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Abstract—Motivated by an application to database linear
querying, such as private information-retrieval protocols, we
suggest a fundamental property of linear codes – the generalized
covering radius. The generalized covering-radius hierarchy of a
linear code characterizes the trade-off between storage amount,
latency, and access complexity, in such database systems. Several
equivalent definitions are provided, showing this as a combina-
torial, geometric, and algebraic notion. We derive bounds on
the code parameters in relation with the generalized covering
radii, study the effect of simple code operations, and describe a
connection with generalized Hamming weights.

I. INTRODUCTION

A common query type in database systems involves a
linear combination of the database items with coefficients
supplied by the user. As examples we mention partial-sum
queries [2], and private information retrieval (PIR) proto-
cols [3]. In essence, one can think of the database server as
storing m items, x1, . . . , xm ∈ Fq` . A user may query the
contents of the database by providing s1, . . . , sm ∈ Fq, and
getting in response the linear combination ∑m

i=1 sixi.
Various aspects of these systems are of interest and in need

of optimization, such as the amount of storage at the server,
and the required bandwidth for the querying protocol. One
important aspect is that of access complexity, paralleling a
similar concern studied in distributed storage systems [9],
[12]. In a straightforward implementation, the time required
to access the elements of the database needed to compute the
answer to a user query is directly proportional to the number
of non-zero coefficients among s1, . . . , sm. This may prove to
be a bottleneck, in particular since in schemes like PIR, the
coefficients are random, and therefore a typical query would
require the database server to access a fraction of 1− 1

q of the
items.

A trade-off between access complexity and storage amount
was suggested for PIR in [14], echoing a similar suggestion for
databases made in [10]. This suggestion calls for a carefully
designed set of linear combinations to be pre-computed and
stored by the server. Instead of storing x = (x1, . . . , xm) as
is, the server stores h1 · x, . . . , hn · x, where each hi ∈ Fm

q
describes a linear combination. Assume that the matrix H,
whose columns are h1, . . . , hn, is a parity-check matrix for
a code with covering radius r. Thus, when the user queries
the database using s = (s1, . . . , sm), by the properties of the
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covering code, s may be computed using a linear combination
of at most r columns of H. Hence, at most r pre-computed
combinations that are stored in the database need to be
accessed in order to provide the user with the requested linear
combination. The trade-off between access complexity and
storage amount follows, since instead of storing m elements,
the server now stores n > m linear combinations, and so n
is lower bounded by the smallest possible length for a code
with covering radius r and redundancy m over Fq. These
code parameters have been thoroughly studied and are well
understood [4].

We now take access-complexity optimization one step fur-
ther. The database server naturally receives a stream of queries,
say s1, s2, . . . . Those may arrive from the same user, or from
multiple distinct users. Instead of handling each of the queries
separately, accessing r pre-computed linear combinations for
each query, the server may group together t queries, s1, . . . , st
and, hopefully, access fewer than r · t pre-computed linear
combinations as it would in a naive implementation. Thus,
both storage amount and latency are traded-off for a reduced
access complexity.

The motivation mentioned above leads us to the following
combinatorial problem: Design a set of vectors, h1, . . . , hn ∈
Fm

q (describing linear combinations to pre-compute), such that
every t vectors, s1, . . . , st ∈ Fm

q (describing user queries), may
be obtained by accessing at most r of the elements h1, . . . , hn.
When viewed as columns of a parity-check matrix for a code,
this becomes a generalized covering radius definition. It bears
a resemblance to the generalized Hamming weight of codes,
introduced by Wei [13] to characterize the performance of
linear codes over a wire-tap channel.

The goal of this paper is to study the generalized covering
radius as a fundamental property of linear codes. Our main
contributions are the following:

1) We discuss three definitions for the generalized covering
radius of a code, highlighting the combinatorial, geomet-
ric, and algebraic properties of this concept, and showing
them to be equivalent.

2) We derive bounds that tie the various parameters of
codes to the generalized covering radii. In particular, we
prove an asymptotic upper bound on the minimum rate
of binary codes with a prescribed second generalized
covering radius, thus showing an improvement over
the naive approach. The bound on the minimal rate is
attained by almost all codes.

3) We determine the effect simple code operations have on
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the generalized covering radii: code extension, punctur-
ing, the (u, u + v) construction, and direct sum.

4) We discuss a connection between the generalized cover-
ing radii and the generalized Hamming weights of codes
by showing that the latter is in fact a packing problem
with some rank relaxation.

The paper is organized as follows: Preliminaries and nota-
tions are presented in Section II. We study various definitions
of the generalized covering radius, and show them to be equiv-
alent, in Section III. Section IV is devoted to the derivation
of bounds on the generalized covering radii. Basic operations
on codes are studied in Section V, and a relation with the
generalized Hamming weights in Section VI. We conclude
with a discussion of the results and some open questions in
Section VII. Due to space limitations, proofs are omitted or
sketched. For the full proofs the reader is referred to [6].

II. PRELIMINARIES

For all n ∈ N, we define [n] , {1, 2, . . . , n}. If A is a
finite set and t ∈ N, we denote by (A

t ) the set of all subsets
of A of size exactly t. We use Fq to denote the finite field
of size q, and denote F∗q , Fq \ {0}. Given a vector space
V over Fq, we denote by [Vt ] the set of all vector subspaces
of V of dimension t ∈ N. We use lower-letters, v, to denote
scalars, overlined lower-case letters, v, to denote vectors, and
either bold lower-case letters, v, or upper-case letter, V, to
denote matrices. Whether vectors are row vectors or column
vectors is deduced from context.

If H is a matrix with n columns, we denote by hi its i-th
column. For I = {i1, i2, . . . , it} ∈ ([n]t ), we denote by HI
the restriction of H to the columns whose indices are in I,
i.e., HI , (hi1 , . . . , hit). We shall also use 〈HI〉 to denote the
linear space spanned by the columns of HI

Given v = (v1, . . . , vn) ∈ Fn
q , the support of v is defined

by supp(v) , {i ∈ [n] | vi 6= 0}. Whenever required, for a
subset V ⊆ Fn

q we define supp(V) ,
⋃

v∈V supp(v). The
Hamming weight of v is then defined as wt(v) , |supp(v)|.
If v′ ∈ Fn

q , then the Hamming distance between v and v′ is
given by d(v, v′) , wt(v− v′). We also extend the definition
to the distance between a vector and a set, namely, for a set
C ⊆ Fn

q ,

d(v, C) , min{d(v, c) | c ∈ C}.

Finally, the Hamming ball of radius r centered at v ∈ Fn
q is

defined as

Br,n,q(v) ,
{

v′ ∈ Fn
q

∣∣∣ d(v, v′) 6 r
}

.

We shall omit the subscripts n and q whenever they may be
inferred from the context.

III. THE GENERALIZED COVERING RADII

We would now like to introduce the concept of generalized
covering radius. We present several definitions, with varying
approaches, be they combinatorial, algebraic, or geometric. We

then show that all of the definitions are in fact equivalent (at
least, when linear codes are concerned).

Our first definition stems directly from the application
outlined in the introduction – database queries.
Definition 1 Let C be an [n, k] linear code over Fq, given

by an (n − k) × n parity-check matrix H ∈ F
(n−k)×n
q . For

every t ∈ N we define the t-th generalized covering radius,
Rt(C), to be the minimal integer r ∈ N such that for every

set S ∈ (
Fn−k

q
t ) there exists I ∈ ([n]r ) such that S ⊆ 〈HI〉, i.e.,

Rt(C) , max
S⊆Fn−k

q
|S|=t

min
I⊆[n]

S⊆〈HI〉

|I|.

While Rt(C) certainly depends on the code C, for the sake
of brevity we sometimes write Rt when we can infer C from
the context. At first glance it seems as if Rt does not only
depend on C, but also on the choice of parity-check matrix
H. However, the following lemma shows this is not the case.
Lemma 2 Let Rt be given by a full-rank matrix H ∈
F
(n−k)×n
q as in Definition 1. For any A ∈ GL(n − k, q)

(the group of (n − k) × (n − k) invertible matrices with
coefficients in Fq), let R′t be the generalized covering radius,
as in Definition 1, but using the matrix AH. Then Rt = R′t.

We observe, in Definition 1, that requiring S ⊆ 〈HI〉 also
ensures 〈S〉 ⊆ 〈HI〉. We therefore must have for all t ∈
[n− k],

Rt > t. (1)

We also observe that R1 is in fact the covering radius of the
code C, and that the generalized covering radii are naturally
monotone increasing, i.e.,

R1 6 R2 6 . . . 6 Rn−k = n− k, (2)

as well as Rt = n − k for all t > n − k. Thus, the values
R1, . . . , Rn−k are called the generalized covering-radius hier-
archy. While being monotone increasing, we do note however,
that the generalized covering radius Rt is not necessarily
strictly increasing in t (e.g., the shortened binary Hamming
code, see [6]).

Aiming for a geometric interpretation of the generalized
covering radii, we provide two more equivalent definitions that
are increasingly geometric in nature.
Definition 3 Let C be an [n, k] linear code over Fq. Then for
every t ∈ N we define the t-th generalized covering radius,
Rt(C), to be the minimal integer r ∈ N such that for every
v1, . . . , vt ∈ Fn

q , there exist codewords c1, . . . , ct ∈ C and

I ∈ ([n]r ), such that supp(vi − ci) ⊆ I for all i ∈ [t].
We now move to a “classical” covering in the geometric

sense. It involves a covering of a space with certain shapes.
We shall require an extension the Hamming metric to a t-
Hamming metric. The space we operate in is Ft×n

q . The t-
weight of a matrix v ∈ Ft×n

q , with row vectors denoted vi, is
defined as

wt(t)(v) ,

∣∣∣∣∣∣⋃i∈[t] supp(vi)

∣∣∣∣∣∣.
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We now define the t-distance between v, v′ ∈ Ft×n
q as

d(t)(v, v′) , wt(t)(v− v′).

The t-ball centred in a matrix v ∈ Ft×n
q is defined by

B(t)
r (v) =

{
v′ ∈ Ft×n

q

∣∣∣ d(t)(v, v′) 6 r
}

.

We also note that d(1) is simply the Hamming distance
function, hence our previous observation of a 1-ball being a
ball in the Hamming metric. A superscript of (1) will generally
be omitted unless a special need for emphasis arises.

Definition 4 Let C be an [n, k] linear code over Fq. Then for
every t ∈ N, we define the t-th generalized covering radius,
Rt, to be the minimal integer r such that t-balls centered at

Ct ,


c1

...
ct


∣∣∣∣∣∣∣ ∀i ∈ [t], ci ∈ C

,

cover Ft×n
q , i.e.,

⋃
c∈Ct B(t)

r (c) = Ft×n
q .

We would like to comment that if we denote the columns
of v ∈ Ft×n

q by v̂1, . . . , v̂n ∈ Ft
q, then

wt(t)(v) =
∣∣{j ∈ [n]

∣∣ v̂j 6= 0
}∣∣.

This metric is known in the literature as the block metric,
introduced independently by Gabidulin [8] and Feng [11].

For our last approach, we make the obvious next step,
resulting in an algebraic definition of the generalized covering
radii. Using the well known isomorphism Ft

q
∼= Fqt , we view

Ct ⊆ Ft×n
q as a subset of Fn

qt . Under this isomorphism, the
t-covering of a code C becomes the first covering radius of Ct

in Fn
qt . Thus, we obtain the following equivalent definition:

Definition 5 Let C be an [n, k] linear code over Fq. As-
sume G ∈ Fk×n

q is a generator matrix for C, namely,
C = {uG | u ∈ Fk

q}. Let t ∈ N, and let C′ be the linear
code over Fqt generated by the same matrix G, namely,
C′ = {uG | u ∈ Fk

qt}. Then we define the t-th generalized
covering radius Rt of C as the covering radius of C′, namely,

Rt(C) , R1(C′).

Lemma 6 Let C be an [n, k] linear code over Fq. Then the
values of Rt from Definitions 1, 3, 4, and 5, are the same.

As a final comment to this section, our original approach
to generalize the covering radii of a code, introduced in
Definition 1, arises from the interest in querying databases
by linear combinations (as, for example, used in PIR), and
it uses the parity-check matrix of a code, hence it makes
sense only for linear codes. This is not the case for the
approach in Definition 4, where Rt is defined intrinsically as
a metric invariant. This means that we can use this definition
to generalize the covering radii for general (non-linear) codes.

IV. BOUNDS

A crucial part in our understanding of any figure of merit, is
the limits of values it can take. Thus, we devote this section to
the derivation of bounds on the generalized covering radii of
codes. We put an emphasis on asymptotic bounds, that, given
the normalized t-th covering radius, bound the best possible
rate. We present a straightforward ball-covering argument for
a lower bound. We then also present a trivial upper bound. Our
main result is an asymptotic upper bound that improves upon
the trivial one, and thus showing there is merit to the usage
of generalized covering radii to improve database querying, as
described in Section I. Our upper bound is non-constructive,
and uses the probabilistic method. It shall be made constructive
(albeit, not useful) in Section V.

As is standard, we will require the size of a t-ball. Since
the metrics involved are all translation invariant, the size of
the ball does not depend on the choice of center. We therefore
use

V(t)
r,n,q ,

∣∣∣B(t)
r,n,q(0)

∣∣∣.
Let kt(n, r, q) denote the smallest dimension of a linear code

C over Fq with length n and t-covering radius Rt(C) 6 r. The
following theorem was proved in [5].

Theorem 7 ([5]) For all n, r ∈N, and a prime power q,

n− logq V(1)
r,n,q 6 k1(n, r, q)

6 n− logq V(1)
r,n,q + 2 log2 n− logq n + O(1).

It is convenient to study normalized parameters with respect
to the length of the code. If C is an [n, k] linear code, we define
its normalized parameters, κ , k

n , and ρt ,
Rt
n . Note that we

use κ for the rate of the code, and not R, to avoid confusion
with the covering radius. For t ∈N and a normalized covering
radius 0 6 ρ 6 1, the minimal rate achieving ρ is defined as

κt(ρ, q) , lim inf
n→∞

kt(n, ρn, q)
n

.

In this notation, Theorem 7 gives an asymptotically tight
expression,

κ1(n, ρ) =

{
1− Hq(ρ) 0 6 ρ < 1− 1

q ,

0 1− 1
q 6 ρ 6 1,

(3)

where Hq(x) is the q-ary entropy function given by

Hq(x) = x logq(q− 1)− x logq(x)− (1− x) logq(1− x).

A. General Bounds

For a simple lower bound we use ball-covering.

Proposition 8 For any n, t ∈ N, prime power q, and 0 6
ρ 6 1− 1

qt , we have κt(ρ, q) > 1− Hqt(ρ).

For an upper bound, we first observe the following:

Proposition 9 Let C be an [n, k] code over Fq. Then for all
t ∈N, we have Rt 6 t · R1.

We can now give the following naive upper bound.
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Proposition 10 For any n, t ∈N, t > 2, prime power q, and
0 6 ρ 6 1, we have κt(ρ, q) 6 1− Hq

( ρ
t
)
.

Proposition 9 is in fact a consequence of the following,
more general, upper bound. This upper bound shows that the
generalized covering radii are sub-additive.

Proposition 11 Let C be an [n, k] code over Fq. Then for all
t1, t2 ∈N, we have Rt1+t2 6 Rt1 + Rt2 .

B. Upper Bounding the Binary Case with t = 2
The upper bound we now present improves upon the trivial

one from Proposition 10. Since it is significantly more com-
plex, and has many moving parts, we focus on the binary
case with t = 2 only. We follow a similar strategy to
the one employed by [4, Theorem 12.3.5] for the covering
radius, though major adjustments are required due to the more
involved nature of this generalized problem. In essence, we
show the existence of a covering code using the probabilistic
method. The probability is nearly 1, implying almost all
codes are at least as good as this bound. The main result is
Theorem 12.

We outline the proof strategy to facilitate reading this
section. We use the probabilistic method by choosing a random
generator matrix for a code and bounding the probability that
balls centered at the codewords indeed cover the entire space.
To do so, we study the random variable that counts how many
codewords cover a given point in space. To get a handle on
this variable, we bound its expectation and variance.

We consider the function f : [0, 1]→ R defined by

f (ρ) =


H2(s(ρ)) + 2s(ρ)

+2(1− s(ρ))H2

(
ρ−s(ρ)
1−s(ρ)

)
0 6 ρ < 3

4 ,

3 3
4 6 ρ 6 1,

where

s(ρ) ,
1

10

(
1 + 8ρ−

√
1 + 16ρ− 16ρ2

)
.

All the required supporting lemmas appear in the full ver-
sion [6]. The main result is the following:

Theorem 12 For any 0 < ρ 6 1,

κ2(ρ, 2) 6

{
1− (4H4(ρ)− f (ρ)) 0 6 ρ < 3

4 ,
0 3

4 6 ρ 6 1.

A comparison of the various asymptotic bounds is shown
in Figure 1. It is interesting to note that the upper bound of
Theorem 12 matches the lower ball-covering bound at ρ = 3

4 ,
particularly so because the function f (ρ) is defined by the bi-
nary entropy function, and not the quaternary entropy function.
We also note that the naive upper bound of Proposition 10 is
better than the upper bound of Theorem 12 for ρ . 0.145.

We would like to remark that the analysis performed in
the proof of our upper bound is already involved for the
presented case (of q = 2 and t = 2). A case-by-case
analysis is preformed, resulting in a complicated optimization
problem. Using current techniques, this approach is unscalable,
becoming intractable for larger values of q and t.
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Fig. 1. A comparison of the bounds on κ2(ρ, 2): (a) the ball-covering lower
bound, (b) the upper bound of Theorem 12, and (c) the naive upper bound of
Proposition 10.

V. SIMPLE CODE OPERATIONS

Some code operations are very common. Among these
we can find code extension, code puncturing, the (u, u + v)
construction, and direct sum. In this section we show the
effect these operations have on the generalized covering radii
mimics their effect on the (regular) covering radius. We use
the direct product to turn the non-constructive upper bound
of Theorem 12 to an explicit construction, albeit, not a very
useful one.

Given a code C ⊆ Fn
q , let

C∗ , {(c1, . . . , cn−1) | (c1, . . . , cn−1, cn) ∈ C},

be the punctured code, and

C ,

{
(c1, . . . , cn,−

n

∑
i=1

ci)

∣∣∣∣∣ (c1, . . . , cn) ∈ C

}
,

be the extended code. Even though puncturing is defined as
the removal of the last coordinate, the following results apply
to the removal of any single coordinate.

By [4, Theorem 3.1.1, p. 62], R1(C∗) equals R1(C) or
R1(C)− 1 and R1(C) equals R1(C) or R1(C) + 1. The same
result holds for the generalized covering radii.

Proposition 13 Let C be an [n, k] linear code. Then for any
t ∈N,

1) Rt(C∗) equals Rt(C) or Rt(C)− 1;
2) Rt(C) equals Rt(C) or Rt(C) + 1.

Assume C1 and C2 are [n, k1] and [n, k2] codes, respectively.
The (u, u+ v) construction uses C1 and C2 to produce a code

C = {(u, u + v) | u ∈ C1, v ∈ C2},

and by [4, Theorem 3.4.1, p. 66], its covering radius is upper
bounded by R1(C) 6 R1(C1) + R1(C2).
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Proposition 14 Let Ci be an [n, ki] code over Fq, i = 1, 2,
and let C be the code constructed from C1 and C2 using the
(u, u + v) construction. Then for any t ∈N,

Rt(C) 6 Rt(C1) + Rt(C2).

We now look at the direct sum. Given an [n1, k1] code C1,
and an [n2, k2] code C2, both over Fq, the direct sum is defined
as

C1 ⊕ C2 , {(c1, c2) | c1 ∈ C1, c2 ∈ C2},

which is an [n1 + n2, k1 + k2] code over Fq. It is well
known [4, Theorem 3.2.1, p. 63] that

R1(C1 ⊕ C2) = R1(C1) + R1(C2).

Proposition 15 Let Ci be an [ni, ki] code over Fq, for i = 1, 2.
Then for any t ∈N,

Rt(C1 ⊕ C2) = Rt(C1) + Rt(C2).

Remark 16 The upper bound presented in Theorem 12 is
proved by showing the existence of a sequence of codes in
a non-constructive way. Using Proposition 15 and a prob-
abilistic argument employed in the proof of Theorem 12,
we find an explicit construction for a code attaining the
bound of Theorem 12. We construct our codes by a standard
procedure of taking the direct sums of codes. The construction
is explained in detail in [6].

The chief disadvantage of our construction is the enormous
block length of the resulting code. In our construction, in
order to ensure a normalized covering radius at most ρ + ε

the required block length is Ω(221/ε+1/
√

ε).

VI. THE GENERALIZED PACKING RADII

Given an [n, k] linear code C over Fq, the generalized
Hamming weight of the code, dt, t ∈ N, is defined as the
minimal support size containing a linear subcode of C of
dimension t, i.e.,

dt , min
C′∈[Ct ]

∣∣supp(C′)
∣∣.

In particular, d1 is the usual minimum distance of C.
Generalized Hamming weights were introduced by Wei

in 1991 [13], as a figure of merit to analyze the security
performance of a code on a wire-tap channel. Wei proved
that the weight hierarchy is strictly increasing and proved the
duality theorem, relating the weight hierarchy of a code and
its dual.

In the following we shall require the size b(dt − 1)/2c.
To simplify the presentation we define for all t ∈ N, δt ,⌊

dt−1
2

⌋
. We also define the set

L(t)(Fn
q ) ,

{
v ∈ Ft×n

q

∣∣∣ rank(v) = t
}

.

Lemma 17 Let C be an [n, k] linear code over Fq. Then for
every t ∈ [k], δt is the largest integer satisfying that for all
c, c′ ∈ Ct such that c− c′ ∈ L(t)(Fn

q ),

B(t)
δt
(c) ∩ B(t)

δt
(c′) = ∅.

We observe that for t = 1, Lemma 17 becomes the standard
packing of Hamming error balls induced by the code C, and
δ1 is the packing radius of the code, and hence, δ1 6 R1.
It is therefore tempting to conjecture that δt 6 Rt for all
t ∈ [min{k, n− k}]. However, Lemma 17 does not describe
a packing of t-balls, when t > 2, since these may intersect if
the difference between their centers is not of full rank.

VII. CONCLUSION

We proposed a fundamental property of linear codes –
the generalized covering-radius hierarchy. It characterizes the
trade-off between storage amount, latency, and access com-
plexity in databases queried by linear combinations, as is the
case, for example, in PIR schemes. We showed three equiva-
lent definitions for these radii, highlighting their combinatorial,
geometric, and algebraic aspects. We derived bounds on the
code parameters in relation with the generalized covering
radii, and studied the effect simple code operations have on
them. Finally, we described a connection between the general-
ized covering-radius hierarchy and the generalized Hamming
weight hierarchy.

While the study of the generalized covering-radius hierarchy
has its own independent intellectual merit, let us also place
the bound of Theorem 12 back in the context of PIR schemes.
Consider the binary case, and assume we allow a latency of
t = 2, namely, the server waits until two queries arrive and
then handles them both. Further assume, that to handle the
two queries we allow the server to access at most 1

2 of its
storage. Stated alternatively, the average access per query is
a 1

4 of the storage. By Theorem 12, since κ2(
1
2 , 2) ≈ 0.11,

there exists a code allowing 89% of the server storage for user
information and only 11% for overhead. A naive approach,
using κ1(

1
4 , 2) ≈ 0.19, implies the storage may contain only

81% user information and 19% overhead.
Many other open problems remain, and we mention but

a few. First, extending Theorem 12 to address non-binary
generalized covering radii for all t is still an open question,
as is closing the gap with the lower bound of Proposition 8.

It would also be interesting to determine the generalized
covering-radius hierarchy of known codes. These may be
extreme in some cases. We can show that the Hamming code
satisfies Rt = t, and in particular the covering-radius hierarchy
is strictly increasing, that is, Rt < Rt+1 for all t ∈ [n− k− 1].
We can also show the only non-trivial code with this property
is the Hamming code. In contrast with the Hamming code,
whose generalized covering radii are all distinct, the opposite
occurs with MDS codes. As was shown in [1], [7], the (first)
covering radius of [n, k] MDS codes is n− k, except in rare
cases where it is n − k − 1. Since the upper limit on the
generalized covering radius is n − k, the entire hierarchy is
either constant, or is a step function.

Finally, we have an algorithmic question: Given a parity-
check matrix H for an [n, k] code over Fq, and given vectors
s1, . . . , st ∈ Fn−k

q , how do we efficiently find Rt columns of
H that span the t vectors? These questions, and many others,
are left for future research.
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