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Abstract—Optimal locally repairable codes with information
locality are considered. Optimal codes are constructed, whose
length is also order-optimal with respect to a new bound on the
code length derived in this paper. The length of the constructed
codes is super-linear in the alphabet size, which improves upon
the well known pyramid codes, whose length is only linear in the
alphabet size. The recoverable erasure patterns are also analyzed
for the new codes. Based on the recoverable erasure patterns,
we construct generalized sector-disk (GSD) codes, which can
recover from disk erasures mixed with sector erasures in a more
general setting than known sector-disk (SD) codes. Additionally,
the number of sectors in the constructed GSD codes is super-
linear in the alphabet size, compared with known SD codes,
whose number of sectors is only linear in the alphabet size.

I. INTRODUCTION

In the large distributed storage systems of today, an [n, k]
storage code encodes k information symbols to n symbols
and stores them across n disks in a storage system. Generally
speaking, among all storage codes, maximum distance sepa-
rable (MDS) codes are preferred for practical systems both in
terms of redundancy and in terms of reliability. However, as
pointed out in [26], MDS codes such as Reed-Solomon codes
suffer from a high repair cost. This is mainly because, for an
[n, k] MDS code, whenever one wants to recover a symbol,
one needs to contact k surviving symbols, which is costly,
especially in large-scale distributed file systems.

To improve the repair efficiency, the concept of r-locality
for a code C was initially studied in [14] to ensure that a
failed symbol can be recovered by only accessing r � k other
symbols which form a repair set.

In the past decade, the original definition has been general-
ized in different aspects. Firstly, to guarantee that the system
can recover locally from multiple erasures, the notion of r-
locality was generalized to (r, δ)-locality. Secondly, to let code
symbols have good availability, the notion of locality has been
generalize to (r, δ)-availability [24] (or (r, δ)c-locality [30]),
in which case a code symbol has more than one repair set.
Finally, to satisfy differing locality requirements, the notion of
locality has been generalized to the hierarchical [25] and the
unequal [19], [31] locality cases. For theoretic upper bounds
and constructions, the reader may refer to [6], [7], [10], [17],
[18], [21], [23], [28] for (r, δ)-locality, [8], [27], [29], [30] for
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(r, δ)-availability, [25] for hierarchical locality, and [19], [20],
[31] for unequal locality.

Based on the observation given in [13], locally repairable
codes may recover from some special erasure patterns beyond
their minimum Hamming distance. Thus, another research
branch for locally repairable codes is the study of their
recoverable erasure patterns. In this aspect, two special kinds
of codes have received most of the attention. One is the
(δ − 1, γ)-maximally recoverable code first introduced in [2],
[13], that can recover from erasure patterns that include any
δ− 1 erasures from each repair set, and any other γ erasures.
The (δ − 1, γ)-maximally recoverable codes are equivalent
to (δ − 1, γ)-partial MDS codes – a special kind of array
codes that was introduced to improve the storage efficiency of
redundant arrays of independent disks (RAIDs) [2]. The other
is (δ−1, γ)-sector-disk (SD) codes [22], that can recover from
erasure patterns that include any δ−1 erasures from each repair
set with consistent indices (i.e., whole disk erasures) and any
other γ erasures (i.e., sector erasures). For construction of SD
codes the reader may refer to [2], [3], [5], [12], [13], [21],
[22] for examples. The main drawback of all of the reported
constructions for SD codes is the requirement for a large finite
field.

In this paper, we focus on both (r, δ)-locality and recover-
able erasure patterns beyond the minimum Hamming distance.
For (r, δ)-locality we propose constructions of locally re-
pairable codes whose information symbols have (r, δ)-locality
and their length is super-linear in the field size. The codes
generated by our constructions have new parameters compared
with known locally repairable codes. In particular, our codes
have a smaller requirement on the field size compared with
pyramid codes. Additionally, we consider the following fun-
damental problem: how long can a locally repairable code be,
whose information symbols have (r, δ)-locality? We propose
a new upper bound on the length of optimal locally repairable
codes. Based on this bound, we prove that the codes generated
by our construction may have order-optimal length. We also
analyze recoverable erasure patterns beyond the minimum
Hamming distance in the codes we construct. Based on this
analysis, we construct array codes that can recover special
erasure patterns which mix whole disk erasures together with
additional sector erasures beyond the minimum Hamming
distance. These codes generalize SD codes, and we therefore
call them generalized sector-disk (GSD) codes.
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Due to space limitations we omit all proofs, which are
available in a full version of this work [9].

II. PRELIMINARIES

Throughout this paper, the following notations are used:
• For a positive integer n, let [n] denote the set
{1, 2, · · · , n};

• For any prime power q, let Fq denote the finite field with
q elements;

• An [n, k]q linear code C over Fq is a k-dimensional
subspace of Fnq with a k × n generator matrix G =
(g1,g2, · · · ,gn), where gi is a column vector of length
k for all 1 6 i 6 n. Specifically, it is called an [n, k, d]q
linear code if the minimum Hamming distance is d;

• For a subset S ⊆ [n], let |S| denote the cardinality of S,
Span(S) be the linear space spanned by {gi : i ∈ S}
over Fq and Rank(S) be the dimension of Span(S).

Throughout this paper we assume that C be an [n, k, d]q
linear code with generator matrix G = (g1,g2, · · · ,gn).

Definition 1 ( [17], [23]): The ith code symbol of an
[n, k, d]q linear code C, is said to have (r, δ)-locality if there
exists a subset Si ⊆ [n] (a repair set) such that
• i ∈ Si and |Si| 6 r + δ − 1; and
• The minimum Hamming distance of the punctured code
C|Si , obtained by deleting the code symbols cj for all
j ∈ [n] \ Si, is at least δ.

Furthermore, an [n, k, d]q linear code C is said to have in-
formation (r, δ)-locality (denoted as (r, δ)i-locality) if there
exists a k-subset I ⊆ [n] with Rank(I) = k such that for
each i ∈ I , the ith code symbol has (r, δ)-locality and all
symbol (r, δ)-locality (denoted as (r, δ)a-locality) if all the n
code symbols have (r, δ)-locality.

Lemma 1 ( [14], [23]): The minimum distance of an
[n, k, d]q code C with (r, δ)i-locality is upper bounded by

d 6 n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (1)

Definition 2: A linear code with (r, δ)i-locality is said to
be an optimal locally repairable code if its minimum Ham-
ming distance meets the Singleton-type bound of Lemma 1
with equality.

By (1), even for an optimal [n, k, d]q linear code with (r, δ)i-
locality (or (r, δ)a-locality), d < n−k+1 under the nontrivial
case k > r. Thus, for a linear code with (r, δ)i-locality, it is
natural to ask if it is possible for an erasure pattern E ⊂ [n]
with size d 6 |E| 6 n − k to be recoverable [14]. Generally
this problem is still open. However, two special settings of
this problem received special attention in previous works.

Setting I: (e.g., [2], [22]) For a linear code with (r, δ)a-
locality, let (r + δ − 1)|n and |{Si : i ∈ [n]}| = n

r+δ−1 ,
i.e., all the n symbols are divided into n

r+δ−1 repair sets. Let
s = n

r+δ−1r − k and assume the elements of Si are denoted
by {si,1, si,2, . . . , si,r+δ−1}. An erasure pattern E is required
to be recoverable if there exists a (δ − 1)-subset of [r + δ −

1], {j1, j2, · · · , jδ−1}, and there exists a set E∗ ⊆ E ⊆ [n],
|E∗| 6 n

r+δ−1r − k and

(E\E∗) ∩ Si ⊆ {si,j1 , si,j2 , . . . , si,jδ−1
} for each i ∈ [n].

Setting II: (e.g., [13]) For a linear code with (r, δ)a-locality,
let (r + δ − 1)|n and |{Si : i ∈ [n]}| = n

r+δ−1 , i.e., all
the n symbols are divided into n

r+δ−1 repair sets. Let s =
n

r+δ−1r−k. An erasure pattern E is required to be recoverable
if there exists a set E∗ ⊆ E ⊆ [n], |E∗| 6 s and

|(E\E∗) ∩ Si| 6 δ − 1 for each 1 6 i 6
n

r + δ − 1
.

Definition 3: An [n, k, d]q linear code that satisfies the
conditions of Setting I is said to be a sector-disk code ((δ −
1, s)-SD).

As an intuition, we make the following analogies between
a distributed storage system and Setting I. In this analogy, we
have a total of r+δ−1 disks, each containing n

r+δ−1 sectors,
with a total number of sectors in the system which is n. The
ith stripe, i.e., the set containing the ith sector from each disk,
is an (r, δ)-repair set, for each i. Finally, an SD code is capable
of correcting δ − 1 whole disk erasures, as well as an extra s
erased sectors.

Definition 4: An [n, k, d]q linear code that satisfies the
conditions of Setting II is said to be a maximally recoverable
code (MR code).

III. CONSTRUCTIONS OF LOCALLY REPAIRABLE CODES

In this section, we introduce a general construction of local-
ly repairable codes with information locality. Let k = r`+ v
with 0 < v 6 r and n = k + (`+ 1)(δ − 1) + h with h > 0,
where all parameters are integers.

Construction A: Let the k information symbols be par-
titioned into `+ 1 sets, say,

I(i) = {Ii,1, Ii,2, . . . , Ii,r}, for i ∈ [`],

I(`+1) = {I`+1,1, I`+1,2, . . . , I`+1,v}.

Let S be an h-subset of Fq and denote A , Fq\S. Let A =
{Ai : 1 6 i 6 ` + 1} be a family of subsets of A with
|Ai| = r + δ − 1 and |A`+1| = v + δ − 1. Define

gi(x) =
∏
θ∈Ai

(x− θ) for 1 6 i 6 `+ 1 (2)

and
∆(x) =

∏
16i6`+1

gi(x). (3)

A linear code with length n can be generated by defining
a linear map from the information I = (I1,1, . . . , I`,v) ∈
Fkq to a codeword C(I) = (c1,1, . . . , c`,r+δ−1, c`+1,1, . . . ,
c`+1,v+δ−1, c`+2,1, . . . , c`+2,h) ∈ Fnq , thus the [n, k]q linear
code is C = {C(I) : I ∈ Fkq}. This mapping is performed
by the following two steps:
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a) Step 1: For 1 6 j 6 ` + 1, by polynomial interpo-
lation, there exists a unique fj(x) ∈ Fq[x] with deg(fj) <
|Aj |− δ+1 such that fj(θj,t) = Ij,t for 1 6 t 6 |Aj |− δ+1,
where Aj = {θj,t : 1 6 t 6 |Aj |}. For 1 6 j 6 ` + 1 and
1 6 t 6 |Aj |, set cj,t = fj(θj,t).

b) Step 2: Let

fI(x) = ∆(x)
∑

16i6`+1

fi(x)

gi(x)
. (4)

Set c`+2,i = fI(si) for 1 6 i 6 h, where S = {si : 1 6 i 6
h}.

Lemma 2: The code C generated by Construction A is an
[n, k]q linear code with (r, δ)i locality.

For ease of presentation, we use the evaluation points
(instead of the indices of code symbols) to denote erasure
patterns. Additionally, we shall group the erased positions by
the index of the repair set they hit. Namely, we shall use
E = {E1, . . . , E`+2} to denote an erasure pattern, where
Ej ⊆ Aj is the set of erasure points in Aj , 1 6 j 6 ` + 1,
and E`+2 ⊆ S is the set of erasure points in S.

Theorem 1: Let C be the linear code generated by Con-
struction A. Assume E = {Ei : 1 6 i 6 `+ 2} is an erasure
pattern, with Ei ⊆ Ai for 1 6 t 6 ` + 1 and E`+2 ⊆ S. For
1 6 i 6 ` + 1, assume that, in E , there exist w 6 ` + 1 sets
with |Eit | > δ for 1 6 t 6 w and 1 6 it 6 ` + 1. If the
erasure pattern E satisfies∣∣∣∣∣∣

⋃
16t6w

Eit

∣∣∣∣∣∣+ |E`+2| 6 h+ δ − 1, (5)

and for any 1 6 j 6 w∣∣∣∣∣∣Aij ∩
 ⋃
j 6=t∈[w]

Ait

∣∣∣∣∣∣ 6 δ − 1, (6)

then the erasure pattern E can be recovered.

Remark 1: In Theorem 1, we want to highlight that the
size |(

⋃
16t6w Eit)∪E`+2| dictates whether an erasure pattern

is recoverable, and not the number of erased coordinates,
i.e.,

∑
16t6w |Eit | + |E`+2|. This is to say, if there are

erasures that share the same evaluation point (even in different
coordinates), then those erasures as a whole will only increase
the discriminant value by one. In such a case we may recover
more than h + δ − 1 erasures that are guaranteed to be
recoverable by the value of the Singleton-type bound, i.e.,
h+ δ.

Corollary 1: If the set system A of Construction A
satisfies that for any µ-subset D of [`+ 1]∣∣∣∣∣∣Ai ∩

 ⋃
j 6=i,j∈D

Aj

∣∣∣∣∣∣ 6 δ − 1 for i ∈ D, (7)

then the code C generated by Construction A is an [n, k, d]q
linear code with (r, δ)i locality and d > min{(µ+1)δ, h+δ}.

Furthermore, if h+ δ 6 (µ+ 1)δ, then the code C is optimal
with respect to the bound in Lemma 1.

Based on Corollary 1, to construct optimal locally repairable
codes we only need to find A such that (7) holds.

Theorem 2: Assume the setting of Construction A. Let
A be a set system formed by subsets of Fq \ S, where S is
an h-subset of Fq . If there exists a positive integer a such
that |Ai ∩ Aj | 6 a for all i 6= j, then the code C generated
by Construction A is an [n, k, d > min{h + δ, (d δae + 1)δ}]q
linear code with (r, δ)i-locality. If additionally, h 6 d δaeδ,
then the code C generated by Construction A is an optimal
[n, k, d = h+ δ]q linear code with (r, δ)i-locality.

A. Optimal Locally Repairable Codes with Order-Optimal
Length: (r, δ)i-Locality

Finding the maximal length of optimal locally repairable
codes with (r, δ)a-locality was the subject of [16] and [7], for
the cases of δ = 2 and δ > 2, respectively. It is therefore
natural to further ask how long can optimal locally repairable
codes with (r, δ)i-locality be. This question is also important
to us in order to analyze the performance of Construction A.

Theorem 3: Let n = k + `(δ − 1) + h, δ > 2, k = `r.
Assume there exists an optimal [n, k, d]q linear code C with
(r, δ)i-locality. For any given integer 0 6 a 6 h define T (a) =
b(d− a− 1)/δc. If T (a) > 2, then

n 6


r+δ−1
r

(
T (a)−1
2(q−1)

q
2(h−a−1)
T (a)−1 + a+ 1

)
− h(δ−1)

r
, if 2 - T (a),

r+δ−1
r

(
T (a)

2(q−1)
q

2(h−a)
T (a) + a

)
− h(δ−1)

r
, if 2 | T (a),

where h can be rewritten as h = d− δ.
Definition 5 ( [11], VI. 40): Let n1 > 2 be an integer and

t a positive integer. A τ -(n1, t, 1)-packing is a pair (X ,S),
where X is a set of n1 elements (called points) and S ⊆ 2X

is a collection of t-subsets of X (called blocks), such that each
τ -subset of X is contained in at most one block of S. An τ -
(n1, t, 1)-packing is said to be regular if each element of X
appears in exactly w blocks, denoted by w-regular τ -(n1, t, 1)-
packing. Furthermore, if each τ -subset of X is contained in
exactly one block of S, then (X ,S) is also called a (τ, t, n1)-
Steiner system.

Corollary 2: Let n1 = q−h. If there exists a (τ + 1, r+
δ−1, n1)-Steiner system and 0 6 h 6 d δτ eδ, then there exists
an optimal [n, k, d]q linear code with (r, δ)i-locality, where

n =

(
n1

τ+1

)
(r + δ − 1)(
r+δ−1
τ+1

) + h, k =
r
(
n1

τ+1

)(
r+δ−1
τ+1

) ,
and d = h + δ. In particular, for the case h > δ + 1 and
τ = δ − 1, the code based on the (δ, r+ δ − 1, q− h)-Steiner
system has order-optimal length, where h, r and δ are regarded
as constants.

Remark 2: One well known construction for optimal
locally repairable codes with (r, δ)i-locality is that of pyra-
mid codes. The pyramid code is based on an MDS code
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whose length is upper bounded by q + d − 2 (and by the
MDS conjecture this may be reduced to q + 1 for q odd
[1]). Thus, the length of pyramid code is upper bounded by
q + d− 1− δ + dkr e(δ − 1) 6 q + d− 1− δ + d q−1r e(δ − 1)

(q+2−δ+dkr e(δ−1) 6 q+2−δ+d q−d+2
r e(δ−1) according

to MDS conjecture for the case of q odd), where d > δ.
According to our construction and bound (in Theorem 3),
it follows that the pyramid code is sub-optimal in terms of
asymptotic length, since we construct locally repairable codes
with (r, δ)i-locality and length n = Ω(qδ).

Example 1: Set n = 24, k = 14, δ = 2, r = 2, and
h = 3. Let A = {Ai : Ai , {3, 6, 5} + i ⊆ Z7, i ∈ Z7}.
According to Construction A, we can construct a [24, 14, 5]11
optimal linear code with (2, 2)i-locality, consistent with the
result in Theorem 2. The reader may refer to [9] for the parity
check matrix of C. Note that, to construct a code sharing the
same parameters via the pyramid code, we need an MDS code
with parameters [18, 14, 5]q . However, according to the MDS
conjecture this MDS code exists only under the condition that
q > 17. Without the help of MDS conjecture, based on the
result proposed in [1], we have q > 16 for this special setting.

Remark 3: For the case δ = 2 and d = 5, 6, optimal
linear codes with all symbol (r, 2)-locality and order-optimal
length Θ(q2) have been introduced in [4], [16], [18]. One can
verify that our construction yields codes for more general cases
d > 6 even if we only consider the case δ = 2.

Remark 4: For the case δ > 2 and d = 2δ + 1, optimal
linear codes with all symbol (r, 2)-locality and order-optimal
length Θ(qδ) have been introduced in [7].

IV. GENERALIZED SECTOR-DISK CODES

By Theorem 1, we may have extra benefits if
|
⋃
|Ei|>δ,i∈[`+1]Ei| <

∑
|Ei|>δ,i∈[`+1] |Ei|. In this section,

we are going to use this property to construct array codes that
can recover from special erasure patterns beyond the minimum
Hamming distance. The basic idea of those construction is
to let all the code symbols share the same evaluation point
in step 1 of Construction A in the same column of an array
code. Then for this array code, one erased column may only
increase the value |

⋃
|Ei|>δ,i∈[`+1]Ei| by one. Hence, when

we consider sector-disk-like erasure patterns, we may get
some extra benefit beyond the minimum Hamming distance.
We begin with some definitions.

Definition 6: Let C be an optimal [n, k, d]q linear code
with (r, δ)i-locality. Then the code C is said to be an (s, γ)-
generalized sector-disk code (GSD code) if the codewords can
be arranged into an array

C =


c1,1 c1,2 · · · c1,a
c2,1 c2,2 · · · c2,a

...
...

. . .
...

cb,1 cb,2 · · · cb,a

 (8)

such that:
(I) all the erasure patterns that contain any s columns and

additional γ cells can be recovered; and

(II) sb+ γ > d− 1.

Remark 5: If the code C has (r, δ)a-locality, the repair
sets are exactly the rows, and then the (δ−1, d−δ)-GSD code
is exactly the (δ−1, d− δ)-SD code [22]. Compared with SD
codes, GSD codes relax the conditions in the following three
aspects:
• GSD codes only require (r, δ)i-locality, whereas SD

codes require (r, δ)a-locality;
• A row in an array codeword of a GSD code is not

necessary a repair set;
• The number of column erasures is not restricted to δ− 1

as in SD codes.
In the following construction, we use Construction A to

generate GSD codes.
Construction B: Let S be an h-subset of Fq and let (X =

Fq \ S,A = {Ai : 1 6 i 6 ` + 1}) be a t-regular (m, r +
δ − 1, 1)-packing, where Ai = {θi,j : 1 6 j 6 r + δ − 1}
for 1 6 i 6 ` + 1. Based on A and S, we can generate a
locally repairable code C according to Construction A. Define
column vectors Vτ ∈ Ftq for τ ∈ Fq as

V ᵀ
τ = (ciτ,1,jτ,1 , ciτ,2,jτ,2 , . . . , ciτ,t,jτ,t),

where θiτ,v,jτ,v = τ , for 1 6 v 6 t. Arrange the h global
parity symbols as the last dht e columns.

Theorem 4: Let C be the t × (m + dht e) array code
generated by Construction B. Then each element of the first
m columns has (r, δ)-locality. If h 6 δ2, then the code can
recover from any h+ δ − 1 erasures. Furthermore:
(I) The code C can recover from any erasure pattern of y 6 2

columns from the first m columns and any other h−y−1
erasures.

(II) If
(
y
2

)
6 δ, then the code C can recover from any erasure

pattern of y columns from the first m columns and any
other h− 2−

(
y
2

)
erasures.

(III) The code C can recover from any erasure pattern of y <
(δ+1)δ

2 − 1 columns from the first m columns and any
other min{ (δ+1)δ

2 − y − 1, h+ δ − 1− y} erasures.
For the case r - k and h = r − v, we may modify

Construction B as follows.
Construction C: Let S be an (r − v)-subset of Fq and

let (X ⊆ Fq \ S,B = {Bi : 1 6 i 6 ` + 1}) be a t-regular
(m, r + δ − 1, 1)-packing. Let Ai = Bi for 1 6 i 6 ` and
A`+1 ⊆ B`+1. Let n = t|X| = tρ and k = `r + v, then
based on A and S, we can generate a locally repairable code
C according to Construction A. List the elements of B`+1 \
A`+1 as (x1, x2, . . . , xr−v) and X as (x1, x2, · · · , xρ). Define
column vectors Vxa ∈ Fvq for a ∈ [ρ] as

V ᵀ
xa =


(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t−1,jxa,t−1

, c`+2,a),

if 1 6 a 6 r − v,
(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t,jxa,t),

otherwise,

where θixa,b,jxa,b = xa, 1 6 b 6 t− 1 for 1 6 a 6 r − v and
1 6 b 6 t for r − v + 1 6 a 6 ρ.
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Corollary 3: Let C be the t× ρ array code generated by
Construction C. Then C has (r, δ)i-locality. If h 6 δ2, then
the code can recover any h+ δ − 1 erasures. Furthermore:
(I) The code C can recover from any erasure pattern of y 6 2

columns and any other h− 2y − 1 erasures.
(II) If

(
y
2

)
6 δ, then the code C can recover from any erasure

pattern of y columns and any other h−2−
(
y
2

)
−y erasures.

(III) The code C can recover from any erasure pattern of y <
(δ+1)δ

2 − 1 columns and any other min{ (δ+1)δ
2 − 2y −

1, h+ δ − 1− 2y} erasures.
As examples, we use two well known classes of Steiner sys-

tems that are the affine geometries and projective geometries.
Lemma 3 ( [11]): Let β > 2 be an integer and q1 a prime

power, then there exists a (2, q1, q
β
1 )-Steiner system.

Based on affine geometries and Construction C, we have
the following conclusion for GSD codes.

Corollary 4: Let β > 2 be an integer and q1 a prime
power. Set q1 = r + δ − 1, n =

qβ1 (q
β
1−1)

q1−1 , δ > 2, k =

(
qβ−1
1 (qβ1−1)
q1−1 − 1)r + v with 1 6 v 6 r − 1, and h = r −

v = q1 − δ − v + 1. Let C be the qβ1−1
q1−1 × qβ1 array code

generated by Construction C using a (2, q1, q
β
1 )-Steiner system

from Lemma 3. If h 6 δ2, then the code C is an [n, k, h+ δ−
1]q optimal locally repairable code with (r, δ)i-locality, where
q > qβ1 + h. Furthermore:

(I) If y 6 2 and y(
qβ1−1
q1−1 − 2) > δ, then the code C is a

(y, h− 2y − 1)-GSD code.
(II) If

(
y
2

)
6 δ and y q

β
1−1
q1−1 − 1−

(
y
2

)
− y > δ, then the code

C is a (y, h− 2−
(
y
2

)
− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y q

β
1−1
q1−1 + γ > h+ δ − 1, then the

code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ
2 −

2y − 1, h+ δ − 1− 2y} erasures.
Herein, we highlight that the second restriction of each item
comes from the requirement in Definition 6-(II).

Lemma 4 ( [11]): Let β > 2 be an integer and q1 a prime
power, then there exists a (2, q1 + 1,

qβ+1
1 −1
q1−1 )-Steiner system.

Based on projective geometries and Construction C, we have
the following conclusion for GSD codes.

Corollary 5: Let β > 2 be an integer and q1 a prime
power. Set q1 + 1 = r + δ − 1, n =

(qβ+1
1 −1)(qβ1−1)

(q1−1)2 , δ > 2,

k = (
(qβ+1

1 −1)(qβ1−1)
(q1−1)(q21−1)

− 1)r + v with 1 6 v 6 r − 1, and

h = r−v = q1− δ−v+2. Let C be the qβ1−1
q1−1 ×

qβ+1
1 −1
q1−1 array

code generated by Construction C using a (2, q1 +1,
qβ+1
1 −1
q1−1 )-

Steiner system from Lemma 3. If h 6 δ2, then the code C is an
[n, k, h+ δ − 1]q optimal locally repairable code with (r, δ)i-
locality, where q > qβ+1

1 −1
q1−1 +h is a prime power. Furthermore:

(I) If y 6 2 and y(
qβ1−1
q1−1 − 2) > δ, then the code C is a

(y, h− 2y − 1)-GSD code.
(II) If

(
y
2

)
6 δ and y q

β
1−1
q1−1 − 1−

(
y
2

)
− y > δ, then the code

C is a (y, h− 2−
(
y
2

)
− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y q

β
1−1
q1−1 + γ > h+ δ − 1, then the

code C is a (y, γ)-GSD code, where γ = min{ (δ+1)δ
2 −

2y − 1, h+ δ − 1− 2y} erasures.
Remark 6: In what follows, we list some known results

about SD codes and MR code (PMDS codes) as a comparison,
where n = m(r + δ − 1) is the total number of sectors for a
codeword, k is the number of sectors for information symbols,
r + δ − 1 is the number of columns (also means that the
code have (r, δ)a-locality), and q stands for the field size. To
keep in the same starting line with our results in Corollaries 4
and 5, we regard r, δ, γ as a constant when we consider the
relationship between n and q.
• For γ = 1, there exist (s, γ)-MR codes for n = Θ(q) [2].
• For γ = 2 and s ∈ {1, 2, 3}, there exist (s, γ)-SD codes

for n = Θ(q) [22].
• For γ = 2, there exist (s, γ)-SD codes for n = Θ(q) [3].
• For s = 1, there exist (s, γ)-MR codes when n =

Θ
(
q

1
γ−1

)
and r | (k + γ) [13].

• For γ = 3, there exist (s, γ)-MR codes when n =
Θ(q1/3) [15].

• There exist (s = δ− 1, γ)-MR codes when n = Θ(log q)
[5].

• There exist (s = δ − 1, γ)-MR codes when n = Θ(q
1
γ )

[12].
• There exist (s = δ − 1, γ)-MR codes when n = Θ(q

1
r )

[21].
Remark 7: By Corollaries 4 and 5, there exist GSD codes

with n = Θ(q2), where h, r, and δ are regarded as constants,
i.e., q1 is a constant. Note that if we regard β > 2 as a
constant then n = Θ(q

2β−1
β ) with q = Θ(qβ1 ). In addition,

for general cases by using Steiner systems with parameters
(τ, r + δ − 1, n1), Steiner systems are capable of yielding
optimal locally repairable codes (similarly, GSD codes) with
length n = Θ(qτ ) as shown in Corollary 2 and Remark 2.
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“Explicit optimal-length locally repairable codes of distance 5,” arX-
iv:1810.03980, 2018.

[5] G. Calis and O. O. Koyluoglu, “A general construction for PMDS codes,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 452-455, Mar. 2017.

[6] V. R. Cadambe and A. Mazumdar, “ Bounds on the size of locally
recoverable codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5787-
5794, Nov. 2015.

[7] H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally
repairable codes with super-linear length,” to appear in IEEE Trans. Inf.
Theory.

[8] H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally
repairable codes with multiple disjoint repair sets,” vol. 66, no. 4, pp.
2402-2416, Apr. 2020.

[9] H. Cai and M. Schwartz, “ On optimal locally repairable codes and
generalized sector-disk codes ” arXiv:2001.02909, 2020.

575



[10] B. Chen, S. Xia, J. Hao, and F. Fu, “Constructions of optimal cyclic
(r, δ) locally repairable codes,” IEEE Trans. Inf. Theory, vol. 64, no. 4,
pp. 2499-2511, Apr. 2018.

[11] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
Chapman & Hall/CRC, vol. 42, 2006.

[12] R. Gabrys, E. Yaakobi, M. Blaum, and P.H. Siegel, “Constructions of
partial MDS codes over small fields,” In Proc. of IEEE ISIT, 2017.

[13] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no.9,
pp. 5245-5256, Sept. 2014.

[14] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-
6934, Nov. 2012.

[15] S. Gopi, V. Guruswami, and S. Yekhanin, “Maximally recoverable
LRCs: A field size lower bound and constructions for few heavy parities,”
to appear in IEEE Trans. Inf. Theory.

[16] V. Guruswami, C. Xing, and C. Yuan, “How long can optimal locally
repairable codes be?” IEEE Trans. Inf. Theory, vol. 65, no. 6, pp. 3662-
3670, Jun. 2019.

[17] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” In
NCA, 2007.

[18] L. Jin, “Explicit construction of optimal locally recoverable codes of
distance 5 and 6 via binary constant weight codes,” IEEE Trans. Inf.
Theory, vol. 65, no. 8, pp. 4658-4663, Aug. 2019.

[19] S. Kadhe and A. Sprintson, “Codes with unequal locality,” In Proc. of
IEEE ISIT, 2016.

[20] G. Kim and J. Lee, “Locally repairable codes with unequal locality
requirements,” IEEE Trans. Inf. Theory, vol. 64, no. 11, pp. 7137-7152,
Nov. 2018.
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