foundation of multicast network coding
can be found in [13]. The multicast network-coding problem
can be formulated as follows: given a network with one source
which has h messages, for each edge find a function of the
packets received at the starting node of the edge, such that each
receiver can recover all the messages from its received packets.
Such an assignment of a function to each edge is called a
solution for the network. Therefore, the received packets on an
edge can be expressed as functions of the source messages. If
these functions are linear, we obtain a linear network coding
solution, otherwise we have a nonlinear solution. In linear
network coding, each linear function on an edge consists of
coding coefficients for each incoming packet. If the coding
coefficients and the packets are scalars, it is called a scalar
network coding solution. If the messages and the packets are
vectors and the coding coefficients are matrices then it is
called a vector network coding solution. A network which
has a solution is called a solvable network. It is well-known
that a multicast network with one source, h messages, and
N receivers, is solvable if and only if the min-cut between the
source and each receiver is at least h [13].

The functions on the edges of the network form the network
code. The coding coefficients form the network coding vectors
on the edges. The vector of coding coefficients is called
the local coding vector when the function on the edge is
considered as a linear combination of the packets received at

the starting node of the edge. When we consider the function
on the edge as a linear combination of the h messages, the
vector of coding coefficients (for the h messages) is called the
global coding vector. To recover the h messages, a receiver R
should obtain h global coding vectors whose linear span has
dimension h. In other words, the h× h matrix formed by these
h global coding vectors should be invertible. This h× h matrix
is called a transfer matrix of R. The previous description
constitutes the framework for scalar linear network coding.
The framework for vector network coding was presented in [9].
Each message and each packet is a vector of length t and
the coding coefficients are t× t matrices. The global coding
vectors, on the edges, consist of h matrices of size t× t, which
together form t× (ht) matrices. W.l.o.g., we assume that each
t× (ht) matrix of a global coding vector is a generator matrix
of a t-subspace of Fht

q . To recover the h messages, a receiver
R should have on its ` incoming edges, ` > h, h such global
coding vectors which form together an (`t) × (ht) transfer
matrix of rank ht.

The field size of the solution is an important parameter that
directly influences the complexity of the calculations at the
network nodes. It is known that any field size q > N suffices
for a solution. However, it is conjectured that the smallest
field size allowing a solution is much smaller [12], [13]. An
efficient algorithm to find such a field size and the related
network code was given in [15]. It is conjectured that the
minimum alphabet size is much smaller, but this was proved
only for two messages [12]. For this purpose we distinguish
between the smallest alphabet size required for each one of the
three types of network coding solutions. Given a network N ,
we define qs(N ) to be the smallest field size q for which N
has a scalar linear solution. Similarly, qn(N ) is the smallest
alphabet size q (q not necessarily a prime power) for which
N has a scalar nonlinear solution, and qv(N ) is the smallest
value qt, q a prime power, such that N has a vector solution
over Ft

q. By definition, qs(N ) > qv(N ) > qn(N ), and we
define the vector gap by

gapv(N ) , qs(N )− qv(N ).

Two other gaps (qs(N )− qn(N ) and qv(N )− qn(N )) are
defined similarly, but this paper will be mostly devoted to the
vector gap.
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One of the most celebrated families of networks is the
family of combination networks [22], which were used for
various topics in network coding. The Nh,r,s combination
network, where s > h, is shown in Fig. 1. The network has
three layers: the first layer consists of a single source with h
messages. The source transmits r packets to the r nodes of the
middle layer. Any s nodes in the middle layer are connected
to a receiver, and each one of the (r

s) receivers demands all
the h messages. It was proved in [22] that a solution for such
a network exists if and only if a related error-correcting code
exists. This network was also generalized to compare scalar
and vector network coding [11]. Its sub-networks were used
to prove that finding the minimum required field size of a
(linear or nonlinear) scalar network code for a certain multicast
network is NP-complete [21].

~x1, . . . ,~xh

. . . r nodes

s edges

(r
s) receivers

. . .

Figure 1. The Nh,r,s combination network: it has an edge from the source to
each of the r nodes in the middle layer. Each of the (r

s) receivers is connected
to a unique set of s middle-layer nodes, and demands all of the h source
messages.

The goal of this work is to consider two problems which are
related to vector coding solutions for combination networks
and their sub-networks. In Section II, we describe network
coding solutions (vector, scalar, linear and nonlinear) for the
Nh,r,s combination network. In particular, we consider the
Nh,r,h combination network and the maximum number of
nodes in the middle layer for such a network. This number is
related to the largest length of certain MDS codes. While there
exists a proof on the upper bound of such length for linear and
nonlinear codes, we are not aware of any proof based on the
properties of the subspaces. These codes are also MDS array
codes which were considered in the past for storage [5] and
are very popular today as distributed-storage codes, e.g., see
[8], [24] and references therein. In Section III, the vector gap
is considered. Such vector gaps, which are very large, were
considered in [11] for any number of messages h > 2. The
networks which were used for the proof are generalizations of
the combination networks in which for each receiver there are
some redundant edges on the paths between the source and the
receiver. The extra edges were used to distribute the (ht)-space
formed by the h vector messages of length t on more than h
edges. This enables some edges to transmit only a fraction of
a one-dimensional space. However, a similar idea cannot be
used for scalar linear network coding. The question whether
such gaps can be obtained if there are no such redundant edges
remained open. In Section III, we give a positive answer to
this question and prove that there exists a vector gap in such

networks called minimal multicast networks, for any number of
messages. The gap is increasing with the number of messages.
This also proves the existence of a gap for two messages which
was left open in [11]. The networks which will be used for this
purpose are sub-networks of the combination networks. The
proof will be based on the chromatic number of the q-Kneser
graph and a generalized version of it, the q-Kneser hypergraph,
which was not defined before. The coloring problem raises
an intriguing combinatorial problem which has independent
intellectual merit. Several more related problems will be
presented in Section IV and will be considered in the full
version of this paper. The same is true for some proofs of
claims in the paper.

II. VECTOR SOLUTION AND BOUND FOR MDS CODES

In this section, we first describe the three types of solutions
for the Nh,r,s combination network. The key result is the
following theorem proved in [22]. Let (r, qh, r − s + 1)q
denote a code over Fq of length r with qh codewords and
minimum Hamming distance r− s + 1. If this code is linear,
it is denoted by [r, h, r− s + 1]q.

Theorem 1. ( [22]) TheNh,r,s combination network is solvable
over Fq if and only if there exists an (r, qh, r− s + 1)q code.

In view of Theorem 1, what are the functions on the edges of
the Nh,r,s combination network in the three types of solutions?

1) For the scalar nonlinear solution, an (r, qh, r − s + 1)q
code, each coordinate in a codeword is a function of
h information symbols which are represented by the
h messages. The function for the ith symbol of a
codeword is the function on the link from the source
to the ith node in the middle layer.

2) For the scalar linear solution, an [r, h, r− s + 1]q code
is required. It has an r × h generator matrix and the
h entries of its ith column are the coding coefficients of
the linear function on the link from the source to the ith
node in the middle layer.

In both cases, the nodes of the middle layer transmit their
information to the related receivers. Each receiver obtains s
symbols from the middle-layer nodes, each one has the same
global coding vector on its incoming and outgoing edges.
Since the minimum Hamming distance of the code is r− s+ 1,
it follows that for each two different sets of h messages, each
receiver obtains a different s-tuple of symbols from the middle
layer nodes. Hence, it can recover the h messages.

For the vector network coding solution, the h matrices of
size t × t on the edges from the source to the middle-layer
nodes form together a t× (ht) matrix which has dimension t,
i.e., it represents a t-subspace of Fht

q . Now, to have a solution
for the Nh,r,s combination network, each s subspaces, related
to the edges between the source and the middle-layer nodes,
span the (ht)-space defined by the messages of the source.

A fundamental combinatorial structure that underpins some
of the generalized combination networks is a structure we call
a (t; h, α)q-independent configuration. We use [Vt ] to denote
all the t-dimensional subspaces of a vector space V, and [ab]
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to denote the Gaussian coefficient (where the field size q is
understood from context).

Definition 2. Let q be a prime power, t, h, α be positive integers,
α 6 h, and denote V = Fht

q . A (t; h, α)q-independent configu-
ration (IC) is a set C = {V1, V2, . . . , Vm} ⊆ [Vt ], such that for
all 1 6 i1 < i2 < · · · < iα 6 m,

dim(Vi1 + Vi2 + · · ·+ Viα) = αt.

We say |C| = m is the size of the IC.

Lemma 3. Let C be a (t; h, α)q-IC. If α > 2 then

|C| 6 q(h−α+2)t − 1
qt − 1

+ α− 2.

Proof: If α = 2 the claim is immediate by considering
the size of a t-spread [10].

Assume now α > 2, and denote V , Fht
q . Let us write

C = {V1, V2, . . . , Vm}, and define

W1 , V1 + V2 + · · ·+ Vα−2,

where dim(W1) = (α− 2)t. By the definition of an IC, Fht
q =

W1 + W2, where W2 ∈ [ V
(h−α+2)t]. It follows that any vector

v ∈ Vj, α − 1 6 j 6 m, may be written uniquely as v =
v1 + v2, where v1 ∈W1 and v2 ∈W2. We now define

V′j ,
{

v2 : v1 + v2 ∈ Vj, v1 ∈W1, v2 ∈W2
}

,

for all α− 1 6 j 6 m. It is easily seen that dim(V′j ) = t.
Furthermore, for any α− 1 6 j1 < j2 6 m,

dim(W1 + V′j1 + V′j2) = αt⇒ dim(V′j1 + V′j2) = 2t.

Thus, the set
{

V′i
}

α−16i6m contains |C| − α + 2 pairwise
disjoint t-subspaces of W2. Thus,

|C| − α + 2 6
[(h−α+2)t

1 ]

[t1]
.

We now make the connection between ICs and a certain
family of combination networks.

Lemma 4. The Nh,r,h combination network has a vector solu-
tion over Fq with messages of length t if and only if there exists
a (t; h, h)q-IC of size r.

Proof: In the first direction assume that a vector solution
over Fq with messages of length t exists. We note that by
construction, any node i in the middle layer has a subspace
Vi ⊆ V , Fht

q , with dim(Vi) 6 t. If the terminal Rj gets
from the middle layer the subspaces Vj1 , . . . , Vjh , then

dim(Vj1 + · · ·+ Vjh) = ht,

which implies that dim(Vi) = t. Thus, {Vi}16i6r is a
(t; h, h)q-IC.

In the other direction, assume C = {V1, . . . , Vr} is a
(t; h, h)q-IC. We can easily construct a vector network coding
solution to the Nh,r,h combination network. Simply send Vi to
the ith middle layer node. Since C is a (t; h, h)q-IC it follows

that receiver has a full rank (ht)× (ht) transfer matrix from
which it can recover the h messages.

Lemmas 3 and 4 form a generalization for an upper bound
on the length of MDS code (use α = h in Lemma 3). The
related results for (scalar) linear codes are given in [18].
Corollary 7 [18, p. 321] asserts that for an [n, k, n− k + 1]q
MDS code, we have that n 6 q + k − 1. This result is
strengthened in Theorem 11 [18, p. 326] by using a more
complicated proof based on projective geometry. The theorem
asserts that if k > 3 and q is odd then n 6 q + k− 2. A more
complicated proof for the same result is given for nonlinear
codes in [20, pp. 12-13].

Lemmas 3 and 4 can be generalized for a family of net-
works which generalize the combination network [11]. Some
interesting consequences implied by this generalization will
be discussed in the full version of this paper.

We can use Lemma 4 to upper bound the vector gap
in the Nh,r,h combination networks. For this we will use
Bertrand’s postulate (e.g., see [2]) that the interval [n, 2n]
contains a prime power for any integer n; and that the interval
[x, x + x21/40] contains a prime for all large enough x [3].
This implies the following result.

Theorem 5. For all positive integers h and r, let N denote the
Nh,r,h combination network. Then gapv(N ) 6 r + h− 3, and
for all large enough r, gapv(N ) 6 (r− 1)21/40 + h− 2.

III. MINIMAL MULTICAST NETWORKS

In this section we will prove that for each number of
messages h > 2, there exists a minimal multicast network
for which vector network coding outperforms scalar network
coding. A minimal multicast network can deliver h messages
from the source to the receivers, but if any edge is removed,
it can deliver at most h − 1 messages to at least one of
the receivers. From a practical point of view, considering
such minimal networks is interesting as it minimizes the used
network resources. From a theoretical point of view, minimal
networks can be regarded as a fair setting for a comparison
between the three types of network coding solutions.

Definition 6. A multicast network N is said to be minimal if
every edge crosses a cut of size h.

Thus, in a minimal network, the removal of any edge makes
at least one cut have size strictly less than h, and therefore the
new network is incapable of a solution.

To achieve the goal of this section, a sub-network of the
Nh,r,h combination network, denoted by N ∗h,r,h, will be used.
The network N ∗h,r,h has one source in the first layer, and [ht

t ]
nodes in the middle layer, each node represents a different t-
subspace of Fht

q . From each h nodes in the middle layer which
represent the t-subspaces Vi1 , . . . , Vih for which

Vi1 + · · ·+ Vih = Fht
q , (1)

there are links to a unique receiver.
For the remainder of this work, let G(X) be any t× (ht)

generator matrix for a t-subspace X of Fht
q . Also, the splitting
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of a t× (ht) matrix G is the h matrices of size t× t obtained
by taking the first t columns of G, then the next t columns,
and so on.

It is obvious from the definition of N ∗h,r,h that for vector
network coding, the minimum alphabet size for which it is
solvable is qt. The coding coefficients on the edge from
the source to the node represented by the t-subspace X are
formed by splitting of G(X) into h matrices of size t× t. The
global coding vector from a node u of the middle layer to a
receiver Rj is the same one as the global coding vector (which
coincides with the local coding vector) from the source to u.
It implies by (1) that the (ht)× (ht) transfer matrix of each
receiver is of full rank. It is not difficult to prove that a smaller
alphabet size is impossible.

For the scalar solution we form a new hypergraph
G = (V, E), where V is the set of middle-layer vertices of
N ∗h,r,h. Each set of h vertices from the middle layer from which
there are links to a joint receiver Rj of the third layer (i.e (1) is
satisfied), are connected in G by a hyperedge. When h = 2 this
hypergraph is the well-known q-Kneser graph qK2t:t. Hence,
we will denote the general hypergraph by qKh

ht:t and call it
the q-Kneser hypergraph. This is not to be confused with the
q-Kneser graph qKht:t whose vertices are t-subspaces of Fht

q
and two vertices are connected by an edge if their subspaces
are disjoint.

A coloring of a graph G = (V, E) is an assignment of a
set of colors to the set of vertices V such that for each edge
{u, v} ∈ E, the vertices u and v are assigned different colors.
The chromatic number of a graph G, denoted χ(G), is the
minimum number of colors in which we can color G. Before
we discuss the q-Kneser hypergraph we will concentrate on
the q-Kneser graph [6], [7] which is related to N ∗2,r,2, i.e. a
sub-network of a combination network with two messages.

The network N ∗2,r,2 has two messages and in a scalar
network coding solution on the link between the source and
each node in the middle layer there is a global coding vector
from F2

q. The two vectors on two distinct such edges, which
transmit information to two middle layer nodes (that represent
two disjoint t-subspaces of F2t

q ), must be linearly independent.
The set of such pairs of nodes is exactly the pairs of vertices
which define edges in qK2t:t. Hence, each color of a vertex
in qK2t:t will be associated with a vector of F2

q, such that
two different colors will be associated with two linearly
independent vectors. Since the cardinality of largest set of
vectors in F2

q which are pairwise linearly independent is q+ 1,
it follows that if the chromatic number of qK2t:t is c then the
alphabet size for the linear scalar solution is the smallest prime
power greater than or equal to c− 1.

This coloring method and the reduction from the network
to the q-Kneser graph are similar to some ideas in [12], [21].
Our method is unique by using the q-Kneser graph and also
its new generalization.

Theorem 7. For a prime power q and an integer t > 2, t ∈
{2, 3} or t < q log q − q, there exists a minimal network N
with two messages for which gapv(N ) > qt−1 − 1.

Proof: By [6], [7], the chromatic number of qK2t:t is

χ(qK2t:t) = qt + qt−1 for t = 2, 3 or t < q log q− q.

Thus, for these cases

qs(N ) > qt + qt−1 − 1,

and therefore we have a gap of at least

gapv(N ) = qs(N )− qv(N ) > qt−1 − 1.

The scope of Theorem 7 is somewhat limited due to the
restrictions on the value of t. We can remove these restrictions,
but severely reduce the guaranteed vector gap to merely 1.

Theorem 8. For a prime power q and any integer t > 2, there
exists a minimal network N with two messages for which
gapv(N ) > 1.

Proof: We will prove that χ(qK2t:t) > qt + 1. Recall
that the vertex set of qK2t:t is [Vt ], where V = F2t

q . Assume a
coloring of qK2t:t with c colors. Let Ui ⊂ [Vt ], 1 6 i 6 c, be
the set of vertices colored with color i. Then each Ui is a 1-
intersecting family in the language of [14], and an anticode of
diameter t− 1 in the language of [23]. Also, the set {Ui}16i6c
forms a tiling (partition) of [Vt ].

By [14], for all 1 6 i 6 c, |Ui| 6 [2t−1
t−1 ], and Ui is either{

U ∈
[

V
t

]
: V1 ⊆ U

}
or

{
U ∈

[
V
t

]
: U ⊆ V2t−1

}
,

where V1, V2t−1 are subspaces of V of dimensions 1 and
2t− 1, respectively. However, by [23], there is no tiling of V
by Ui of these shapes. Thus,

χ(qK2t:t) >
[2t

t ]

[2t−1
t−1 ]

= qt + 1,

since such a tiling of V will have size qt + 1. It follows that

gapv(N ) = qs(N )− qv(N ) > (qt + 2− 1)− qt = 1.

For h messages, the vector network code for the N ∗h,r,h
network is exactly as in the N ∗2,r,2 network. The coding
coefficients on the edge from the source to the middle-layer
node represented by the t-subspace X is formed by splitting
G(X) to h matrices of size t × t. For the scalar linear
network code we consider the q-Kneser hypergraph qKh

ht:t. Our
generalization is different from other generalizations, e.g. [19]
and references therein. The chromatic number of qKht:t is
related to different colors in the hyperedges of qKh

ht:t.

Theorem 9. For any prime power q and integers t > 2, h > 3,

χ(qKht:t) >
qht − 1
qt − 1

=
h−1

∑
i=0

qit.

Proof: Let U be a set of (qht − 1)/(qt − 1) pairwise-
disjoint subspaces of Fht

q . Such a set is called a spread and
it exists for all h and t [10]. The vertices of qKht:t related to
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the t-subspaces that are in U should be colored in a different
colors, which implies the claim of the theorem.

Corollary 10. For any prime power q and integers t > 2, h > 3,
there exists a minimal network N with h messages for which
gapv(N ) > ∑h−1

i=2 qit.

In [11] it was proved that for even h > 4 there exists a
multicast network (not minimal) N for which gapv(N ) =

q(h−2)t2/h+o(t), and for odd h > 5 there exists a mul-
ticast network (not minimal) N for which gapv(N ) =

q(h−3)t2/(h−1)+o(t). Corollary 10 implies that if t is fixed a
vector gap larger than q f (t) for any function f (t) can be
obtained. It is well-known [9], [11] that a scalar linear network
coding solution can be translated to a vector coding solution
with vectors of length t over Fq. Corollary 10 and the vector
gaps proved in [11] imply that a translation from a vector
coding solution with vectors of length t over Fq to a scalar
linear solution will require an alphabet of size q f (h,t), with an
interesting trade-off between h and t in f (h, t).

Finally, it is possible to improve the bound in Theorem 9
and as a consequence also the bound in Corollary 10. A lower
bound on the chromatic number of qKht:t is obtained by using
a normal spread (also called a geometric spread) [4], [17]
and the chromatic number of qK2t:t as given in [6], [7]. For
example we have:

Theorem 11. For a prime power q and an integer t > 2,
t ∈ {2, 3} or t < q log q − q, there exists a minimal net-
work N with h messages for which gapv(N ) > q(h−1)t +

∑h−1
i=1 qit−1 − 1.

In the full version of the paper we will also prove that the
vector-gap problem, for minimal multicast networks with two
messages can be reduced to sub-networks of the combination
network.

IV. CONCLUSION

The family of combination networks and their sub-networks
were used to prove two results. The first one is an upper
bound on the number of nodes in the middle layer for a
vector network coding solution. The second one is that for
any number of messages vector network coding outperforms
scalar network coding for minimal multicast networks with
respect to the field size. The first result is an MDS bound
for vector spaces and the proof is based on vector spaces and
is simpler than the one for nonlinear MDS codes. The second
result induces an interesting question on the chromatic number
of q-Kneser hypergraphs.

There are a few more problems which are induced directly
from our discussion.

1) Can the vector gap in minimal multicast networks with
more than two messages be reduced to subgraphs of the
combination networks?

2) What is the maximum vector gap for minimal multicast
networks, with h messages and vectors of length t?
Is it the one obtained by using the chromatic number
χ(qKht:t)?

3) Can vector gaps for multicast networks with two mes-
sages be larger than the one obtained for minimal
multicast networks?

4) What is the largest possible vector gap as a function of
h and t for a multicast network with h messages?
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