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Abstract—We propose a list-decoding scheme for reconstruc-
tion codes in the context of uniform-tandem-duplication noise,
which can be viewed as an application of the associative memory
model to this setting. We find the uncertainty associated with
m > 2 strings (where a previous paper considered m = 2) in
asymptotic terms, where code-words are taken from a typical
set of strings, consisting a growing fraction of the space size,
converging to 1. Thus, we find the trade-off between the number
of errors, the acceptable list size and the resulting uncertainty,
which corresponds to the required number of distinct retrieved
outputs for successful reconstruction. It is therefore seen that by
accepting list-decoding one may decrease the required number
of reads.

I. INTRODUCTION

With recent improvements in DNA sequencing and synthe-

sis technologies, and the advent of CRISPR/Cas gene editing

technique [21], the case for DNA as a data-storage medium,

specifically in-vivo, is now stronger than ever before. It offers

a long-lasting and high-density alternative to current storage

media, particularly for archival purposes [4]. Moreover, due to

medical necessities, the technology required for data retrieval

from DNA is highly unlikely to become obsolete, which as

recent history shows, cannot be said of concurrent alternatives.

In-vivo DNA storage has somewhat lower data density than

in-vitro storage, but it provides a reliable and cost-effective

propagation via replication, in addition to some protection to

stored data. It also has applications including watermarking

genetically modified organisms [1], [7], [17] or research

material [10], [24] and concealing sensitive information [5].

However, mutations introduce a diverse set of potential errors,

including symbol- or burst-substitution/insertions/deletion, and

duplication (including tandem- and interspersed-duplication).

The effects of duplication errors, specifically, were studied

in a number of recent works including [8], [9], [11]–[15],

[18], [20], [22], [23] among others. These works provided

some implicit and explicit constructions for uniform-tandem-

duplication codes, as well as some bounds. In [27] the authors

then argued that a classical error-correction coding approach is

sub-optimal for the application, as it does not take advantage

of the cost-effective data replication offered inherently by

the medium of in-vivo DNA; instead, it was shown that re-

framing the problem as a reconstruction scheme [16] reduces
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the redundancy required for any fixed number of duplication

errors. In this setting, several (distinct) noisy channel outputs

are assumed to be available to the decoder. Since its intro-

duction, several applications of the reconstruction problem

to storage technologies were found [2], [3], [25], [26]. Of

these, [25] in particular extended the reconstruction model to

associative memory, where one retrieves the set of all entries

(or code-words) associated with every element of a given set.

For a given size of entry set, the maximal number of entries

being possibly associated with all of them was dubbed the

uncertainty of the memory.

Study of this extended model for in-vivo DNA data stor-

age is motivated by a list-decoding reconstruction scheme,

whereby tolerance for decoding a list of possible inputs, given

multiple channel outputs, enables reducing the number of

required outputs for reconstruction.

This paper focuses on uniform tandem-duplication noise;

i.e., we assume throughout that the length of duplication

window is fixed. In practical applications, a more complex

model where that length is permitted to belong to some set,

or perhaps is simply bounded, is more realistic; however, we

focus on this model as a step towards that end. Our main goal

is to analyze the uncertainty associated with a typical set of

strings (consisting of most strings in Σn, a definition which is

made precise in Lemma 2) as a function of the acceptable list

size m, where the number of tandem repeats t which channel

outputs undergo is fixed.

The paper is organized as follows: In Section II we describe

the main contribution of this paper and put it in context

of related works. In Section III we present notations and

definitions, then in Section IV we find the uncertainty of the

aforementioned typical set in asymptotic form, and develop an

efficient decoding scheme.

Throughout the paper a few proofs have been omitted,

due to space restrictions; The reader is referred to the arXiv

(preprint arXiv:2001.07047) for a complete version.

II. RELATED WORKS AND MAIN CONTRIBUTION

Associative memory was discussed in [25], where items are

retrieved by association with other items; the human mind

seems to operate in this fashion, one concept bringing up

memories of other, related, concepts or events. The more items
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one considers together, the smaller the set of items associated

with all of them. Giving a precise definition to that notion, one

defines the uncertainty of an associative memory as the largest

possible size of set N(m) whose members are associated with

all elements of an m-subset of the memory code-book.

This model is a generalization of the reconstruction problem

posed by Levenshtein in [16], wherein a transmission model is

assumed with the decoder receiving multiple channel outputs

of the same input. N is then the largest size of intersection of

balls of radius t about two distinct code-words, where at most

t errors are assumed to have occurred in each transmission; if

N + 1 outputs are available to the decoder, the correct input

can be deduced.

This can be viewed as a reduction of the associative memory

model to the case of m = 2, allowing a precise reconstruction

of the unique (m − 1 = 1) input. When m > 2, the decoder

seeing N(m) + 1 channel outputs can only unambiguously

infer which list of l < m code-words contains the correct

input; thus, a list-decoding model is suggested.

In [27] the authors studied the reconstruction problem for

uniform-tandem-duplication noise, which is applicable to in-

vivo DNA data storage. An uncertainty which is sub-linear in

the message length was assumed (as it represents the number

of distinct reads required for decoding), and it was shown

that the redundancy required for unique reconstruction was

(t− 1) logq(n) + O(1) (compared to the t logq(n) + O(1)
redundancy required for unique decoding from a single output

[11], [13]), where n is the message length, t the number of

errors, and q the alphabet size.

In this paper, we apply the associative memory model from

[25] (where binary vectors with the Hamming distance were

considered) to the setting of uniform-tandem-duplication noise

in finite strings, i.e., we consider list-decoding instead of a

unique reconstruction.

Our goal is to find the trade-off between the number of

tandem-duplication errors, the uncertainty, and the decoded

list size. We find the asymptotic behavior, as the message

length n grows, of the uncertainty, or required number of

reads (more precisely, that number minus one) N , where it

is viewed as a function of the list size (plus one) m, and

the number of tandem-duplication errors t. Unlike [27], we

use an unrestricted code-book, except to a typical subspace,

asymptotically achieving the full space size. This is a first step

towards a solution for general codes with a given minimum

distance, which would incorporate the code redundancy into

the trade-off. Such a solution could also be viewed as an exten-

sions of results in [27], where a unique reconstruction (m = 2)

was considered. Our main contribution (see Theorem 14) can

informally be summarized in

N = 1+o(1)
(t−δ−⌈logn(m)⌉)!

(

q−1
q n

)t−δ−⌈logn(m)⌉
,

where δ ∈ {0, 1} is a non-decreasing function in m. Thus,

such a trade-off is established.

In conclusion, we show that list-decoding is not only

theoretically feasible, but may be efficiently performed. This

is done using an isometric transform to integer vectors, and

by utilizing combination generators; an efficient list-decoding

algorithm is developed, given a sufficient number of distinct

channel outputs.

III. PRELIMINARIES

The setting of this paper is the set of finite strings Σ∗, over

an alphabet Σ which is assumed to be a finite unital ring of

size q (e.g., Zq , or when q is a prime power, GF(q)).
The length of a string x ∈ Σ∗ is denoted |x|. A tandem-

duplication (or tandem repeat) of fixed duplication-window

length k (thus, uniform tandem-duplication noise) at index i
is defined as follows, for x, y, z ∈ Σ∗, |x| = i and |y| = k:

Ti(xyz) , xyyz.

Thus, uniform tandem-duplication noise with duplication-

window length k acts only on strings of length > k, which

we denote Σ>k. In order to simplify our analysis, we assume

throughout the paper that k > 2.

If y ∈ Σ>k can be derived from x ∈ Σ>k by a sequence of

tandem repeats, i.e., if there exist i1, . . . , it such that

y = Tit(· · · Ti1 (x)),

then y is called a t-descendant (or simply descendant) of x

(vice versa, x is an ancestor of y), and we denote x
t

=⇒ y.

We say that x is a 0-descendant of itself. If t = 1 we

denote x =⇒ y. Where the number of repeats is unknown

or irrelevant, we may denote x
∗

=⇒ y. We define the set of

t-descendants of x as

Dt(x) ,
{

y ∈ Σ∗ : x
t

=⇒ y
}

,

and the descendant cone of x as

D∗(x) ,
{

y ∈ Σ∗ : x
∗

=⇒ y
}

=
∞
⋃

t=0

Dt(x).

If there exists no z 6= x such that z
∗

=⇒ x, we say that

x is irreducible. The set of irreducible strings of length n
is denoted Irr(n). It can be shown (see, e.g., [9]) that for

all y ∈ Σ>k there exists a unique irreducible x, called the

duplication root of y and denoted drt(y), such that y ∈ D∗(x).
This induces a partition of Σ>k into descendant cones; i.e., it

induces an equivalence relation, denoted herein ∼k.

A useful tool in studying uniform tandem-duplication noise

is the discrete derivative φ defined for x ∈ Σ>k as φ(x) ,
φ̂(x)φ̄(x), where

φ̂(x) , x(1), x(2), . . . , x(k),

φ̄(x) , x(k + 1)− x(1), . . . , x(|x|)− x(|x| − k).

As seen, e.g., in [9], φ is injective, and if φ̄(x) = uv for

u, v ∈ Σ∗, |u| = i, then φ̄(Ti(x)) = u0kv. This was used in

[27] to define the function ψx : D
∗(x) → N

w+1 by

ψx(y) , (⌊u(1)/k⌋, . . . , ⌊u(w + 1)/k⌋),

if

φ̄(y) = 0u(1)a10
u(2) . . . aw0

u(w+1),
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where w = wt(φ̄(x)) and a1 . . . , aw ∈ Σ \ {0}. It was shown

that ψx is a poset isomorphy, where D∗(x) is ordered with
∗

=⇒ and N
w+1 with the product order.

A metric can be defined on Dr(x) for each r (in particular,

but not necessarily, when x is irreducible) by

d(y1, y2) , min
{

t ∈ N : Dt(y1) ∩D
t(y2) 6= ∅

}

,

and it is seen in [9] that this is well defined, in the sense

that there does exist such t, for y1, y2 ∈ Dt(x), such that

Dt(y1) ∩Dt(y2) 6= ∅.

If we define on N
w+1 the 1-norm ‖u‖1 ,

∑w+1
i=1 u(i) and

metric d1(u, v) , 1
2 ‖u− v‖1, then ψx is also an isometry

(see [27]) between Dr(x), for each r, and its image in N
w+1,

which is the simplex

∆w
r ,

{

u ∈ N
w+1 : ‖u‖1 = r

}

= ψx(D
r(x)).

The focus of this paper is to find the uncertainty, after

t tandem repeats, as a function of the acceptable list size m.

This is made precise by the following definition.

Definition 1 Given n, t ∈ N and x1, . . . , xm ∈ Σn, we define

St(x1, . . . , xm) ,

m
⋂

i=1

Dt(xi).

Then, the uncertainty associated with a code C ⊆ Σn is

Nt(m,C) , max
x1,...,xm∈C

xi 6=xj

|St(x1, . . . , xm)|.

Correspondingly, for w, r ∈ N and u1, . . . , um ∈ ∆w
r we

define

S̄t(u1, . . . , um) ,

m
⋂

i=1

{

v ∈ N
w+1 : v > ui, ‖v − ui‖1 = t

}

;

N̄t(m,w, r) , max
u1,...,um∈∆w

r

∣

∣S̄t(u1, . . . , um)
∣

∣.

In the next section we describe a typical set of strings in

Σn, then by ascertaining N̄t(m,w, r) for that set we find

an asymptotic expression (in the string length n) for the

uncertainty associated with that set, as a function of m.

IV. TYPICAL SET

We observe that the sets introduced in the previous section

have many parameters. A complete combinatorial analysis

of those would be riddled with pathological extreme cases,

tedious, and not enlightening; this is particularly so since

these extreme cases occur in a vanishingly small fraction of

the space. Since our main goal is an asymptotic analysis,

we proceed by eliminating those rare pathological cases, and

focus on the common typical ones. In particular, we would

like to limit our attention to strings x ∈ Σn for which

the Hamming weight of φ̄(x) and the 1-norm of ψdrt(x)(x),
as well as the difference between them, are asymptotically

linearly proportional to the string length n. Those strings

would form the code which we study. Thus, we start by

presenting in the following lemma the code C for which it

shall be our goal to find Nt(m,C).

Lemma 2 Define the family of codes

Typn ,

{

x ∈ Σn :
|w(x)− q−1

q (n−k)|<n3/4

∣

∣

∣
r(x)− q−1

q(qk−1)
(n−k)

∣

∣

∣
<2n3/4

}

,

where w(x) , wtH
(

φ̄(x)
)

and r(x) ,
∥

∥ψdrt(x)(x)
∥

∥

1
. Then

for sufficiently large n:

|Typn|

|Σn|
> 1− 4e−

√
n/2 −→

n→∞
1.

The proof, appearing in the arXiv version, is omitted here.

We remark that a similar concentration result (for w(x) and

wtH(ψdrt(x)(x)) instead of r(x)) was derived in [11, Lem. 3];

it uses a different approach to the one seen in the arXiv version

of this work.

Next, for Typn we show that the uncertainty can be

calculated by N̄t, which provides an expression we may more

easily analyze.

Lemma 3 If C ⊆ Σn and x1, . . . , xm ∈ C, xi 6= xj ,

such that |St(x1, . . . , xm)| = Nt(m,C), then there exists

x = drt({x1, . . . , xm}), and

|St(x1, . . . , xm)| =
∣

∣S̄t(ψx(x1), . . . , ψx(xm))
∣

∣.

Proof: If there exist xi 6∼k xj , then St(x1, . . . , xm) = ∅.

Otherwise the claim follows from the isometry ψx.

Corollary 4 For k > 2 and sufficiently large n,

Nt(m,Typ
n) =

= max

{

N̄t(m,w, r) :
|w− q−1

q (n−k)|<n3/4

∣

∣

∣
r− q−1

q(qk−1)
(n−k)

∣

∣

∣
<2n3/4

}

.

The proof, appearing in the arXiv version, is omitted here.

Hence, the quantity one needs to assess is N̄t(m,w, r). We

do that next by exploiting the lattice structure of N
w+1, and

introducing the connection to supremum height and lower-

bound-set size in that lattice.

Lemma 5 Given u1, . . . , um ∈ ∆w
r , denote u ,

∨m
i=1 ui.

Then,

∣

∣S̄t(u1, . . . , um)
∣

∣ =

{

0 ‖u‖1 > r + t,
(

w+t+r−‖u‖1
w

)

otherwise.

Proof: The proposition follows from the lattice structure

of Nw+1, i.e.,

S̄t(u1, . . . , um) =

{

v ∈ N
w+1 : v >

m
∨

i=1

ui, ‖v − u1‖1 + t

}

Definition 6 Denote the minimum supremum height

σ(m,w, r) , min
u1,...,um∈∆w

r

∥

∥

∥

∨m

i=1
ui

∥

∥

∥

1
− r.
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Conversely, for w, r, s ∈ N and u ∈ ∆w
r+s, denote the lower-

bounds set Ar(u) , {v ∈ ∆w
r : v 6 u} and the maximal

lower-bounds-set size

µ(w, r, s) , max
{

|Ar(u)| : u ∈ ∆w
r+s

}

.

Corollary 7 N̄t(m,w, r) =
(

w+t−σ(m,w,r)
w

)

.

Proof: The proposition follows from Lemma 5.

It is therefore seen that the main task is to find or estimate

the minimum supremum height. We next show the duality

between σ(m,w, r) and µ(w, r, s), which we shall use to

calculate the former.

Lemma 8 Take w, r, s ∈ N. If s > wr then

µ(w, r, s) = |∆w
r | =

(

r + w

r

)

and σ(|∆w
r |, w, r) = wr.

For s < wr we have σ(µ(w, r, s), w, r) = s.

The proof, appearing in the arXiv version, is omitted here.

Corollary 9 If µ(w, r, s) < m 6 µ(w, r, s + 1) then

σ(m,w, r) = s+ 1.

Proof: Firstly, since m 7→ σ(m,w, r) is non-decreasing

by definition,

s = σ(µ(w, r, s), w, r) 6 σ(m,w, r) 6

6 σ(µ(w, r, s+ 1), w, r) = s+ 1.

However, if σ(m,w, r) = s, by finding u1, . . . , um ∈ ∆w
r

with ‖
∨m

i=1 ui‖1 = r + s we deduce µ(w, r, s) > m, in

contradiction.

Since we now know that calculating µ(w, r, s) is sufficient

for our purposes, we turn to that task; since our focus is Typn,

we may do so for the relevant ranges of w, r, where that is

simpler.

Lemma 10 For w, r, s ∈ N there exists u ∈ ∆w
r+s such that

|Ar(u)| = µ(w, r, s) and for all 1 6 i < j 6 w + 1 it holds

that |u(i)− u(j)| < 2.

Proof: Take u ∈ ∆w
r+s satisfying |Ar(u)| = µ(w, r, s),

and assume to the contrary that there exist i, j such that,

w.l.o.g., u(j) > u(i) + 2. Denote by u′ the vector which

agrees on u on all coordinates except u′(j) = u(j) − 1 and

u′(i) = u(i) + 1.

Further, partition Ar(u) and Ar(u
′) by the projection on

all other coordinates. For any matching classes C,C′ ⊆ ∆w
r

in the corresponding partitions, denote by t(C) = t(C′)
the difference between r and the sum of all coordinates

other than i, j; Note that |C| is the number of ways to

distribute t(C) balls into two bins with capacities u(i), u(j)
(and correspondingly u′(i), u′(j) for |C′|), hence

|C| = min{t(C), u(i)} −max{t(C)− u(j), 0}+ 1

6 min{t(C), u(i) + 1} −max{t(C)− u(j) + 1, 0}+ 1

= min{t(C′), u′(i)} −max{t(C)− u′(j), 0}+ 1 = |C′|,

where the inequality is justified by cases for t(C), and is strict

only if u(i) < t(C) < u(j). Thus, the proof is concluded.

Lemma 10 allows us to find µ(w, r, s) with relative ease;

perhaps the most straightforward example of that is a precise

calculation for the cases s = 1, 2, which we present next; fol-

lowing the examples we conduct a more extensive evaluation,

for s > 2 and the relevant ranges of w, r.

Example 11 Any vector u ∈ ∆w
r+1 having 1 + min{w, r}

positive coordinates has precisely |Ar(u)| = 1 + min{w, r}.

By Lemma 10 one such vector satisfies µ(w, r, 1) = |Ar(u)|,
therefore µ(w, r, 1) = 1 +min{w, r}. �

Example 12 We define an injection

ξ :
{

v ∈ N
w+1 : v 6 u

}

→ N
w+1 by ξ(v) , u − v;

then clearly, ξ is distance preserving, and in particular

injective. Hence, µ(w, r, 2) 6 |∆w
2 | =

(

w+2
2

)

. This is

achieved with equality when r + 2 > 2(w + 1), as evidenced

by any vector greater than (2, 2, . . . , 2). The inequality is

strict, however, when r < 2w.

To examine the remaining cases, note first that increasing

any coordinate of u above 2 has no effect on |Ar(u)|. Further,

we again know by Lemma 10 that µ(w, r, 2) is achieved when

u has the greatest number of positive coordinates, and among

such vectors, the greatest number greater than or equal to 2.

Now, by counting the number of lower bounds for any such

u ∈ ∆w
r+2 we see that

µ(w, r, 2) =











(

w+2
2

)

, r > 2w;
(

w+1
2

)

+ (r − w + 1), w − 1 6 r < 2w;
(

r+2
2

)

, r < w − 1.

�

As can now be seen, a complete evaluation of µ(w, r, s)
for s > 2 is possible using Lemma 10, but it involves

application of the inclusion-exclusion principle and its results

are not illuminating. We shall see instead that an asymptotic

evaluation of µ(w, r, s) for typical ranges of w, r will suffice.

To do so, we note the following proposition.

Lemma 13 Fix t, and take w, r such that r + t 6 w + 1. For

all s 6 t it holds that µ(w, r, s) =
(

r+s
s

)

.

Proof: By Lemma 10 we know that u ∈ ∆w
r+s achieving

|Ar(u)| = µ(w, r, s) is such that r+s of its coordinates equal

1, and the remaining w + 1− r − s equal 0. The proposition

follows.

We can use what we now know about maximal size of

lower-bounds sets to establish the main result of this pa-

per, in the following theorem. Before doing so, we note a

consequence of, e.g., Lemma 13, namely that for any string

x ∈ Typn, and any y ∈ Dt(x), it holds that
∣

∣

{

x′ ∈ Typn : y ∈ Dt(x′)
}∣

∣ = O(nt).

Hence, we have for mn = ω(nt) that Nt(mn,Typ
n) = o(1);

it is therefore only interesting to find an asymptotic expression

for Nt(mn,Typ
n) when mn = O(nt).
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Theorem 14 Fix t and a sequence mn = O(nt). Then

Nt(mn,Typ
n) = 1+o(1)

(et(mn,n))!

(

q−1
q n

)et(mn,n)

,

where et(mn, n) = t−⌈logn(mn)⌉−δ(mn, n) and δ(m,n) ∈
{0, 1} is a non-decreasing function in m.

Proof: Let s , ⌈logn(mn)⌉.

Recall from Lemma 13 that for w > r + t− 1

µ(w, r, s− 1) =

(

r + s− 1

r

)

<
(r + s− 1)s−1

(s− 1)!
,

hence for r satisfying

∣

∣

∣
r − q−1

q(qk−1)
(n− k)

∣

∣

∣
< 2n3/4 and

sufficiently large n

logn µ(w, r, s− 1) < s− 1.

On the other hand we have

µ(w, r, s+ 1) =

(

r + s+ 1

r

)

>
rs+1

(s+ 1)!
,

and therefore, for such r,

logn µ(w, r, s+ 1) > logn

(

1 + o(1)

(s+ 1)!

(

q − 1

q(qk − 1)
n

)s+1
)

= s+ 1 + o(1).

Since s − 1 < logn(mn) 6 s it now follows from

Corollary 9, for sufficiently large n (which does not depend

on s, i.e., on mn), and w, r satisfying

∣

∣

∣
w − q−1

q (n− k)
∣

∣

∣
<

n3/4 and

∣

∣

∣
r − q−1

q(qk−1)
(n− k)

∣

∣

∣
< 2n3/4, that

σ(mn, w, r) = s+ δ(mn, n, r),

where

δ(mn, n, r) =

{

1, mn >
(

r+⌈logn(mn)⌉
r

)

;

0, otherwise.

Next, for such n,w, r we have
(

w + t− σ(mn, w, r)

w

)

= 1+o(1)
(t−(s+δ(mn,n,r)))!

(

q−1
q n

)t−(s+δ(mn,n,r))

.

It therefore follows from Corollary 4 and Corollary 7 that

Nt(mn,Typ
n) = 1+o(1)

(t−(s+δ(mn,n)))!

(

q−1
q n

)t−(s+δ(mn,n))

= 1+o(1)
et(mn,n)!

(

q−1
q n

)et(mn,n)

,

where δ(mn, n) = 1 if and only if δ(mn, n, r) = 1 for all r
satisfying the above requirement, and et(mn, n) is as defined

in the theorem’s statement.

Finally, we note that the process of list-decoding given

Nt(m,Typ
n) + 1 distinct strings in Σn+kt, i.e., finding

x1, . . . , xl ∈ Typn, l < m, such that these strings lie in

St(x1, . . . , xl)\
⋃

x∈Typn \{x1,...,xl}D
t(x), is straightforward:

Algorithm A Denote N , Nt(m,Typ
n) and assume as

input distinct y1, . . . , yN+1 ∈ Σn+kt such that there exists

x ∈ Typn satisfying y1, . . . , yN+1 ∈ Dt(x).

1) Apply ψdrt(y1) to map them to v1, . . . , vN+1 ∈ ∆w
r+t

where w = wt
(

φ̄(drt(y1))
)

and r =
∥

∥ψdrt(y1)(y1)
∥

∥

1
;

note that prior computation of drt(y1) is not required

to perform this mapping, and that it may be found as a

byproduct of finding any vi.
2) Find u ,

∧N+1
i=1 vi ∈ ∆w

r′ by calculating the minimum

over each coordinate.

3) Calculate Ar(u).
4) Return ψ−1

drt(y1)
(Ar(u)) as a list.

Theorem 15 Algorithm A operates in O(nt) = poly(N)
steps, and produces x1, . . . , xl ∈ Typn, l < m, such that

y1, . . . , yN+1 ∈ St(x1, . . . , xl) \
⋃

x∈Typn

x 6∈{x1,...,xl}
Dt(x).

Proof: First, note that the existence of an ancestor for

all y1, . . . , yN+1 implies that yi ∈ D∗(drt(y1)) for all i.
Moreover, note that finding any vi may be done in O(n) steps

(by calculating φ̄(yi) and recording lengths of runs of zeros

in the process). Any one of these can also produce drt(y1).
Hence Step 1 concludes in O(Nn) steps.

Step 2 can also be performed in O(Nw) = O(Nn) steps.

Now, note that since an ancestor of all yi’s exists in Σn,

r′ > r. It is hence possible to compute Ar(u). This may

be achieved by finding all ways of distributing r′ − r < t
balls into w + 1 bins with capacities u(j), e.g., by utilizing

combination generators for all
(

w+r′−r
w

)

combinations, then

discarding combination which violate the bin-capacity restric-

tion. Combination generating algorithms exist which generate

all combinations in O
(

(

w+r′−r
w

)

)

= O(nt−1) steps (e.g., see

[19]), and pruning illegal combinations can be done in O(w)
steps each. Step 3 can therefore be performed in O(nt) steps.

Finally, the pre-image ψ−1
drt(y1)

(Ar(u)) is a set of ancestors

of y1, . . . , yN+1, which is a subset Typn, and no other element

of Typn is an ancestor of y1, . . . , yN+1. We also know that

|Ar(u)| < m, otherwise a contradiction is reached to the

definition of N . Computing ψ−1
drt(y1)

(Ar(u)) given drt(y1)

requires O(|Ar(u)|w) 6 O(mn) steps.
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