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Abstract— We consider hard-decision iterative decoders for
product codes over the erasure channel, which employ repeated
rounds of decoding rows and columns alternatingly. We derive the
exact asymptotic probability of decoding failure as a function of
the error-correction capabilities of the row and column codes, the
number of decoding rounds, and the channel erasure probability.
We examine both the case of codes capable of correcting a
constant amount of errors, and the case of codes capable of
correcting a constant fraction of their length.

I. INTRODUCTION

One of the simplest methods of combining two codes is
the product construction. Let C1 and C2 be [n1, k1, d1] and
[n2, k2, d2] linear codes respectively. Then, the set of n1 ×
n2 arrays whose columns are codewords of C1 and whose
rows are codewords of C2, is the product code C1 ⊗C2 with
parameters [n1n2, k1k2, d1d2].

Product codes are useful in a variety of applications (for
references see [1]). They may be found in the ubiqui-
tous CD standard IEC-908 and CD-ROM standard ECMA-
130 (for details see [2]), as well as the DVD standard
(www.dvdforum.org). Their rectangular shape makes them
especially appealing to two-dimensional error-control applica-
tions (for references see [3]).

The fact that product codes retain entire codewords of their
constituent codes makes it tempting to use an iterative decoder
in the following fashion. First, each of the columns is decoded
using a decoder for C1. The resulting (partially) decoded
array is then used for a new round of decoding in which
each row is decoded using a decoder for C2. This process
may be carried for any number of rounds deemed necessary,
alternatingly decoding rows and columns. It is therefore a
natural question to ask what is the decoding-failure probability
of such a scheme.

This probability is obviously a function of the amount of
errors correctable by the columns and row codes, the number
of decoding rounds, and the channel error probability. The
channel need not be binary, and we assume that it introduces
an error in a certain position independently of other positions,
and with the same distribution. We use the row and column
decoders as black boxes with the only assumption being that
they do not misdecode, i.e., they either correct all the errors
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othing. This is the case when we take the q-ary erasure
l.
is work we calculate the asymptotic decoding-failure

ility. This is a rare case where we can precisely predict
ormance of iterative decoding analytically for a specific
ther than a random ensemble. We manage this by
g the problem to a graph-theoretic setting in which the

l is thought of as producing random bi-partite graphs.
ng so, we can rely on well-known mechanisms for
g properties of random graphs.
paper is organized as follows. In Section II we give
ecessary background on random graphs. We continue
ion III, in which we examine row and column codes
can correct a constant number of errors. This will be

to as the constant error correction case. In Section
handle the case of row and column codes capable of
ing a constant fraction of their length, which we will

linear error correction case. We conclude in Section
a discussion of the results.

II. BACKGROUND

s examine the case where we have a product code with
rds of size n×n, and the column code and row codes
h capable of correcting t errors. After passing through
nnel, a received word may contain errors. We can

nt these errors as a bi-partite graph G = (VL, VR, E)
vertex in VL = {1, . . . , n} for each row, and a vertex
{n + 1, . . . , 2n} for each column. An edge (i, j) is

and only if position (i, j − n) is in error.
L and nR be positive integers, and let 0 ≤ p ≤ 1. The
bi-partite graph, G(nL, nR, p), is a probability space

e set of bi-partite graphs on the vertex set V = VL∪VR,
|VL| = nL, |VR| = nR, VL ∩ VR = ∅, and with

Pr[(i, j) ∈ G] =

{
p i ∈ VL, j ∈ VR

0 otherwise,

ese mutually independent. Hence, we can think of our
l as producing a random bi-partite graph G(n, n, p).
und of decoding consists of an attempt to decode either
rows, or all the columns. When viewed in the bi-partite
epresentation, a decoding round consists of going over
he vertices of VL or the vertices of VR, and for each



vertex with degree less or equal to t, removing all of its
adjacent edges. Successive rounds alternate between rows and
columns. We assume, w.l.o.g., that the last round is always
performed on the rows. We denote the number of rounds as
r, where r is a constant.

Given a bi-partite graph, G, representing the transmission
errors, we say that it is (r, t)-decodable if a decoder which
can correct up to t errors in each row and column, corrects
all the errors after r rounds. In other words, after r rounds of
edge removals as described above, no edges remain. Our aim
is to analyze the asymptotic probability of decoding failure.

Throughout this paper we follow the notation of [4]. Given
two functions, f(n) and g(n), we say that f(n) � g(n) if
f(n) = o(g(n)). Let G be a graph, and let A be a graph-
theoretic property. If G has property A, we denote it by
G |= A. In our case, A is the property that the graph is
(r, t)-decodable. As mentioned in [4], many graph-theoretic
properties exhibit a threshold behavior as follows.

Definition 1: r(n) is called a threshold function for a graph
theoretic property A if
• When p(n) � r(n), limn→∞ Pr[G(n, n, p(n)) |= A] = 0.
• When p(n) � r(n), limn→∞ Pr[G(n, n, p(n)) |= A] = 1.

Finally, given some event A whose probability depends on
some parameter n, we say that A occurs almost always if
limn→∞ Pr[A] = 1.

III. THE CONSTANT ERROR CORRECTION CASE

In this section we handle the case where both the column
and row codes are capable of correcting a constant t number
of errors. This is done by first noting that a bi-partite graph
representing the transmission errors is decodable if and only if
it does not contain a certain subgraph which we call an (r, t)-
undecodable configuration. We then continue, using the theory
of random graphs, to analyze the probability that the random
bi-partite graph contains this undecodable configuration. We
need the following definitions first.

Definition 2: Let G = (V, E) be a graph, and let v ∈ V be
a vertex of the graph. We denote by Ni(v) the set of vertices
of G which are reachable from v by a path (not necessarily
simple) of length exactly i.

We note that under this definition, a vertex of degree at
least 1 is its own neighbor at distance 2, since we can take a
path going over an outgoing edge, and returning by the same
edge. In fact, such a vertex is its own neighbor for any even
distance. We denote the degree of vertex v ∈ V as d(v).

Definition 3: Let G = (VL, VR, E) be a bi-partite graph.
We say that G is an (r, t)-undecodable configuration if there
exists v ∈ VL such that all the following hold:

•
⋃r

i=0 Ni(v) = VL ∪ VR.
• For all 0 ≤ i ≤ r − 1 and v′ ∈ Ni(v), d(v′) ≥ t + 1.

We call v the root of G.
Note that by the first requirement, the graph must be

connected. Hence, the sets Ni(v) are not disjoint, and both

N0(v) ⊆ N2(v) ⊆ N4(v) ⊆ . . .
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urthermore, if v′ ∈ Ni(v) for some i ≥ 0, then its
iate neighbors are all in Ni+1(v).
ition 4: Let G = (VL, VR, E) be a bi-partite graph,
H = (V ′

L, V ′
R, E′) be another bi-partite graph. We say

is an ordered bi-partite subgraph of G if there exist
e functions fL : V ′

L → VL and fR : V ′
R → VR such

(v1, v2) ∈ E′, then (fL(v1), fR(v2)) ∈ E.
following theorem is the basis for our analysis.
rem 1: A bi-partite graph G = (VL, VR, E) is (r, t)-
ble if and only if it does not have an (r, t)-undecodable
ration as an ordered bi-partite subgraph.
oof: In the first direction, let us assume that G
s an (r, t)-undecodable graph H as an ordered bi-partite
h. Let v be the root of H . In the first round of decoding
vertices corresponding to Nr−1(v) are not decoded
ey have degree of at least t+1. In the following round,
ke any vertex v′ ∈ Nr−2(v), all of its neighbors are in
) so they were not corrected in the first round. Since v′

ree at least t+1, it follows that the vertices of Nr−2(v)
corrected in the second round. Continuing in the same
, after r rounds, the sole vertex of N0(v) = {v} is not
ed, so G is not (r, t)-decodable.
e other direction, let G be a graph which is not

ecodable. Hence, after r rounds of decoding, there
vertex v ∈ VL which was not corrected. We now

at v is the root of an (r, t)-undecodable configuration
′
L, V ′

R, E′) which is an ordered bi-partite subgraph of
start by obviously defining N0(v) = {v} and taking
{v}, V ′

R = ∅, and E′ = ∅. Now, since v was not
d at the end of round r, round r − 1 ended with v
at least t + 1 undecoded neighbors. We denote this set
hbors as N1(v). We also add these neighbors to V ′

R and
ropriate edges to E′. Take some v′ ∈ N1(v). Since v′

t decoded at the end of round r−1, round r−2 ended
having at least t+1 undecoded neighbors. Going over

sible v′ ∈ V ′
R, and taking the union of the undecoded

rs we get N2(v). Note that N0(v) ⊆ N2(v). We add
to V ′

L and the appropriate edges to E ′. Continuing in
e manner we get an (r, t)-undecodable configuration
heorem states.
he previous theorem, the question of undecodability
s a purely graph-theoretic question. For the asymptotic

s we need the following definitions and probabilistic

rem 2 ([4]): Let X be a non-negative integral-valued
variable. If E[X] = o(1), then X = 0 almost always.

oof: Trivial.
he rest of this section, let X = X1 + · · ·+ Xm where
he indicator random variable for event Ai. For indices
e write i ∼ j if i 
= j and events Ai and Aj are not
dent. We define

∆ =
∑
i∼j

Pr[Ai ∧ Aj ].



Theorem 3 (Corollary 4.3.4, [4]): If E[X] → ∞ and ∆ =
o(E[X]2), then X > 0 almost always.

Definition 5 ([4]): Let H be a graph with v vertices and e
edges. We call ρ = e/v the density of H . We call H balanced
if every subgraph H ′ has ρ(H ′) ≤ ρ(H). We call H strictly
balanced if every proper subgraph H ′ has ρ(H ′) < ρ(H).

The following is an adaptation of Theorem 4.4.2, [4], to
bi-partite random graphs.

Theorem 4: Let H be a balanced bi-partite graph with v
vertices and e edges. Let G(n, n, p) be a random bi-partite
graph, and let A be the event that H is an ordered bi-partite
subgraph of G. Then p = n−v/e is the threshold function for
A.

Proof: Let H = (V ′
L, V ′

R, E′) be a balanced bi-partite
graph. Denote vL = |V ′

L|, and vR = |V ′
R|, so v = vL + vR.

Let G = (VL, VR, E) be a random bi-partite graph. Let S be
a v-subset of the vertices of G such that |S ∩ VL| = vL and
|S ∩ VR| = vR. Let AS be the event that the subgraph of G
induced by S contains H as an ordered bi-partite subgraph.
Then obviously,

pe ≤ Pr[AS ] ≤ vL!vR!pe.

Let XS be the indicator random variable for AS and

X =
∑
S

XS .

By linearity of expectation,

E[X] =
∑
S

E[XS ] =

(
n

vL

)(
n

vR

)
Pr[AS ] = Θ(nvpe).

If p(n) � n−v/e then E[X] = o(1), so by Theorem 2, X = 0
almost always.

Now assume p(n) � n−v/e so that E[X] → ∞, and
consider ∆ of Theorem 3.

∆ =
∑
S∼T

Pr[AS ∧ AT ] =
∑
S

Pr[AS ]
∑
T∼S

Pr[AT |AS ].

Here, two v-sets S and T satisfy S ∼ T if and only if S 
=
T and they share some edges, i.e., |S ∩ T ∩ VL| ≥ 1 and
|S ∩ T ∩ VR| ≥ 1. Let S be fixed, so

∑
T∼S

Pr[AT |AS ] =

v−1∑
i=2

∑
|S∩T |=i

|S∩T∩VL|≥1
|S∩T∩VR|≥1

Pr[AT |AS ].

For each i there are O(nv−i) choices of T . Fix S and T , and
consider Pr[AT |AS ]. There are O(1) possible copies of H on
T . Since H is balanced, each has at most ie

v edges with both
vertices in S, hence at least e − ie

v other edges. Therefore,

Pr[AT |AS ] = O(pe− ie
v ),

and

∑
T∼S

since p
O(pe),
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v−1∑
i=2

O(nv−ipe− ie
v )

=
v−1∑
i=2

O((nvpe)1−
i
v ) =

v−1∑
i=2

o(nvpe) = o(E[X]),

(n) � n−v/e. We have already seen that Pr[AS ] =
and there are O(nv) choices for S, so

∆ =
∑
S

Pr[AS ]
∑
T∼S

Pr[AT |AS ]

= O(nvpe)o(E[X]) = o(E[X]2).

orem 3, X > 0 almost always.
us start by examining one specific type of an

ndecodable configuration. We define an exact (r, t)-
dable tree as an (r, t)-undecodable configuration with-
les in which each vertex at distance at most r−1 from
t has degree t + 1 exactly. It is easy to see that such a
s strictly balanced. We denote the number of edges in
tree as eT (r, t). This number is easily seen to be:

eT (r, t) =

{
2r t = 1

(t + 1) tr−1
t−1 t ≥ 2.

(1)

is is a tree, obviously the number of vertices vT (r, t) is
eT (r, t)+1. By Theorem 4, the threshold function for
tence of an exact (r, t)-undecodable tree in G(n, n, p)

p = n
−

“
1+ 1

eT (r,t)

”
. (2)

her case is when the (r, t)-undecodable tree is not
i.e., the configuration is a tree, but some vertices at
e at most r − 1 from the root have a degree which is
more than t+1. However, in such a case, the existence
n-exact (r, t)-undecodable tree implies the existence of
t (r, t)-undecodable tree (simply trim the excess edges
tices).
we are left with the case of (r, t)-undecodable config-

s which are not trees at all. Such configurations must
cycles. It is also easy to see that such configurations
ntain a simple cycle with at most 2r edges.

e take a graph of a simple cycle with e edges, it also
ertices. This graph is also strictly balanced. It follows
threshold function for the existence of such a cycle is

1. Hence, when (2) holds, or when

p � n
−

“
1+ 1

eT (r,t)

”
,

e almost always no simple cycles of length at most 2r.
because each length almost always does not appear,

re are O(1) such lengths which interest us, so a simple
ound suffices. Thus, there are almost always no (r, t)-
dable configurations with cycles in G(n, n, p) under
onditions.



Corollary 1: The threshold function for the existence of an
(r, t)-undecodable configuration in G(n, n, p), for some fixed
r and t, is

p = n
−

“
1+ 1

eT (r,t)

”
,

where eT (r, t) is given by (1).
Now that we have established a threshold behavior for the

existence of (r, t)-undecodable configurations, we are left with
the case where

p = c · n
−

“
1+ 1

eT (r,t)

”
,

for some constant c > 0. We know that in this case, the ques-
tion of the existence of an (r, t)-undecodable configuration in
G(n, n, p) reduces to the question of the existence of an exact
(r, t)-tree in G(n, n, p).

For the following analysis we need the Janson inequality
[5]. Let Ω be a finite universal set, and let R be a random
subset of Ω given by

Pr[r ∈ R] = pr,

where these events are mutually independent. Let Bi, i ∈ I
be subsets of Ω, where I is a finite index set. Let Ai be the
event that Bi ⊆ R. Let Xi be the indicator variable for Ai,
and let X =

∑
i∈I Xi. We denote the complementary event

to Ai as Ai. We set

M =
∏
i∈I

Pr[Ai].

Theorem 5 (The Janson Inequality, [5]): Let Ai, i ∈ I , ∆,
and M , be as above, and assume that Pr[Ai] ≤ ε for all i ∈ I .
Then

M ≤ Pr[∧i∈IAi] ≤ Me
1

1−ε
∆
2 .

We can now continue by adapting Theorem 10.1.1, [4], to
bi-partite graphs.

Theorem 6: Let H be a strictly-balanced bi-partite graph
with v vertices, e edges, and a automorphisms. Let c > 0 be
some constant. We denote by A the event that G does not have
H as an ordered bi-partite subgraph. Then, when p = c·n−v/e

we have,

lim
n→∞

Pr[G(n, n, p) |= A] = exp[−ce/a].

Proof: Let H = (V ′
L, V ′

R, E′) be a strictly-balanced bi-
partite graph. Denote vL = |V ′

L|, and vR = |V ′
R|, so v =

vL + vR. Let Bi, 1 ≤ i ≤
(

n
vL

)(
n

vR

)
vL!vR!/a, range over the

edge sets of possible placements of H as an ordered bi-partite
subgraph of G. Let Ai be the event that Bi ⊆ G(n, n, p).

We use Janson’s inequality from Theorem 5. For all i,
Pr[Ai] = pe, so

lim
n→∞

M = lim
n→∞

(1 − pe)(
n

vL
)( n

vR
)vL!vR!/a

= exp[−ce/a],

since p = c · n−v/e. We turn to handle

∆ =
∑
i∼j

Pr[Ai ∧ Aj ].

When i ∼ j, let k denote the number of vertices in the
intersection of the two placements of H . Obviously 2 ≤ k ≤ v.

Let fk

when i
For k
2 ≤ k ≤
subgrap
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∼ j and there are k vertices in the intersection.

= v we obviously have fv < e since i 
= j. When
v − 1, since H is strictly-balanced and Bi ∩ Bj is a

h of H ,
fk

k
<

e

v
.

re O(n2v−k) choices of i and j which intersect in k
. Hence, for each such i and j,

r[Ai ∧ Aj ] = p|Bi∪Bj | = p2e−|Bi∩Bj | ≤ p2e−fk ,

n

∆ =
v∑

k=2

O(n2v−k)O(n− v
e
(2e−fk)).

2v − k −
v

e
(2e − fk) =

vfk

e
− k < 0,

o(1). Janson’s inequalities become a sandwich, so

lim
n→∞

Pr[∧iAi] = lim
n→∞

M = exp[−ce/a].

nately, an exact (r, t)-tree is strictly balanced, and has
owing number of automorphisms:

aT (r, t) =

{
2 t = 1

(t + 1)!(t!)(t+1) tr−1
−1

t−1 t ≥ 2.
(3)

e get the following corollary:
llary 2: The probability that G(n, n, p) is (r, t)-

ble when p = c · n
−

“
1+ 1

eT (r,t)

”
, is asymptotically

eT (r,t)/aT (r, t)], where eT (r, t) is given by (1) and
) is given by (3).
lly, we summarize the case of constant error correction
e I.

TABLE I

YMPTOTIC PROBABILITY OF DECODER FAILURE WITH r ROUNDS

DING, A CONSTANT t OF DECODABLE ERRORS IN EACH ROW AND

COLUMN, AND ERASURE PROBABILITY p

p(n) Decodability

p � n
−

“
1+ 1

eT (r,t)

”
Almost always decodable

p = c · n
−

“
1+ 1

eT (r,t)

”
Decodable with probability
exp[−ceT (r,t)/aT (r, t)]

p � n
−

“
1+ 1

eT (r,t)

”
Almost always undecodable

IV. THE LINEAR ERROR CORRECTION CASE

ow turn to the case of linear error correction capabil-
his case appears to be much simpler than the previous
t F = {C1, C2, . . . } be an infinite family of codes of

creasing length, and let us denote the length of Ci by
now require that Ci is capable of correcting αni errors,



where 0 < α < 1 is some constant. We note that “good” codes
also fall into this category.

Just like before, in this section we consider a product code
having codewords of size n × n. For convenience, the row
code and the column code are each capable of correcting αn
errors, where 0 < α < 1 is a constant. We denote by p the
erasure probability of the channel.

The main tool for our analysis is the well known Chernoff
bound.

Theorem 7 (The Chernoff Bound): Let X =
∑n

i=1 Xi be
the sum of n independent random variables, each in [0, δ]. Let
ε ∈ (0, 1], and µ > 0, be fixed. Then,

• If E[Xi] ≤ µ for all i, then Pr[X ≥ (1 + ε)µn] <
exp[−ε2µn/(3δ)].

• If E[Xi] ≥ µ for all i, then Pr[X ≤ (1 − ε)µn] <
exp[−ε2µn/(2δ)].

We can now state the main result.
Theorem 8: Let 0 ≤ p ≤ 1 be fixed. Then,
• If p < α then using only one round of decoding, i.e.,

only the row code, the decoder successfully decodes any
received word almost always.

• If p > α then no matter how many rounds of decoding
are used, the decoder fails to decode any received word
almost always.
Proof: Assume p < α. Choose some fixed 0 < ε <

α/p − 1. Using the Chernoff bound of Theorem 7, any given
row contains less than αn errors with probability tending to
1 exponentially fast. Hence, by a simple union bound, the
probability of the event that there is some undecodable row
in the first round, tends to 0 exponentially fast. Hence, the
first round of decoding successfully corrects all errors almost
always.

If p > α, choose some fixed 0 < ε < 1 − α/p. Just
like the previous case, the probability that any given row or
column contain less than αn errors tends to 0 exponentially
fast by the Chernoff bound. Hence, given a received word, by
a simple union bound, the probability that there is any row or
column which is decodable tends to zero exponentially fast.
This means, that almost always the decoder fails on all the
rows and all the columns. Hence, no matter how many rounds
are used, the decoding process fails almost always.

V. CONCLUSION

We analyzed the asymptotic probability of decoding failure
of iterative decoders for product codes. Our analysis is limited
to the case of hard-decision decoding over the erasure channel.
We examined both the case of codes capable of correcting a
constant number of errors in each row and column, and the
case of codes capable of correcting a constant fraction of the
length of each row and column.

In the case of constant error correction, the asymptotic
probability shows a threshold behavior. As shown in Table I,
when the erasure probability decays faster than the threshold
function, we can correctly decode every received word almost
always. Conversely, when it decays slower, we almost always
fail to decode any received word. When the erasure probability
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just like the threshold function up to a multiplication
nstant, we have an exact expression for the probability
der failure. It should be noted, that it is beneficial to
n more rounds of decoding, and codes which correct
rrors, since both eT (r, t) and aT (r, t) are increasing
ns and aT (r, t) grows faster than eT (r, t). This means
her values of r and t give threshold functions closer

, and higher probability of successfully decoding when
sure probability is at the threshold.
other case, of linear error correction capabilities, is

more curious. Again we have a sharp threshold
r, and in this case, it is constant. However, above this
ld, we almost always have too many errors for each
column to correct and we fail, no matter how many
of decoding we do. Below this threshold, we almost
eliminate all the errors after the first round of decoding,
round of decoding is enough. In that case, we do not
se the column code at all, and the redundancy invested
is simply redundant. So it appears in that case, that it
r to use just the row code instead of the product code.
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