
On Tilings of Asymmetric Limited-Magnitude Balls
Hengjia Wei

School of Electrical and Computer Engineering
Ben-Gurion University of the Negev

Beer Sheva, Israel, 8410501
Email: hjwei05@gmail.com

Moshe Schwartz
School of Electrical and Computer Engineering

Ben-Gurion University of the Negev
Beer Sheva, Israel, 8410501

Email: schwartz@ee.bgu.ac.il

Abstract—We study whether an asymmetric limited-magnitude
ball may tile Zn. This ball generalizes previously studied shapes:
crosses, semi-crosses, and quasi-crosses. Such tilings act as perfect
error-correcting codes in a channel which changes a transmitted
integer vector in a bounded number of entries by limited-
magnitude errors.

A construction of lattice tilings based on perfect codes in
the Hamming metric is given. Several non-existence results are
proved, both for general tilings, and lattice tilings. A complete
classification of lattice tilings for two certain cases is proved.

I. INTRODUCTION

In some applications, information is encoded as a vector of
integers, x ∈ Zn, most notably, flash memories (e.g., see [2]).
Additionally, a common noise affecting these applications is a
limited-magnitude error affecting some of the entries. Namely,
at most t entries are increased by as much as k+ or decreased
by as much as k−. Thus, for integers n > t > 1, and k+ >
k− > 0, we define the (n, t, k+, k−)-error-ball as

B(n, t, k+, k−) , {x ∈ Zn | xi ∈ [−k−, k+] and wt(x) 6 t},

where x = (x1, x2, . . . , xn), and wt(x) denotes the Hamming
weight of x. It now follows that an error-correcting code in this
setting is equivalent to a packing of Zn by B(n, t, k+, k−),
and the subject of interest for this paper, a perfect code is
equivalent to a tiling of Zn by B(n, t, k+, k−). An example
of B(3, 2, 2, 1) is shown in Fig. 1.

Previous works on tiling these shapes almost exclusively
studied the case of t = 1. The cross, B(n, 1, k, k), and semi-
cross, B(n, 1, k, 0) have been extensively researched, e.g., see
[3]–[5], [10], [12] and the many references therein. This was
recently extended to quasi-crosses, B(n, 1, k+, k−), in [7],
creating a flurry of activity on the subject [8], [16]–[20].
To the best of our knowledge, [11] and later [1], are the
only works to consider t > 2, by considering a notched
cube (or a “chair”), which for certain parameters becomes
B(n, n− 1, k, 0). Tilings of these shapes have been constructed
in [1], [11]. Additionally, [1] showed that B(n, n − 2, k, 0),
n > 4, k > 1, can never lattice-tile Zn.

The goal of this paper is to study tilings of B(n, t, k+, k−)
for t > 2. Our main contributions are a construction of
lattice tilings from perfect codes in the Hamming metric, and
a sequence of non-existence results, both for lattice tilings
and for general non-lattice tilings. We use both algebraic
techniques and geometric ones. In particular, we provide a
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Fig. 1. A depiction of B(3, 2, 2, 1) where each point in B(3, 2, 2, 1) is shown
as a unit cube.

complete classification of lattice tilings with B(n, 2, 1, 0) and
B(n, 2, 2, 0).

The paper is organized as follows: In Section II we provide
the notation used throughout the paper, as well as definitions
and basic results concerning lattice tilings and group splittings.
We construct lattice tilings in Section III, and prove non-
existence results in Section IV. A short discussion and open
questions are given in Section V. Due to space limitation
proofs are mostly omitted, except for a sampling to showcase
the various techniques. The complete version may be found
in [15].

II. PRELIMINARIES

Throughout the paper we let n and t be integers such that
n > t > 1. We further assume k+ and k− are non-negative
integers such that k+ > k− > 0. For integers a 6 b we
define [a, b] , {a, a + 1, . . . , b} and [a, b]∗ , [a, b] \ {0}. We
use Zm to denote the cyclic group of integers with addition
modulo m, and Fq to denote the finite field of size q. Since
we shall almost always use just the additive group of the finite
field, when p is a prime we shall sometimes write Fp and
sometimes Zp.
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A lattice Λ ⊆ Zn is an additive subgroup of Zn. A lattice
Λ may be represented by a matrix G(Λ) ∈ Zn×n, the span
of whose rows (with integer coefficients) is Λ. A fundamental
region of Λ is defined as{

n

∑
i=1

civi

∣∣∣∣∣ ci ∈ R, 0 6 ci < 1

}
,

where vi is the i-th row of G(Λ). It is well known that
the volume of the fundamental region is |det(G(Λ))|, and
is independent of the choice of G(Λ).

We say B ⊆ Zn packs Zn by Λ ⊆ Zn, if the translates
of B by elements from Λ do not intersect, namely, for all
v, v′ ∈ Λ, v 6= v′,

(v +B) ∩ (v′ +B) = ∅.

We say B covers Zn by Λ if⋃
v∈Λ

(v +B) = Zn.

If B both packs and covers Zn by Λ, then we say B tiles
Zn by Λ. It is well known that if B packs Zn by Λ, and
|B| = |det(G(Λ))|, then B tiles Zn by Λ.

A. Lattice Tiling and Group Splitting
Lattice tiling of Zn with B(n, t, k+, k−), in connection with

group splitting, has a long history when t = 1 (e.g., see
[9]), called lattice tiling by crosses if k+ = k− (e.g., [10]),
semi-crosses when k− = 0 (e.g., [3], [4], [10]), and quasi-
crosses when k+ > k− > 0 (e.g., [7], [8]). For an excellent
treatment and history, the reader is referred to [12] and the
many references therein. Other variations, keeping t = 1
include [13], [14]. More recent results may be found in [17]
and the references therein.

Since we are interested in codes that correct more than one
error, namely, t > 2, an extended definition of group splitting
is required.

Definition 1. Let G be a finite Abelian group, where +
denotes the group operation. For m ∈ Z and g ∈ G, let
mg denote g + g + · · · + g (with m copies of g) when
m > 0, which is extended in the natural way to m 6 0. Let
M ⊆ Z \ {0} be a finite set, and S = {s1, s2, . . . , sn} ⊆ G.
We say the set M t-splits G with splitter set S, denoted

G = M �t S

if the following two conditions hold:
1) The elements e · (s1, . . . , sn), where e ∈ (M∪{0})n and

1 6 wt(e) 6 t, are all distinct and non-zero in G.
2) For every g ∈ G there exists a vector e ∈ (M ∪ {0})n,

wt(e) 6 t, such that g = e · (s1, . . . , sn).

Intuitively, G = M �t S means that the non-trivial linear
combinations of elements from S, with at most t non-zero
coefficients from M, are distinct and give all the non-zero
elements of G exactly once. We note that when t = 1, this
definition coincides with the definition of splitting used in
previous papers.

The following two theorems show the equivalence of t-
splittings and lattice tilings, summarizing Lemma 3, Lemma
4, and Corollary 1 in [1]. They generalize the treatment for
t = 1 in previous works (e.g., see [12]).

Theorem 2 (Lemma 4 and Corollary 1 in [1]). Let G
be a finite Abelian group, M , [−k−, k+]∗, and S =
{s1, . . . , sn} ⊆ G, such that G = M �t S. Define φ : Zn → G
as φ(x) , x · (s1, . . . , sn) and let Λ , ker φ be a lattice. Then
B(n, t, k+, k−) tiles Zn by Λ.

Theorem 3 (Lemma 3 and Corollary 1 in [1]). Let Λ ⊆ Zn be
a lattice, and assume B(n, t, k+, k−) tiles Zn by Λ. Then there
exists a finite Abelian group G and S = {s1, s2, . . . , sn} ⊆ G
such that G = M �t S, where M , [−k−, k+]∗.

III. CONSTRUCTION OF LATTICE TILINGS

In this section we describe a construction for tilings with
B(n, t, k+, k−). The method described here takes a linear
perfect code in the well known and extensively studied Ham-
ming metric, and uses it to construct the tiling. The obvious
downside to this method is the fact that very few perfect codes
exist in the Hamming metric (see [6] for more on perfect
codes).

Theorem 4. In the Hamming metric space, let C be a perfect
linear [n, k, 2t + 1] code over Fp, with p a prime. If k+ +
k− + 1 = p, then

Λ , {x ∈ Zn | (x mod p) ∈ C}

is a lattice, and B(n, t, k+, k−) lattice-tiles Zn by Λ.

Proof: Directly from its definition, Λ is closed under
addition and under multiplication by integers. Thus, Λ is a
lattice. Denote B , B(n, t, k+, k−), and we now prove B

tiles Zn by Λ.
To show packing, assume v+ e = v′+ e′, for some v, v′ ∈

Λ and e, e′ ∈ B. But then e− e′ = v′ − v ∈ Λ, and by the
definition of Λ, also e′′ , ((e− e′) mod p) ∈ C. We note
that wt(e) 6 t and wt(e′) 6 t, hence wt(e′′) 6 2t. By the
minimum distance of C this implies that e′′ = 0. Now, since
each entry of e− e′ is in the range [−(k+ + k−), k+ + k−],
and since k++ k−+ 1 = p, we necessarily have that e− e′ =
0, which in turn implies v− v′ = 0. It follows that translates
of B by Λ pack Zn.

To show covering, let x ∈ Zn be any integer vector. Then
x′ , (x mod p) ∈ Fn

p. Since C is a perfect code, there exists
v′ ∈ C and e′ ∈ Fn

p, wt(e′) 6 t, such that x′ ≡ v′ + e′

(mod p). Since k+ + k− + 1 = p, there exists e ∈ B such
that e mod p = e′. But then x − e ≡ v′ (mod p) and by
definition x− e ∈ Λ. Hence, the translates of B by Λ cover
Zn.

Example 5. Take the [ pm−1
p−1 , pm−1

p−1 − m, 3] p-ary Hamming
code (p a prime), together with Theorem 4, to obtain a tiling of
Z(pm−1)/(p−1) by B( pm−1

p−1 , 1, k+, k−), where k+ + k−+ 1 =
p. This particular tiling was already described in [7] together
with the lattice generator matrix and equivalent splitting.

2020 IEEE Information Theory Workshop (ITW)

531



Example 6. If we use Theorem 4 with the perfect binary linear
[2t + 1, 1, 2t + 1] repetition code, we obtain a lattice tiling of
Z2t+1 by B(2t + 1, t, 1, 0). The lattice is spanned by

G =


1 1 1 . . . 1

2
2

. . .
2

 .

When viewed as a splitting, the additive group F2t
2 is t-split

as F2t
2 = {1} �t S, where S = {ei | 1 6 i 6 2t} ∪ {1}, and

where ei is the i-th unit vector of length 2t.

Example 7. Again using Theorem 4 with the [23, 12, 7] binary
Golay code, we obtain a lattice tiling of Z23 by B(23, 3, 1, 0).
The lattice Λ is spanned by

G =

(
I12 Gb
0 2I11

)
,

where
(

I12 Gb
)

is a generator matrix of the [23, 12, 7] binary
Golay code, and 2I11 is an 11× 11 matrix with entries on the
diagonal being 2 and all the others being 0. Now, we look at
the corresponding group splitting. Since Z23 can be spanned
by the matrix (

I12 Gb
0 I11

)
,

the quotient group Z23/Λ is isomorphic to the additive group
F11

2 . Note that (
I12 Gb
0 2I11

)(
Gb
I11

)
is a 23 × 11 all-zero matrix over F2. The natural homo-
morphism φ : Z23 → F11

2 sends the standard basis to

the rows of
(

Gb
I11

)
. It follows that F11

2 = {1} �3 S, where

S = {ei | 1 6 i 6 11} ∪ {r | r is a row of Gb}.

Example 8. Finally, using Theorem 4 with the [11, 6, 5]
ternary Golay code, we obtain a lattice tiling of Z11 by
B(11, 2, 2, 0) or B(11, 2, 1, 1). The lattice is spanned by

G =

(
I6 Gt
0 3I5

)
,

where
(

I6 Gt
)

is a generator matrix of the [11, 6, 5] ternary
Golay code, and 3I5 is a 5 × 5 matrix with entries on the
diagonal being 3 and all the others being 0. When viewed as
a splitting, the additive group F5

3 is 2-split as F5
3 = {1, 2} �2 S,

where S = {ei | 1 6 i 6 5} ∪ {r | r is a row of Gt}.

Theorem 4 has its dual as well, as shown in the following
theorem.

Theorem 9. Assume B(n, t, k+, k−) lattice-tiles Zn by the
lattice Λ, with an equivalent t-splitting Fm

p = M �t S, where
M , [−k−, k+]∗, p is a prime, and p = k+ + k− + 1. Then
Λ ∩ Fn

p is a perfect linear [n, k, 2t + 1] code over Fp in the
Hamming metric space.

IV. NONEXISTENCE RESULTS

The nonexistence results we present in this section are
divided into results on general tilings, and results on lattice
tilings. The former use mainly geometric arguments, whereas
the latter employ algebraic ones.

A. Nonexistence of General Tilings

The first result we present uses a comparison between the
density of a tiling of B(n, t, k+, k−) with that of a tiling of a
certain notched cube of a lower dimension.

Theorem 10. For any n > t + 1, and k+ > k− > 0 not both
0, if

t

∑
i=0

(
n
i

)
(k+ + k−)i < (k+ + 1)t+1 − (k+ − k−)t+1

then Zn cannot be tiled by translates of B(n, t, k+, k−).

Proof: Given integers n > t + 1, assume that there is a
set T ⊆ Zn such that B , B(n, t, k+, k−) tiles Zn by T.
Consider the set

A =
{
(x1, x2, . . . , xt+1, 0, . . . , 0)

∣∣∣
(x1, . . . , xt+1) ∈ [0, k+]t+1 \ [k− + 1, k+]t+1

}
.

Hence, if we remove the last n− t− 1 zero coordinates, the
elements of A are exactly a notched cube, as defined in [1],
[11]. Thus, by [1], [11], translates of A tile the space1

{(x1, x2, . . . , xt+1, 0, . . . , 0) | xi ∈ Z for all 1 6 i 6 t + 1}.

Trivially, it follows that translates of A can tile the space Zn.
We now claim that any translate of A contains at most

one point from T. Suppose to the contrary that both x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) belong to the in-
tersection (v + A) ∩ T, where v = (v1, v2, . . . , vn) ∈ Zn,
and x 6= y. Then vi 6 xi, yi 6 vi + k+ for 1 6 i 6 t + 1,
xi = yi = vi for t + 2 6 i 6 n, and there are indices 1 6
jx, jy 6 t + 1 such that xjx 6 vjx + k− and yjy 6 vjy + k−.
W.l.o.g., assume that x1 6 v1 + k−. We proceed in two cases.

1) If y1 6 v1 + k−, let z =
(z1, z2, . . . , zt+1, vt+2, vt+3 . . . , vn), where

z1 =

{
x1, if xi 6 yi for all i = 2, 3, . . . , t + 1,
y1, otherwise,

and

zi = max{xi, yi} for i = 2, 3, . . . , t + 1.

Then it is easy to see that

z ∈ (x +B) ∩ (y +B),

a contradiction.

1While [1], [11] discuss a tiling of Rn, it is easily seen that the tiling
constructed there is in fact a tiling of Zn as in our setting.
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2) If y1 > v1 + k−, then there is 2 6 j 6 t + 1 such that
yj 6 vj + k−. W.l.o.g., assume that y2 6 v2 + k− and
let z = (y1, z2, z3, . . . , zt+1, vt+2, vt+3 . . . , vn), where

z2 =

{
x2, if xi 6 yi for all i = 2, 3, . . . , t + 1,
max{x2, y2}, otherwise,

and zi = max{xi, yi} for i = 3, 4, . . . , t + 1. Again,

z ∈ (x +B) ∩ (y +B),

a contradiction.
We have shown that any translate of A contains at most one

point from T, and so the tiling by A is denser than the tiling
by B. It follows that the reciprocal of the volume of B cannot
exceed the reciprocal of the volume of A, i.e.,

1

∑t
i=0 (

n
i )(k+ + k−)i

6
1

(k+ + 1)t+1 − (k+ − k−)t+1 .

Rearranging gives us the desired result.

Remark 11. If k− = k+(1− o(1)), while n and t are fixed,
then according to Theorem 10, there is an upper bound on k+
for which B(n, t, k+, k−) can tile Zn.

The geometric approach is also used to prove the following
two theorems. The first is analogous to that of proper quasi-
crosses when t = 1, namely, the case when k+ > k− > 0. The
second concerns equal arm length, k+ = k−. The method used
is an elaboration of the one used in the proof of Theorem 12.

Theorem 12. Let 2t > n > t + 1 and k+ > k− > 0. Then
Zn cannot be tiled by B(n, t, k+, k−).

Theorem 13. Let k+ = k− > 2 and n > t > (4n− 2)/5.
Then for any n > 3, Zn cannot be tiled by B(n, t, k+, k−).

B. Nonexistence of Lattice Tilings
We now turn to the more specific case of lattice tilings.

Some of the nonexistence results presented in this section
are stated as necessary conditions. The main tool used is
Theorem 3, and the algebraic study of the t-splitting. We begin
with the lattice-tiling equivalents of Theorem 10.

Theorem 14. For any n > t + 1, and k+ > k− > 0 not both
0, if B(n, t, k+, k−) lattice-tiles Zn then

t

∑
i=1

(
n
i

)
(k+ + k−)i−1 > (k− + 1)t.

Theorem 15. Let n > 2t, and k+ > k− > 0. If
B(n, t, k+, k−) lattice-tiles Zn then

(k− + 1)2

k+ + k− + 1
<

(
n
t

)1/t
,

Theorem 15 is particularly useful in an asymptotic regime
where t = Θ(n), as shown in the following corollary.

Corollary 16. If α 6 t
n 6 1

2 , k+ > k− > 0, and

(k− + 1)2

k+ + k− + 1
>

e
α

,

then B(n, t, k+, k−) does not lattice-tile Zn.

We continue on to a few more specific cases. The next two
theorems deal with the analogue of semi-crosses when t = 1,
namely, the case of k− = 0.

Theorem 17. Let 2 6 t < n/4 and k+ > k− = 0. Then
B(n, t, k+, 0) cannot lattice-tile Zn when

k+ > 2
(

n
t

)
− 2.

Unlike the other proofs in this section, the next one uses a
geometric argument.

Theorem 18. Let 2
3 (n− 1) 6 t 6 n− 3. Then B(n, t, k+, 0)

cannot lattice-tile Zn when k+ > 2.

Continuing our specialization, we turn to tackle the case of
t = 2, and present a strong restriction on the dimension n.

Theorem 19. For any k+ > k− > 0, if B(n, 2, k+, k−)
lattice-tiles Zn and also |B(n, 2, k+, k−)| is even, then

n =
4`2 − (k+ + k− − 3)2 + 8

4(k+ + k−)
,

for some ` ∈ Z.

Proof: By Theorem 3 there exists an Abelian group G
whose size is |G| = |B(n, 2, k+, k−)| such that G = M �2 S
for some S ⊆ G, |S| = n, where M , [−k−, k+]∗. Since G
is Abelian and of even order, necessarily G = Z2r × G′, for
some r > 1. We may therefore write any element g ∈ G as a
pair (a, b) where a ∈ Z2` and b ∈ G′, and we say g is even
if a ≡ 0 (mod 2), and odd otherwise.

Denote by n1 the number of odd elements in S. Addi-
tionally, denote by m0 , bk+/2c + bk−/2c (respectively,
m1 , dk+/2e+ dk−/2e) the number of even (respectively,
odd) numbers in M.

Let us examine how the 1
2 ((

n
2)(k+ + k−)2 + n(k+ + k−) +

1) odd elements of G are obtained via the 2-splitting. There
are three possible ways:

1) An odd element in S times an odd number in M.
2) An odd element in S times an odd number in M, plus an

even element in S times any number from M.
3) An odd element in S times an odd number in M, plus

a different odd element in S times an even number from
M.

Thus,

n1m1 + n1m1(n− n1)(m0 + m1) + n1m1(n1 − 1)m0

=
1
2

((
n
2

)
(m0 + m1)

2 + n(m0 + m1) + 1
)

.

Solving for n1 we obtain

n1 =

n(m0 + m1)−m0 + 1±
√

n(m2
1 −m2

0) + m2
0 − 2m0 − 1

2m1
.
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We recall that m0 + m1 = k+ + k−. Additionally,

|B(n, 2, k+, k−)| =
(

n
2

)
(k+ + k−)2 + n(k+ + k−) + 1

is even, which implies that k+ + k− is odd, and then m1 −
m0 = 1. It follows that m2

1 −m2
0 = (m1 −m0)(m1 + m0) =

m1 + m0 = k+ + k−. Substituting back, we use the fact that
the square root must be an integer ` ∈ Z to obtain the desired
claim after some simple rearranging.

Finally, we focus on the smallest case not studied before
– tiling B(n, 2, 1, 0). In this case, by a careful study of the
possible group splittings we obtain a full classification of
possible tilings.

Theorem 20. Let n > 3. Then B(n, 2, 1, 0) lattice-tiles Zn

only when n ∈ {3, 5}, and only by 2-splitting Z7 and 2-
splitting F4

2, respectively.

Using a similar method, we now direct our attention to the
case of B(n, 2, 2, 0).

Theorem 21. Let n > 3, then B(n, 2, 2, 0) lattice-tiles Zn

only when n ∈ {3, 11}, and only by 2-splitting Z19 and 2-
splitting F5

3, respectively.

V. CONCLUSION

In this paper we studied general tilings as well as lattice
tilings of Zn with B(n, t, k+, k−). These may act as perfect
error-correcting codes over a channel with at most t limited-
magnitude errors. We constructed such lattice tilings from per-
fect codes in the Hamming metric, and provided several non-
existence results. We summarize some of our non-existence
results for lattice tilings below, where it is interesting to note
the difference between the cases of t

n < 1
2 and t

n > 1
2 .

Corollary 22. Let 2 6 t < n/2, and k+ > k− > 0 not both
0. Then B(n, t, k+, k−) cannot lattice-tile Zn when one of the
following holds:

1) (k−+1)2

k++k−+1 > (n
t)

1/t.
2) 2 6 t < n/4, k− = 0 and k+ > 2(n

t)− 2.
3) t = 2, k− = 0, k+ = 1 and n 6= 5.
4) t = 2, k− = 0, k+ = 2 and n 6= 11.

Corollary 23. Let 2 6 t < n 6 2t, and k+ > k− > 0
not both 0. If B(n, t, k+, k−) lattice-tiles Zn, then one of the
following holds:

1) k− = 0 and one of the following holds:
a) t = n− 1 (such tilings have been constructed in [1],

[11]);
b) (2n− 2)/3 6 t 6 n− 3 and k+ = 1;
c) n/2 6 t < (2n− 2)/3;

2) k+ = k− and one of the following holds:
a) (4n− 2)/5 6 t 6 n− 1 and k+ = k− = 1;
b) n/2 6 t < (4n − 2)/5 and ∑t

i=1 (
n
i )(2k+)i−1 >

(k+ + 1)t.

It is also interesting to compare the results here, when t > 2,
with the known results for t = 1. The non-existence results

we have here rely heavily on geometric arguments, or general
algebraic arguments. The notable exceptions are Theorem 20
and Theorem 21, which carefully study the structure of the
group being split. This is in contrast with the strong non-
existence results when t = 1, due to the fact that when t = 1,
if G is split then so is the cyclic group of the same size, Z|G|.
This does not hold when t > 2, as evident, for example, during
the proof of Theorem 20, where F4

2 is 2-split but Z16 is not.
Whether some strong statement may be said about the

structure of the group being split, remains as an open question
for further research. It is also interesting to ask whether
more t-splittings exist, namely, whether t-splittings exist which
are not derived from perfect codes in the Hamming metric.
Finally, it remains open whether any other non-lattice tilings
of B(n, t, k+, k−) exist.
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