
An Improved Bound for Optimal Locally
Repairable Codes

Han Cai∗, Cuiling Fan†, Ying Miao‡, Moshe Schwartz∗, and Xiaohu Tang§
∗School of Electrical and Computer Engineering, Ben-Gurion University of the Negev,
Beer Sheva 8410501, Israel, hancai@aliyun.com, schwartz@ee.bgu.ac.il

†School of Mathematics, Southwest Jiaotong University,
Chengdu, 610031, China, cuilingfan@163.com

‡Faculty of Engineering, Information and Systems, University of Tsukuba,
Tennodai 1-1-1, Tsukuba 305-8573, Japan, miao@sk.tsukuba.ac.jp

§School of Information Science and Technology, Southwest Jiaotong University,
Chengdu, 610031, China, xhutang@swjtu.edu.cn

Abstract—The Singleton-type bound that provides an upper
limit on the minimum distance of locally repairable codes is
studied. An improved bound is presented by carefully analyzing
the combinatorial structure of the repair sets. Thus, we show
the previous bound is unachievable for certain parameters.
Additionally, as a byproduct, some previously known codes are
shown to attain the new bound and are thus proved to be optimal.

I. INTRODUCTION

Due to the ever-growing need for more efficient and scalable
systems for cloud storage and data storage in general, distribut-
ed storage systems (DSSs) (such as the Google data centers
and Amazon Clouds) have become increasingly important. In a
distributed storage system, a data file is stored at a distributed
collection of storage devices/nodes in a network. Since any
storage device is individually unreliable and subject to failure,
redundancy must be introduced to provide the much-needed
system-level protection against data loss due to device/node
failure.

In today’s large distributed storage systems, where node
failures are the norm rather than the exception, designing codes
that have good distributed repair properties has become a cen-
tral problem. Several cost metrics and related tradeoffs have
been studied in the literature, for example repair bandwidth
[6], [7], disk-I/O [27], and repair locality [6], [9], [16]. In this
paper repair locality is the subject of interest.

Motivated by the desire to reduce repair cost in the design
of erasure codes for distributed storage systems, the notions
of symbol locality and locally repairable codes (LRC) were
introduced in [9] and [17], respectively. The ith coded symbol
of an [n, k] linear code C is said to have locality r if it
can be recovered by accessing at most r other symbols
in C. Alternatively, the ith code symbol with the r other
symbols form a 1-erasure correcting code. The concept was
further generalized to (r, δ)-locality by Prakash et al. [18] to
address the situation of multiple device failures. Here, the ith
coordinate, together with r + δ − 2 other coordinates, form a
code capable of correcting δ − 1 erasures. When δ = 2 this
coincides with the definition of locality.

There are two types of linear codes with (r, δ)-locality
considered in the literature. The first is information symbol lo-
cality, pertaining to systematic linear codes whose information
symbols all have (r, δ)-locality (denoted by (r, δ)i-locality for
short). The second is of all-symbol locality (or (r, δ)a-locality)
pertaining to linear codes all of whose symbols have (r, δ)-
locality.

For any [n, k, d]q linear code with minimum Hamming
distance d over the finite field Fq , the Singleton bound [22] is
given by

d 6 n− k + 1, (1)

which is one of the most classical theorems in coding theory.
This bound was generalized for locally repairable codes in [9]
(the case δ = 2) and [18] (general δ) as follows. An [n, k, d]q-
linear LRC with (r, δ)i-locality satisfies

d 6 n− k − 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (2)

It was also proved that a class of codes known as pyramid
codes [11] achieves this bound when the alphabet is suffi-
ciently large, say q > n + 1 and d > δ (for a weaker field-
size requirement please refer to [4]). Since a linear code with
(r, δ)a-locality is also a linear code with (r, δ)i-locality, (2)
also presents an upper bound for the minimum Hamming
distance of (r, δ)a codes. Other bounds for linear and nonlinear
LRCs can be found in [1], [5], [10], [17], [19], [20], [25],
[28], [30]. An LRC is optimal if it has the highest minimum
Hamming distance of any code of the given parameters n,
k, r, and δ. In this paper, we focus on Singleton-type bounds
(like (1) and (2) above) and their corresponding optimal codes.

There are different constructions of LRCs that are optimal
in the sense that they achieve the Singleton-type bound in (2),
e.g., [3], [12], [13], [15], [18], [21], [23], [24], [26]. Tamo
et al. [26] showed that the r-locality of a linear LRC is a
matroid invariant, which was used to prove that the minimum
Hamming distance of a class of linear LRCs achieves the
Singleton-type bound. In [24], Tamo and Barg introduced
an interesting construction that can generate optimal linear
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codes with (r, δ)a-locality over an alphabet of size O(n).
Under the assumption of a sufficiently large alphabet, Song
et al. [23] investigated for which parameters (n, k, r, δ) there
exists a linear LRC with all-symbol locality and minimum
Hamming distance d achieving the Singleton-type bound (2).
The parameter set (n, k, r, δ) was divided into eight different
cases. In four of these cases it was proved that there are
linear LRCs achieving the bound, in two of these cases it was
proved that there are no linear LRCs achieving the bound,
and the existence of linear LRCs achieving the bound in the
remaining two cases remained an open problem. Independently
of [23], Wang and Zhang [28] used a linear-programming
approach to strengthen these result when δ = 2. Ernvall et
al. [8] presented methods to modify already existing codes,
and gave constructions for three infinite classes of optimal
vector-linear LRCs with all-symbol locality over an alphabet
of small size. Recently, Westerbäck et al. [29] provided a
link between matroid theory and LRCs that are either linear
or more generally almost affine, and derived new existence
results for linear LRCs and nonexistence results for almost
affine LRCs, which strengthened the results for linear LRCs
given in [23].

Thus, in general, the bound in (2) is not tight for LRCs
with (r, δ)a-locality, even under the assumption of having a
sufficiently large finite field. In this paper, we further study
the Hamming distance of LRCs with (r, δ)a-locality. The main
idea is to take the structure of the repair sets into consideration
when we analyze the relationship between the parameters of
LRCs. We distinguish between three main cases, where in
each case, a bound on the Hamming distance is derived using
structural properties of repair sets, independently. Combining
all these cases, we derive a bound on the minimum Hamming
distance, that improves upon (2). As a consequence, the
improved bound shows that some previously undecided cases
are in fact unachievable for the bound in (2). The improved
bound can also prove some LRCs based on matroids in [29] are
indeed optimal. In Fig. 1, we extend and refine the summary
appearing in [23], and show the known and new results
concerning the tightness of the Singleton-type bound for LRCs
under the assumption that the alphabet is sufficiently large.

Due to space limitations we omit all proofs, which are
available in a full version of this work [2].

II. PRELIMINARIES

Let C be an [n, k, d]q linear code over the finite field Fq .
Assume C has a generator matrix G = (g1,g2, . . . ,gn), where
gi ∈ Fkq is a column vector for i = 1, 2, . . . , n. While many
different generator matrices exist for C, in what follows, the
choice of G is immaterial. Given C and the matrix G, we
introduce some notation and concepts.

For an integer n ∈ N we denote [n] = {1, 2, . . . , n}. For any
set N ⊆ [n], we denote GN = {gi : i ∈ N}. Then span(N)
denotes the linear space spanned by GN over Fq , and rank(N)
denotes the dimension of span(N). Additionally, CN denotes
the punctured code of C associated with the coordinate set N .

That is, CN is obtained from C by deleting all symbols in the
coordinates [n] \N .

The following lemma describes a useful fact about [n, k, d]q
linear codes, which plays an important role in our paper.

Lemma 1 ([14]): The minimum Hamming distance of any
[n, k, d]q linear codes satisfies

d = n−max {|N | : N ⊆ [n], rank(N) < k} .
We now recall the definition of repair sets, and locally

repairable codes.
Definition 1 ([18]): Let C be an [n, k, d]q code. For 1 6

r 6 k and δ > 2, an (r, δ)-repair set of C is a subset S ⊆ [n]
such that

1) |S| 6 r + δ − 1;
2) For every l ∈ S, L ⊆ S \ {l} and |L| = |S| − (δ −

1), cl is a linear function of {ci : i ∈ L}, where c =
(c1, · · · , cn) ∈ C.

We say that C is a locally repairable code (LRC) with all-
symbol (r, δ)-locality (or C is an LRC with (r, δ)a-locality) if
all the n symbols of the code are contained in at least one
(r, δ)-repair set.

Remark 1 ([23], [29]): Note that the symbols in an (r, δ)-
repair set S can be used to recover up to δ− 1 erasures in the
same repair set, and therefore each of the following statements
are equivalent to Definition 1, item 2):

1) For any L ⊆ S with |L| = |S| − (δ − 1), we have
rank(L) = rank(S);

2) For any l ∈ S, L ⊆ S \ {l} and |L| = |S| − (δ− 1), we
have |CL∪{l}| = |CL|;

3) For any L ⊆ S with |L| > |S| − (δ − 1), we have
|CL| = |CS |;

4) d(CS) > δ, where d(CS) is the minimum Hamming
distance of CS .

In what follows, whenever we speak of an LRC with (r, δ)a-
locality, we will by default assume it is an [n, k, d]q linear code
(i.e., its length is n, its dimension is k, its minimum Hamming
distance is d, and its alphabet size is q).

III. PROPERTIES OF LRCS WITH (r, δ)a-LOCALITY

The goal of this section is to study the structure of (r, δ)-
repair sets induced by (r, δ)a-locality, and propose some
properties which can be used to obtain an upper bound on the
minimum Hamming distance in the next section. Generally
speaking, we would like to find a set that contains as many
code coordinates as possible, under the condition that its rank
does not exceed k − 1. To this end, we distinguish among
three cases. The relationship between repair sets, the number
of code symbols, and their rank, is easy to determine for the
first case (refer to Proposition 2). The remaining two cases are
reduced to the first case in Propositions 3-5.

Throughout the paper we assume that C denotes an [n, k, d]q
LRC with (r, δ)a-locality. The parameters n and k are written
in the following forms:

n = w(r + δ − 1) +m, 0 6 m < r + δ − 1,

k = ur + v, 0 < v 6 r,
(3)
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Tightness of the Singleton-type bound (2)

Optimal codes:
[20], q = Θ((r + δ − 1)(rn)/(r+δ−1))
[23], q = Θ(

(
n
k

)
)

[24], q = Θ(n)

(r + δ − 1)|n
Unachievable [23]

(r + δ − 1) - n and r|k

n = w(r + δ − 1) +m, r = ur + v,
where 0 < v < r, 0 < m < r + δ − 1

(r + δ − 1) - n and r - k

Optimal codes:
[23], [26], q > knk

m > v + δ − 1

Unachievable [23]

m < v + δ − 1 and
u > 2(r − v) + 1

New tight bound:
Corollary 2
Optimal codes [2]

2v > r, m > δ,
u > r + δ − 1, and
u > 2(r + δ − 1−m)

New tight bound:
Corollary 3
Optimal codes [2]

m 6 δ − 1, 2v > r,
and u > 2r + δ − 1

m < v + δ − 1 and
u < 2(r − v) + 1

Optimal codes [23]

r − v > u, and
w > r + δ − 1−m

Optimal codes [23]

w > 2(r + δ − 1−m)

Unachievable [29]

r + δ − 1−m 6 w,
w < 2(r + δ − 1−m)− 1,
and r − v < u

w < r + δ − 1−m

Unachievable [29]

r − v < u

Unachievable
Corollary 4

u 6 r − v, 2v > r,
m < r + δ − 1− w (w+1)(r−v)

(u−1)u

Still open

u 6 r − v,
and 2v 6 r

Still open

u 6 r − v, 2v > r, and
m(u2 − u) > (r + δ − 1)(u2 − u)− w(w + 1)(r − v)

Fig. 1: The tightness of the Singleton-type bound for LRC in (2), where n = w(r+δ−1)+m, 0 6 m < r+δ−1, k = ur+v,
and 0 < v 6 r. The new contributions of this paper appear in bold frames. We do not consider the case u = 0, i.e., k = r,
since this is exactly the case of the classic Singleton bound.

where w,m, u, v are nonnegative integers. Observe that we
represent k as ur + v with 0 < v 6 r to make sure that
ur < k.

Definition 2 ([3]): Let n, T, s ∈ N. Additionally, let X
be a set of cardinality n, whose elements are called points.
Finally, let B = {B1, B2, . . . , BT } ⊆ 2X be a set of blocks
such that

⋃
i∈[T ]Bi = X , and for all i ∈ [T ], |Bi| 6 s

and
⋃
j∈T\{i}Bj 6= X . We then say (X ,B) is an (n, T, s)-

essential covering family (ECF). If all blocks are the same
size we say (X ,B) is a uniform (n, T, s)-ECF.

For an LRC with (r, δ)a-locality, note that each code symbol
may be contained in more than one repair set. Thus, to simplify
the discussion, we first use the (r, δ)-repair sets to form an
ECF, which can be naturally obtained from Definition 1 and
Remark 1, as described in [3].

Lemma 2 ([3]): For any [n, k]q linear code C with (r, δ)a-
locality, let Γ ⊆ 2[n] be the set of all possible (r, δ)-repair
sets. Then we can find a subset S ⊆ Γ such that ([n],S) is an
(n, |S| , r + δ − 1)-ECF with |S| >

⌈
k
r

⌉
.

Remark 2: The fact that the components of S cover all

the element of [n] implies that

|S| >
⌈

n

r + δ − 1

⌉
= w +

⌈
m

r + δ − 1

⌉
> w.

In particular, |S| = w if and only if m = 0, S is uniform, and
the repair sets in S form a partition of [n].

Let V be a subset of the set S that was obtained in Lemma 2.
We observe that V must satisfy at least one of the following
three conditions:

C1:
∣∣∣Si ∩ (⋃Sj∈V\{Si} Sj

)∣∣∣ < |Si| − δ+ 1 for any Si ∈ V;
C2: |Si ∩ Sj | < min {|Si|, |Sj |} − δ + 1 for any distinct

Si, Sj ∈ V;
C3: there exist two distinct Si, Sj ∈ V , such that |Si ∩ Sj | >

min {|Si|, |Sj |} − δ + 1.

In fact, since Conditions C2 and C3 are complementary,
exactly one of them holds, and perhaps Condition C1 holds
as well.

The following definitions introduce concepts required in
several of our claims.
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Definition 3: Assume r, δ > 1 are fixed. For all integers
a > r+δ−1, b > 0 we define the function Φ(a, b) as follows:

Φ(a, b) =


min{r + δ − 1− c,max{

⌊
b
2

⌋
,⌈

b(b−1)(r+δ−1−c)
(`+1)`

⌉
}} if c 6= 0,

0 if c = 0,

and where c denotes the minimum nonnegative integer with
c ≡ a mod (r + δ − 1), and ` =

⌊
a

r+δ−1

⌋
.

Definition 4: Let S denote the ECF induced by an LRC
with (r, δ)a-locality via Lemma 2, and let V ⊆ S be some
subset of it. We define

Υ(V,S) =

( ⋃
Si∈V

Si

)
\

 ⋃
Sj∈S\V

Sj


and denote

M(V,S) = |Υ(V,S)| .

We now present a sequence of results on the structure of S,
depending at times on which of Conditions C1-C3 it satisfies.

Proposition 1: For any integer 0 6 t 6 |S|, there exists
a t-subset V of S such that

|V|(r + δ − 1)−

∣∣∣∣∣ ⋃
Si∈V

Si

∣∣∣∣∣ > Φ(n, t).

Proposition 2 ([3, Lemma 7]): Let V be a subset of S
such that V satisfies Condition C1. Then

rank

( ⋃
Si∈V

Si

)
6

∣∣∣∣∣ ⋃
Si∈V

Si

∣∣∣∣∣− |V|(δ − 1).

Proposition 3: Let V be a subset of S such that V satisfies
Condition C2, but not Condition C1. Then there exists a subset
V∗ ⊆ V , such that

1) V∗ satisfies Condition C1;
2) |V∗|(r + δ − 1)−

∣∣⋃
Si∈V∗ Si

∣∣ > dr/2e.
Proposition 4: Let V be a subset of S such that V satisfies

Condition C3. Then there exists a pair of subsets V∗1 ⊆ V1 ⊆ S
such that:

1) V1 \ V∗1 satisfies Condition C1;
2) For any Sj ∈ V1 \ V∗1 , there exists Si ∈ V∗1 , such that

span(Si) ⊆ span(Sj);
3) S \ V∗1 satisfies Condition C2.

Proposition 5: Assume the same setting as in Proposi-
tion 4, and let V∗1 ⊆ V1 ⊆ S be the subsets guaranteed there.
Denote Υ = Υ(V∗1 ,S) and M = M(V∗1 ,S). Then

1) GΥ ⊆ span(
⋃
Si∈V1\V∗

1
Si);

2) |GΥ ∩ span(
⋃
Si∈U Si)| > |U|, for any subset U ⊆ V1 \

V∗1 ;
3) |V∗1 | 6M , |V1 \ V∗1 | 6M , and |V1| 6 2M .

IV. AN IMPROVED BOUND

Having laid the foundation in the previous section, we now
use the structure of the repair sets, together with Lemma 1, to
obtain an upper bound on the minimum Hamming distance
of an LRC with (r, δ)a-locality. Thus, we aim to find a
subset S ⊆ [n] with rank(S) = k − 1, whose size is as
large as possible. We find such a set for the general case
in Proposition 6 below. We then describe our main bound in
Theorem 1.

Throughout this section, we still assume that C is an
[n, k, d]q linear code with (r, δ)a-locality, and S is the ECF
given by Lemma 2. The parameters n and k are written as in
(3).

Proposition 6: If the requirements of Proposition 4 hold,
let V∗1 ⊆ V1 ⊆ S by the two guaranteed sets, and otherwise
set V1 = V∗1 = ∅. Denote M = M(V∗1 ,S). Then there exists
a subset S ⊆ [n] with rank(S) = k − 1, and

|S| − k + 1

>


min

{(⌈
k+d r

2e
r

⌉
− 1

)
(δ − 1) ,

M +
(⌈

k+Φ(n−M,u−M)
r

⌉
− 1
)

(δ − 1)
}
, if u > M ,

u+
(⌈
k
r

⌉
− 1
)

(δ − 1), if u 6M ,

where Φ(·, ·) is from Definition 3.
Now we are ready to obtain an upper bound on the minimum

Hamming distance.
Theorem 1: Let C be an LRC with (r, δ)a-locality, and

let S be the ECF given by Lemma 2. If the requirements of
Proposition 4 hold, let V∗1 ⊆ V1 ⊆ S by the two guaranteed
sets, and otherwise set V1 = V∗1 = ∅. Denote M = M(V∗1 ,S).
Then
n− k + 1− d

>


min

{(⌈
k+d r

2e
r

⌉
− 1

)
(δ − 1) ,

M +
(⌈

k+Φ(n−M,u−M)
r

⌉
− 1
)

(δ − 1)
}
, if u > M ,(

u+
(⌈
k
r

⌉
− 1
)

(δ − 1)
)
, if u 6M ,

where Φ(·, ·) is from Definition 3.
Remark 3: We point out that the subsets V∗1 ⊆ V1 ⊆

S, whose existence is guaranteed in Proposition 4, are not
necessarily unique. Thus, the value of M used in Theorem 1
is not unique as well. Of the (possibly many) choices for M ,
it is unclear which one results in the best bound.

Remark 4: We make the following observations:
1) If M = 0, the bound in Theorem 1 becomes

n− k + 1− d

>

(⌈
k + min

{⌈
r
2

⌉
,Φ(n, u)

}
r

⌉
− 1

)
(δ − 1),

which is tighter than the one given by (2) (see, [9], [18])
if and only if

min
{⌈r

2

⌉
,Φ(n, u)

}
> r − v.
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In particular, the bound is exactly the one in (2) when
m = 0, and it is tighter than the one in (2) when m 6= 0
and v = r.

2) If M 6= 0 and k > r, the bound in Theorem 1 is tighter
than the bound in (2) if and only if⌈r

2

⌉
> r − v.

In particular, the bound is tighter than the one in (2)
when v = r, i.e., r | k and k > r.

V. CASE ANALYSIS OF THE IMPROVED BOUND

The new bound of Theorem 1 depends on many parameters.
In this section we highlight interesting cases of parameters
for this bound. Generally, we should consider all possible
M in Theorem 1 to determine the upper bound on d, where
M depends on the structure of the (r, δ)-repair sets, i.e., S.
However, for some special cases the expression for the bound
can be further simplified.

We again assume that C is an [n, k, d]q linear code with
(r, δ)a-locality, and S is the ECF given by Lemma 2. The
parameters n and k are written as in (3).

Corollary 1: If an [n, k, d]q LRC with (r, δ)a-locality
satisfies that the repair sets in S are pairwise disjoint, then

d 6 n− k + 1−
(⌈

k + Φ(n, u)

r
− 1

⌉)
(δ − 1).

In [29], Westerbäck et al. studied locally repairable codes
via matroid theory, and obtained the following bound for dmax,
where dmax is the largest d such that there exists a linear
[n, k, d]q code with (r, δ)a-locality.

Theorem 2 ([29, Theorem 36-(ii)]): Assume r+δ−1 - n
and r - k, namely, m > 0 and v < r. If 0 < r < k 6
n−

⌈
k
r

⌉
(δ − 1) and v > m− δ + 1, then

dmax > n−k+1−
⌈
k

r

⌉
(δ−1)+

{
0, if m > δ,
δ − 1−m, if m 6 δ − 1,

where dmax denotes the maximal integer d such that there
exists a linear [n, k, d]q code with (r, δ)a-locality.

By applying the bound obtained in Theorem 1, we may
now determine the exact value of dmax for certain classes of
parameters.

Corollary 2: Under the setting of Theorem 2, if m > δ,
r > v > max

{
m− δ + 1,

⌊
r
2

⌋}
, and u > max{2(r+ δ−1−

m), r + δ − 1}, we have

d 6 n− k + 1−
⌈
k

r

⌉
(δ − 1).

Corollary 3: Under the setting of Theorem 2, if m 6
δ − 1, r > v >

⌊
r
2

⌋
, and u > 2r + δ − 1, we have

d 6 n− k + 1−
⌈
k

r

⌉
(δ − 1) + (δ − 1−m).

We can now strengthen Theorem 2 by applying Corollaries 2
and 3.

Theorem 3: Assume r + δ − 1 - n and r - k, namely,
m > 0 and v < r. If 0 < r < k 6 n −

⌈
k
r

⌉
(δ − 1) and

v > max
{
m− δ + 1,

⌊
r
2

⌋}
, then

dmax − n+ k − 1 +

⌈
k

r

⌉
(δ − 1)

=


0,

if m > δ and u > max {2(r + δ − 1−m), r + δ − 1},
δ − 1−m,

if m 6 δ − 1 and u > 2r + δ − 1,

where dmax denotes the maximal integer d such that there
exists a linear [n, k, d]q code with (r, δ)a-locality.

Corollaries 2 and 3 can be viewed as explicit examples that
the bound in Theorem 1 out-performs the known one in (2).

Based on the results in [23], [29], the remaining open cases
for the tightness of the bound in (2) are summarized in the
following:

Open Problem [23]: Do there exist optimal [n, k, d]q codes
with (r, δ)a-locality that achieve the minimum Hamming
distance bound in (2), under the conditions that v 6= 0,
0 < m < v + δ − 1, 0 < u 6 r− v, and w < r+ δ − 1−m?
(using the notation of (3))

We can answer this open question in part.
Corollary 4: No [n, k, d]q code with (r, δ)a-locality

achieves the bound in (2) under the conditions of 0 < m <
v + δ − 1, and u > 1, if

min

{⌈r
2

⌉
,
u(u− 1)(r + δ − 1−m)

(w + 1)w

}
> r − v.

In particular, when v > r
2 , u > 1, and 0 < m < r + δ − 1−

w (w+1)(r−v)
u(u−1) , the bound in (2) is unachievable.
Remark 5: By Corollary 4, the remaining open cases can

be listed as:
1) 0 < v 6 r

2 , 0 < m < v + δ − 1, 1 6 u 6 r − v, and
w < r + δ − 1−m.

2) v > r
2 , (r + δ − 1)(u(u − 1)) − w(w + 1)(r − v) 6

mu(u − 1), 0 < m < v + δ − 1, 1 6 u 6 r − v, and
w < r + δ − 1−m.
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