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Abstract—Optimal locally repairable codes with respect to the
bound presented by Prakash et al. are considered. New upper
bounds on the length of such optimal codes are derived. The new
bounds both improve and generalize previously known bounds.
Optimal codes are constructed, whose length is order optimal
when compared with the new upper bounds. The length of the
codes is super linear in the alphabet size.

I. INTRODUCTION

Locally repairable codes were introduced to improve the
efficiency of the repair process of a failed node [11] for codes
applied in distributed storage systems. More precisely, locally
repairable codes ensure that a failed symbol can be recovered
by accessing only r � k other symbols [11].

However, the original concept of locality only works when
exactly one erasure occurs (that is, one node fails). Over the
past few years, several generalizations have been suggested
for the definition of locality. As examples we mention locality
with a single repair set tolerating multiple erasures [18],
locality with disjoint multiple repairable sets [25], [20], [5],
and hierarchical locality [21].

In this paper, we focus on locally repairable codes with a
single repair set that can repair multiple erasures locally [18].
By ensuring δ−1 > 2 redundancies in each repair set, this kind
of locally repairable codes guarantees the system can recover
from δ − 1 erasures by accessing r surviving code symbols
for each erasure. This is denoted as (r, δ)-locality.

Research on codes with (r, δ)-locality has proceeded along
two main tracks. In the first track, upper bounds on the
minimum Hamming distance and the code length have been
studied. Singleton-type bounds were introduced for codes with
(r, δ)-locality in [18], [22], [26]. In [4], a bound depending on
the size of the alphabet was derived for the Hamming distance
of codes with (r, δ)-locality. Via linear programming, another
bound related with the size of the alphabet was introduced in
[1]. Very recently, in [10], an interesting connection between
the length of optimal linear codes with (r, δ = 2)-locality and
the size of the alphabet was derived.

In the second research track, constructions for optimal local-
ly repairable codes have been studied. In [19], a construction
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of optimal locally repairable codes was introduced based on
Gabidulin codes. By analyzing the structure of repair sets,
optimal locally repairable codes were also constructed in [22].
In [24], a construction of optimal locally repairable codes with
q = Θ(n) was proposed. In [23] and [27], optimal locally
repairable codes were constructed using matroid theory. The
construction of [24] was generalized in [15] to include more
flexible parameters when n 6 q. Very recently, in [17], cyclic
optimal locally repairable codes with unbounded length were
constructed for Hamming distance d = 3, 4. Finally, for the
case of Hamming distance d = 5, [10], [12], [3] presented
constructions of locally repairable codes that have optimal
distance as well as order-optimal length n = Θ(q2).

In this paper we first prove that the bound in [10] holds
for some other cases besides the one mentioned in [10]. We
then derive a new upper bound on the length of optimal
locally repairable codes for the case of δ > 2. Finally, we
give a general construction of locally repairable codes with
length that is super-linear in the field size. Based on some
special structures such as packings and Steiner systems, locally
repairable codes are obtained with optimal Hamming distances
and order-optimal length Ω(qδ) when δ > 2. Thus, the bound
for δ > 2 is also asymptotically tight for some special cases.

The remainder of this paper is organized as follows. Sec-
tion II introduces some preliminaries about locally repairable
codes. Section III establishes an upper bound on the length of
optimal locally repairable codes for the case δ > 2. Section
IV presents a construction of optimal locally repairable codes
with length n > q. Section V concludes this paper with some
remarks. For lack of space we omit all proofs, which are
available in a full version of this work [6].

II. PRELIMINARIES

We present the notation and basic definitions used through-
out the paper. For a positive integer n ∈ N, we define
[n] = {1, 2, . . . , n}. For any prime power q, let Fq denote
the finite field with q elements. An [n, k]q linear code C over
Fq is a k-dimensional subspace of Fnq with a k× n generator
matrix G = (g1,g2, . . . ,gn), where gi is a column vector
of dimension k for all i ∈ [n]. Specifically, it is called an
[n, k, d]q linear code if the minimum Hamming distance is d.
For a subset S ⊆ [n], let |S| denote the cardinality of S, let
2S denote the set of all subsets of S, and define

Rank(S) = Rank(Span {gi|i ∈ S}).
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In [8], Gopalan et al. introduce the following definition for
the locality of code symbols. The ith (1 6 i 6 n) code symbol
ci of an [n, k, d]q linear code C is said to have locality r
(1 6 r 6 k), if it can be recovered by accessing at most r
other symbols in C. More precisely, symbol locality can also
be rigorously defined as follows.

Definition 1 ([8]): For any column gi of G with i ∈ [n],
define Loc(gi) as the smallest integer r such that there exists
an (r + 1)-subset Ri = {i, i1, i2, . . . , ir} ⊆ [n] satisfying

gi ∈ Span(Ri \ {i}), i.e., gi =

r∑
t=1

λtgit λt ∈ Fq. (1)

Equivalently, for any codeword C = (c1, c2, . . . , cn) ∈ C, the
ith component

ci =

r∑
t=1

λtcit λt ∈ Fq.

Define Loc(S) = maxi∈S Loc(gi) for any set S ⊆ [n]. Then,
an [n, k, d]q linear code C is said to have information locality r
if there exists S ⊆ [n] with Rank(S) = k satisfying Loc(S) =
r. Furthermore, an [n, k, d]q linear code C is said to have all
symbol locality r if Loc([n]) = r.

To guarantee that the system can locally recover from
multiple erasures, say, δ−1 erasures, the definition of locality
was generalized in [18] as follows.

Definition 2 ([18]): The jth column gj , 1 6 j 6 n, of a
generator matrix G of an [n, k]q linear code C is said to have
(r, δ)-locality if there exists a subset Sj ⊆ [n] such that:
• j ∈ Sj and |Sj | 6 r + δ − 1; and
• the minimum Hamming distance of the punctured code
C|Sj obtained by deleting the code symbols ct (t ∈ [n] \
Sj) is at least δ,

where the set Sj is also called an (r, δ) repair set of gj . The
code C is said to have information (r, δ)-locality if there exists
S ⊆ [n] with Rank(S) = k such that for each j ∈ S, gj
has (r, δ)-locality. Furthermore, the code C is said to have
all symbol (r, δ)-locality if all the code symbols have (r, δ)-
locality.

In [18] (for the case δ = 2 [8]), the following upper
bound on the minimum Hamming distance of linear codes
with information (r, δ)-locality was derived.

Lemma 1 ([18]): For an [n, k, d]q linear code with infor-
mation (r, δ)-locality,

d 6 n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (2)

Additionally, a locally repairable code is said to be optimal
if its minimum Hamming distance attains this bound with
equality.

III. BOUNDS ON THE LENGTH OF LOCALLY REPAIRABLE
CODES

The goal of this section is to derive upper bounds on the
length of optimal locally repairable codes. Throughout this

section, let

n = (r + δ − 1)w +m, k = ru+ v,

where δ > 2, 0 6 m 6 r + δ − 2, and 0 6 v 6 r − 1 are all
integers.

We first characterize the basic structure of (r, δ) repair sets
for an optimal locally repairable codes with all symbol (r, δ)-
locality under the conditions that (r + δ − 1)|n and v = 0 or
u > 2(r − v + 1). The main method is to analyze:

1) The effect of the intersection between repair sets on the
Hamming distance of the locally repairable codes;

2) The influence of short repair sets with length strictly less
than r + δ − 1.

As a result, under the conditions that (r+ δ− 1)|n and v = 0
or u > 2(r − v + 1), we can prove that the bound in Lemma
1 is achievable only in the case that there exist some repair
sets with size r + δ − 1 that form a partition of [n].

Theorem 1: Let C be an optimal [n, k, d]q linear code
with all symbol (r, δ)-locality, where optimality is with respect
to the bound in Lemma 1. Let Γ ⊆ 2[n] be the set of all
possible (r, δ) repair sets. Write k = ru + v, for integers u
and v, and 0 6 v 6 r − 1. If (r + δ − 1)|n, k > r, and
additionally, if u > 2(r − v + 1) or v = 0, then there exists
a set of (r, δ) repair sets S ⊆ Γ, such that all R ∈ S are of
cardinality |R| = r + δ − 1, and S is a partition of [n].

Before going on to the main result, we briefly consider the
special case of δ = 2. This special case was studied in [10] and
an upper bound on the length of optimal codes was established.
While we obtain the exact same bound as [10], our bound
is an improvement since it has more relaxed conditions. In
particular, the bound of [10] requires k = Ω(dr2) whereas we
require k = Ω(r2). We now provide the exact claim:

Corollary 1: Let C be an optimal [n, k, d]q code with all
symbol locality r. If d > 5, k > r, (r+1)|n, and additionally,
r|k or k > 2r2 + 2r − (2r − 1)〈k〉r, then

n =

O
(
dq

4(d−2)
d−a −1

)
, if a = 1, 2,

O
(
dq

4(d−3)
d−a −1

)
, if a = 3, 4,

(3)

where a ≡ d (mod 4) and 〈k〉r denotes the least nonnegative
integer congruent to k modulo r.

We introduce another corollary that stems from Theorem 1.
It slightly extends [22, Theorem 9], originally proved only for
r|k, and has a very similar proof.

Corollary 2: Let C be an optimal [n, k, d]q linear code
with all symbol (r, δ)-locality, where optimality is with respect
to the bound in Lemma 1. If k > r, n = w(r + δ − 1), and
additionally r|k or k > 2r2 +2r−(2r−1)〈k〉r, then there are
w pairwise-disjoint (r, δ) repair sets, R1, . . . , Rw ⊆ [n], such
that for all 1 6 i 6 w, |Ri| = r + δ − 1, and the punctured
code C|Ri is a linear [r + δ − 1, r, δ]q MDS code.

We now extend our scope and consider locally repairable
codes for the case of δ > 2. To this end, we reduce locally
repairable codes from the case δ > 2 into δ = 2.
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Lemma 2: Let n = w(r + δ − 1), δ > 2, k = ur + v >
r, and additionally, u > 2(r − v + 1) or v = 0, where all
parameters are integers. If there exists an optimal [n, k, d]q
linear code C with all symbol (r, δ)-locality, then there exists
a [w(r+1), k, d′]q linear code C′ with all symbol (r, 2)-locality
(i.e., locality r), and d′ > 2 b(d− 1)/δc+ 1.

Now based on Lemma 2, the case δ > 2 is closely related
to the case δ = 2. A similar proof of [10, Theorem 3.2] can
help us to prove the following bound for δ > 2.

Theorem 2: Let n = w(r + δ − 1), δ > 2, k = ur + v,
and additionally, u > 2(r − v + 1) or v = 0, where
all parameters are integers. Assume there exists an optimal
[n, k, d]q linear code C with all symbol (r, δ)-locality, and
define t = b(d− 1)/δc. If 2t+ 1 > 4, then

n 6

{
(t−1)(r+δ−1)

2r(q−1) q
2(w−u)r−2v

t−1 , if t is odd
t(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t , if t is even

= O

(
t(r + δ)

r
q

(w−u)r−v
bt/2c −1

)
,

where w − u can also be rewritten as w − u = b(d − 1 +
v)/(r + δ − 1)c.

For the case d > r + δ, we can improve the bounds in
Corollary 1 and Theorem 2 as follows.

Corollary 3: Let n = w(r+ δ− 1), δ > 2, k = ur+ v >
r, and additionally, u > 2(r − v + 1) or v = 0, where all
parameters are integers. If there exists an optimal [n, k, d]q
linear code C with d > r + δ and all symbol (r, δ)-locality,
then for δ = 2

n 6 ε(r+δ−1)+


(d′−a)(r+1)

4(q−1)r q
4(d′−2)

d′−a , if a = 1, 2,

r+1
r

(
d′−a
4(q−1)q

4(d′−3)

d′−a + 1

)
, if a = 3, 4,

and for δ > 2

n 6 ε(r + δ − 1) +


(t−1)(r+δ−1)

2r(q−1) q
2(w′−u)r−2v

t−1 , if t is odd,
t(r+δ−1)
2r(q−1) q

2(w′−u)r−2v
t , if t is even,

where ε = d(d− 1)/(r + δ − 1)e − 1, d′ = d− ε(r + δ − 1),
w′ = w− ε, a ≡ d′ (mod 4), and t = b(d′− 1)/(δ)c. Herein,
we assume that 2t+ 1 > 4 holds.

IV. OPTIMAL LOCALLY REPAIRABLE CODES WITH
SUPER-LINEAR LENGTH

In this section, we introduce a construction of optimal
locally repairable codes with length n that is super linear in
the field size q. To streamline the presentation in the section
we adopt a slightly different notation than the previous one:
we use n = w(r+δ−1) and k = (w−1)r+v for 0 < v 6 r,
where all parameters are integers.

Construction A: Let the k information symbols be par-
titioned into w sets, say,

I(i) = {I(i,1), I(i,2), . . . , I(i,r)}, for i ∈ [w − 1],

I(w) = {I(w,1), I(w,2), . . . , I(w,v)}.

A linear code with length n is constructed by describing a
linear map from the information I = (I(1,1), . . . , I(w,v)) ∈ Fkq
to a codeword C(I) = (c1,1, . . . , cw,r+δ−1) ∈ Fnq , thus the
[n, k]q linear code is C = {C(I) : I ∈ Fkq}. This mapping
is performed by the following three steps:

a) Step 1 – Partial parity check symbols: For 1 6 i 6
w−1, let Si = {θi,t : 1 6 t 6 r+ δ−1} ⊆ Fq and let fi(x)
be the unique polynomial over Fq with deg(fi) 6 r − 1 that
satisfies fi(θi,t) = Ii,t for 1 6 t 6 r. For 1 6 i 6 w − 1 and
1 6 t 6 r + δ − 1, set ci,t = fi(θi,t).

b) Step 2 – Auxiliary symbols: Let {αt : 1 6 t 6
r − v} ⊆ Fq \ (

⋃
16i6w−1 Si). For 1 6 i 6 w − 1, and

1 6 t 6 r − v, define

ai,t =
fi(αt)∏

θ∈Si(αt − θ)
. (4)

c) Step 3 – Global parity check symbols: Let Sw =
{θw,t : 1 6 t 6 r+δ−1} ⊆ Fq\{αt : 1 6 t 6 r−v} and let
fw(x) be the unique polynomial over Fq with deg(fw) 6 r−1
that satisfies fw(θw,t) = Iw,t for 1 6 t 6 v, as well as∑

16i6w

ai,t = 0 for 1 6 t 6 r − v, (5)

where aw,t = fw(αt)∏
θ∈Sw (αt−θ) for 1 6 t 6 r − v. Here, the

polynomial fw(x) can be viewed as a polynomial over Fq
determined by I(w,j), 1 6 j 6 v and aw,t for 1 6 t 6 r − v.
Thus, fw(x) is unique and well defined. Set cw,j = fw(θw,j),
for 1 6 j 6 r + δ − 1.

Remark 1: At first glance there appears to be a distinction
between code symbols ci,j with 1 6 i 6 w−1 and those with
i = w. However, careful thought reveals that the code symbols
that correspond to the sets Si for 1 6 i 6 w are essentially
symmetric, i.e., any w−1 sets of code symbols can determine
v code symbols of the remaining set according to (5).

The all symbol (r, δ)-locality of the code C generated by
Construction A directly follows from Steps 1 and 3. The
problem that remains is to determine the minimum Hamming
distance of C. By restricting the structure of the evaluation
points, i.e., S1, S2, · · · , Sw, the Hamming distance can be
lower bounded as follows.

Theorem 3: Let µ be a positive integer, and let Si, i ∈ [w]
be the sets defined in Construction A. If every subset R ⊆
{Si : 1 6 i 6 w}, |R| = µ, satisfies that for all S′ ∈ R,∣∣∣∣∣∣S′ ∩

 ⋃
S∈R\{S′}

S

∣∣∣∣∣∣ < δ, (6)

then the code C generated by Construction A is an [n, k, d]q
linear code, with d > min{r−v+δ, (µ+1)δ} and all symbol
(r, δ)-locality, where n = w(r + δ − 1), k = (w − 1)r + v,
1 6 v 6 r, and all parameters are integers.

According to Lemma 1, the Hamming distance of C is
upper bounded by r − v + δ. Therefore, the key in applying
Theorem 3 to find optimal locally repairable codes is to find
sets S1, . . . , Sw of evaluation points with µδ > r − v. In the
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meantime, we also need to find as many evaluation points
as possible to get a long code. We first mention trivial such
families of sets that allow optimal codes with length n > q.

Corollary 4: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 6 v 6 r, be integers. If r−v 6 δ and q > 2r+δ−1−v then
there exists an optimal [n, k, d = r− v+ δ]q linear code with
all symbol (r, δ)-locality, where optimality is with respect to
the bound in Lemma 1.

Remark 2: We remark that in the case described in
Corollary 4, we can let Si = Sj for 1 6 i 6= j 6 w. Thus, the
length of the code C can be as long as we wish. This result is
already known for the case δ = 2 and d 6 4 (see [17]), and is,
to the best of our knowledge, new for the case of δ > 2. This
result also shows that the condition 2t+1 > 4 is necessary for
Theorem 2, since the code length is unbounded for the case
2t + 1 6 4, i.e., t 6 1 corresponding to the case r − v 6 δ,
where t = b(d− 1)/δc = b r+v+δ−1δ c.

Corollary 5: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 6 v 6 r, be integers. Let S ⊆ Fq \ {αi : 1 6 i 6 r − v},
|S| = δ − 1, be a fixed subset. Take Si ⊆ Fq \ {αi : 1 6
i 6 r− v} for 1 6 i 6 w. If Si ∩ Sj ⊆ S for 1 6 i 6= j 6 w,
then the code C generated by Construction A is an optimal
[n, k, d = r−v+δ]q linear code with all symbol (r, δ)-locality,
where optimality is with respect to the bound in Lemma 1.

Remark 3: By Corollary 5, Construction A can generate
optimal linear codes with all symbol (r, δ)-locality with flexi-
ble parameters and with n > q, since we can simply select S
as a common part of Si for 1 6 i 6 w. In [15], optimal locally
repairable codes are also constructed with flexible parameters.
However, in [15] the construction is based on the so-called
good polynomials [24], [16] and n 6 q.

A combinatorial structure that captures the interaction be-
tween the evaluation-point sets, S1, . . . , Sw, in Construction
A is a union-intersection-bounded family [9]. Its definition is
now given:

Definition 3 ([9]): Let n1, τ, δ, t, s be positive inte-
gers such that n1 > τ > 2, τ > δ and t > s.
The (s, t; δ)-union-intersection-bounded family (denoted by
(s, t; δ)-UIBF(τ, n1)) is a pair (X ,S), where X is a set of
n1 elements (called points) and S ⊆ 2X is a collection of
τ -subsets of X (called blocks), such that any s + t distinct
blocks A1, A2, . . . , As, B1, B2, . . . , Bt ∈ S satisfy∣∣∣∣∣∣

 ⋃
16i6s

Ai

 ∩
 ⋃

16i6t

Bi

∣∣∣∣∣∣ < δ.

The following corollary follows from Theorem 3 and Lem-
ma 1.

Corollary 6: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 6 v 6 r, be integers, and let µ be a positive integer with
µδ > r−v. If (Fq\{αt : 1 6 t 6 r−v},S = {Si : 1 6 i 6
w}) is a (1, µ−1; δ)-UIBF(r+δ−1, q−r+v) then the code C
generated by Construction A is an optimal [n, k, d = r−v+δ]q
linear code with all symbol (r, δ)-locality, where optimality is
with respect to the bound in Lemma 1.

In [9], a lower bound on the size of (1, µ− 1; δ)-UIBF(r+
δ−1, q) is given, which immediately implies a lower bound on
the length of the codes generated by Construction A according
to Corollary 6.

Lemma 3 ([9]): Let µ, δ, r be positive integers, then there
exists a (1, µ − 1; δ)-UIBF(r + δ − 1, q) (Fq,S) with |S| =

Ω(q
δ
µ ), where r, δ, µ are regarded as constants.

Based on Corollary 6 and Lemma 3, we have the following:
Corollary 7: Let n = w(r + δ − 1), k = (w − 1)r + v,

1 6 v 6 r, be integers, and let µ be a positive integer with
µδ > r−v. Then Construction A can generate an optimal (with
respect to the bound in Lemma 1) [n, k, d = r−v+ δ]q linear
code C with all symbol (r, δ)-locality and length n = O(q

δ
µ ),

where we regard r, δ, and µ as constants.
In what follows, we consider some special sufficient condi-

tions for (6) to construct optimal linear codes with all symbol
(r, δ)-locality.

Theorem 4: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 6 v 6 r, be integers, and let a be a positive integer. If
|Si ∩ Sj | 6 a for 1 6 i 6= j 6 w and r − v < δ2

a , then the
code C generated by Construction A is an optimal [n, k, d =
r − v + δ]q linear code with all symbol (r, δ)-locality, where
optimality is with respect to the bound in Lemma 1.

Definition 4 ([7], VI. 40): Let n1 > 2 be an integer and
u a positive integer. A τ -(n1, t, 1)-packing is a pair (X ,S),
where X is a set of n1 elements (called points) and S ⊆ 2X

is a collection of t-subsets of X (called blocks), such that
each τ -subset of X is contained in at most one block of S.
Furthermore, if each τ -subset of X is contained in exactly
one block of S, then (X ,S) is also called a (τ, t, n1)-Steiner
system.

The following corollary follows directly from Theorem 4.
Corollary 8: Let n1 = q−r+v. If there exists a (τ +1)-

(n1, r+ δ− 1, 1)-packing with blocks S and r− v < δ2

τ , then
there exists an optimal [n, k, d]q linear code with all symbol
(r, δ)-locality, where n = |S|(r + δ − 1), k = (|S| − 1)r + v,
and d = r − v + δ.

The number of blocks of a packing is upper bound by the
following Johnson bound [13]:

Lemma 4: ([13]) The maximum possible number of
blocks of a (τ + 1)-(n1, r + δ − 1, 1)-packing S satisfies

|S| 6
⌊

n1
r + δ − 1

⌊
n1 − 1

r + δ − 2
. . .

⌊
n1 − τ

r + δ − 1− λ

⌋
. . .

⌋⌋
.

Thus, the number of blocks for a (τ + 1)-(n1, r+ δ− 1, 1)-
packing can be as large as O(nτ+1

1 ), when τ , r, and δ are
regarded as constants.

Corollary 9: Let n1 = q−r+v. If there exists a (τ +1)-
(n1, r+ δ− 1, 1)-packing with blocks S, |S| = O(nτ+1

1 ), and
r− v < δ2

τ , then there exists an optimal [n, k, d]q linear code
with all symbol (r, δ)-locality, where n = |S|(r + δ − 1) =
O(qτ+1), k = (|S|− 1)r+ v and d = r− v+ δ. In particular,
for the case w−1 > 2(r−v+1), r−v = δ+1, i.e., d = 2δ+1
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and τ = δ−1, the code based on the (τ+1)-(n1, r+δ−1, 1)-
packing has asymptotically optimal length, where r and δ are
regarded as constants.

As an example, we also analyze the length of the codes
based on Steiner systems.

Corollary 10: Let n1 = q − r + v. If there exists a (τ +

1, r + δ − 1, n1)-Steiner system and r − v 6 δ2

τ , then there
exists an optimal [n, k, d]q linear code with all symbol (r, δ)-
locality, where

n =

(
n1

τ+1

)
(r + δ − 1)(
r+δ−1
τ+1

) , k =

( (
n1

τ+1

)(
r+δ−1
τ+1

) − 1

)
r + v,

and d = r−v+δ. In particular, for the case w−1 > 2(r−v+1),
r−v = δ+1, i.e., d = 2δ+1 and τ = δ−1, the code based on
the (δ, r+ δ− 1, q− δ− 1)-Steiner system has asymptotically
optimal length, where r and δ are regarded as constants.

Remark 4: For the case δ = 2 and d = 5, optimal
linear codes with all symbol (r, 2)-locality and asymptotically
optimal length Θ(q2) have been introduced in [10], [12].

Remark 5: Given positive integers τ , r and δ > 2, the
natural necessary conditions for the existence of a (τ + 1, r+
δ−1, q− r+ v)-Steiner system are that

(
q−r+v−i
τ+1−i

)
|
(
r+δ−1−i
τ+1−i

)
for all 0 6 i 6 τ . It was shown in [14] that these conditions are
also sufficient except perhaps for finitely many cases. While q
might not be a prime power, any prime power q > q will
suffice for our needs. It is known, for example, that there
is always a prime in the interval [q, q + q21/40] (see [2]).
Thus, Construction A provides infinitely many optimal linear
[n, k, d]q codes, with all symbol (r, δ)-locality, and

n = (r + δ − 1) ·
(
q−r+v
τ+1

)(
r+δ−1
τ+1

) = Ω(qτ+1) = Ω(qτ+1),

k =

((
q−r+v
τ+1

)(
r+δ−1
τ+1

) − 1

)
r + v,

d = r − v + δ,

i.e., with length super-linear in the field size.

V. CONCLUDING REMARKS

In this paper, we first derived an upper bound for the
length of optimal locally repairable codes when δ > 2. As
a byproduct, we also extended the range of parameters for the
known bound (the case δ = 2) and improve its performance
for the case d > r + δ. A general construction of locally
repairable codes was introduced. By the construction, locally
repairable codes with length super-linear in the field size can
be generated. In particular, for some cases those codes have
asymptotically optimal length with respect to the new bound.

Several combinatorial structures, e.g., union-intersection-
bounded families, packings, and Steiner systems, satisfy (6)
and play a key role in determining the length of the codes
generated by Construction A. If more of those structures with
a large number of blocks can be constructed, more good codes
with length n > q can be generated. Finding more such

combinatorial structures and explicit constructions for them,
is left for future research.
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