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Abstract—We study generalized covering radii, a fundamental
property of linear codes that characterizes the trade-off between
storage, latency, and access in linear data-query protocols such
as PIR. We find the exact value of the generalized covering radii
of Reed-Muller codes in certain extreme cases, as well as proving
lower and upper bounds in various scenarios.

I. INTRODUCTION

THE generalized covering radius has recently been pro-
posed [9] as a new fundamental property of linear codes,

generalizing the classical notion of a covering radius. As
a motivating application, these radii characterize a trade-off
between storage, latency, and access complexities in linear
data-query protocols, a prime example of which is the PIR
(Private Information Retrieval) protocol. Several equivalent
definitions of the generalized covering radii were given in [9],
showing their combinatorial, geometric, and algebraic aspects.
It has also been observed that there is an intriguing similarity
between the generalized covering radii and the well known
generalized Hamming weights of linear codes [27], hinting at
a deeper theory and perhaps additional applications of these
parameters that are yet to be revealed.

A crucial part in our understanding of any fundamental
parameter of codes, is the values that it takes in specific
examples and in parametric families of codes. In [9], the
generalized covering radius hierarchy was found only for
Hamming codes and shortened Hamming codes, whereas the
remaining results did not pertain to specific code families.
The Hamming code, in its extended version, is a specific
case of the famous family of Reed-Muller codes, which is
one of the most studied families of linear error-correcting
codes. Reed-Muller codes have been extensively studied in
the recent decades due to their practical applications and
fascinating relations with various mathematical objects. Reed-
Muller codes were recently proved to achieve asymptotically
the capacity of erasure channels [15] and binary memoryless
symmetric channels [23]. Other applications of Reed-Muller
codes include locally decodable codes [28], probabilistic proof
systems [1], sequence design for wireless communications [7],
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[8], [21], [25], and Boolean functions [3], [16], [19]. For a
recent survey, the readers are referred to [2].

While many aspects of Reed-Muller codes have been in-
vestigated, of particular interest to us is the (regular) covering
radius. Its relation to the maximum nonlinearity of Boolean
functions motivated many of the papers on the subject. The
covering radius of Reed-Muller codes has been studied in
different settings [4], [6], [11]–[14], [18], [20], [22], [24].
However, despite decades of research on the subject, the exact
covering radius of Reed-Muller codes is mostly unknown,
except for a handful of specific cases, and many papers
resorted to finding lower and upper bounds.

The goal of this paper is to explore the generalized covering
radii of Reed-Muller codes. Our main contributions are the
following:

1) We prove lower and upper bounds on the generalized
covering radii of Reed-Muller codes, RM(r, m), in
various asymptotic regimes of its parameters: constant r,
constant m− r, constant r/m, and constant rate, where
r = m

2 + Θ(
√

m). These results are summarized in
Table I.

2) We find the exact t-th generalized covering radius of
RM(r, m) in simple cases, r ∈ {0, m− 2, m− 1, m}.
These results are summarized in Table II.

3) In the full version of this work (see [10]), motivated
by an application to linear data-querying protocols, we
construct a t-covering algorithm for Reed-Muller codes.
Loosely speaking, given t vectors in the space, the
algorithm finds t codewords that are jointly not farther
away from the given points than the best upper bound
that we have on the t-th generalized covering radius
of the code. We analyze the run-time complexity of
the algorithm and show it is polynomial in the code
parameters.

The paper is organized as follows: Preliminaries and no-
tations are presented in Section II. Section III is devoted to
the derivation of bounds on the generalized covering radii
of Reed-Muller codes. Due to space limitations, proofs are
omitted or sketched. For the full proofs the reader is referred
to [10].
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II. PRELIMINARIES

We use lower-case letters, v, to denote scalars, overlined
lower-case letters, v, to denote vectors, and either bold lower-
case letters, v, or upper-case letter, V, to denote matrices.
Whether vectors are row vectors or column vectors is deduced
from context.

Let Fq denote the finite field of size q. For n ∈ N, we
define [n] , {1, . . . , n}, and denote by ([n]t ) the set of all
subsets of [n] of size t. For a vector v = (v1, . . . , vn) ∈ Fn

q ,
the support of v is defined as supp(v) , {i ∈ [n] | vi 6= 0},
and its Hamming weight is defined as wt(v) , |supp(v)|.
The Hamming distance between v, v′ ∈ Fn

q is then defined as
d(v, v′) , wt(v′ − v).

We say C is an [n, k, d]q linear code if C ⊆ Fn
q is

a k-dimensional vector space, and the minimum Hamming
distance between distinct codewords is d. The code C may be
specified using a k × n generator matrix G ∈ Fk×n

q , whose
row space is C, or by an (n − k) × n parity-check matrix
H ∈ F

(n−k)×n
q , whose null space is C. We also define the

dual distance of C to be the minimal distance of the dual
code, C⊥.

For any vector v ∈ Fn
q , the distance between v and the code

C, denoted d(v, C), and then the covering radius of the code,
denoted R(C), are defined as

d(v, C) , min
c∈C

d(c, v), R(C) , max
v∈Fn

q
d(v, C).

It is therefore the minimum radius at which balls centered
at the codewords of C cover the entire space Fn

q . A gener-
alization of this property will be presented shortly when we
introduce the generalized covering radii of C. Later, we shall
also make use of a connection between the covering radius
of C, and the dual distance of C. To that end we recall the
definition of Krawtchouk polynomials,

Kk(x; n, q) ,
k

∑
j=0

(−1)j
(

x
j

)(
n− x
k− j

)
(q− 1)k−j,

where (x
j) ,

x(x−1)...(x−j+1)
j! .

We further denote the minimal root of Kk(x; n, q) by

x(k, n; q) , min{x ∈ R |Kk(x; n, q) = 0}.

Lemma 1 [26, Theorem 3.3] Let C be an [n, k]q code with
dual distance d′. Then

R(C) 6

{
x(u, n− 1; q) d′ = 2u− 1,
x(u, n; q) d′ = 2u.

A. The generalized covering radii

The generalized covering radii of a linear code were
introduced in [9]. They have several equivalent definitions,
which we bring here and use interchangeably. We begin
with an definition via the parity check matrix. Assume that
C is a linear [n, k]q code with a (full-rank) parity-check
matrix H ∈ F

(n−k)×n
q . Let the columns of H be denoted

by h1, . . . , hn. Then for I ∈ ([n]t ), 1 6 t 6 n, we denote
the linear span of {hi}i∈I by 〈HI〉. We have the following
definition for the t-th generalized covering radius of C:

Definition 2 The t-th covering radius of C, denoted by
Rt(C), is the smallest integer r such that for any t vec-
tors v1, . . . , vt ∈ Fn−k

q , there exists I ∈ ([n]r ) such that
{v1, . . . , vt} ⊆ 〈HI〉.

One can easily see that R1(C) = R(C) is indeed the regular
covering radius of the code C. An equivalent definition for the
generalized covering radius is algebraic in nature:

Definition 3 Let C ⊆ Fn
q be a linear code with a generator

matrix G ∈ Fk×n
q and a parity-check matrix H ∈ F

(n−k)×n
q .

Let Ct be the code over Fqt , with generator matrix G and
parity-check matrix H, namely,

Ct ,
{

uG
∣∣∣ u ∈ Fk

qt

}
=
{

v ∈ Fn
qt

∣∣∣Hcᵀ = 0ᵀ
}

. (1)

The t-th covering radius is defined to be

Rt(C) , R1(Ct),

where R1(Ct) is the (regular, first) covering radius of Ct.

According to Definition 3, the problem of finding the t-th
covering radius of a code C ⊆ Fn

q , is equivalent to finding
the regular covering radius of Ct defined over Fqt . It is worth
noting that, unlike the covering radius, the minimum distance
of Ct does not change.

The generalized covering radius has a subadditivity property
that proves to be useful for establishing many results:

Lemma 4 [9, Proposition 15] Let C be an [n, k]q code. Then
for all t1, t2 ∈N,

Rt1+t2(C) 6 Rt1(C) + Rt2(C).

In particular, Rt(C) 6 tR1(C) for all t ∈N.

A ball-covering argument proves the following lemma.

Lemma 5 For an [n, k]q code C and t ∈N,

logqt

(
Vqt ,n,Rt(C)

)
> n− k,

where Vq,n,r denotes the volume of the Hamming ball of radius
r in Fn

q .

Proof: Recalling (1), consider the code Ct over Fqt ,
generated by the same generator matrix as C. Clearly, Ct has
the same dimension and length as C. By the standard ball-
covering argument (see [5, Theorem 6.2.1]),

logqt

(
Vqt ,n,R1(Ct)

)
> n− k.

By Definition 3, R1(Ct) = Rt(C), and we conclude.
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B. Reed-Muller codes

Reed-Muller codes have been extensively studied (e.g.,
see [17], and the many references therein). We recall the
relevant definitions and properties needed for this paper. For
m ∈ N and 0 6 r 6 m, the r-th order Reed-Muller
code, denoted by RM(r, m), is a binary linear [n, k] code
with parameters n = 2m, and k = ∑r

i=0 (
m
i ). Reed-Muller

codes have multiple equivalent definitions, and one that will
be useful for our needs is a recursive definition, given by the
(u, u + v) construction. Assume C1 and C2 are [n, k1]q and
[n, k2]q codes, respectively. The (u, u + v) construction uses
C1 and C2 to produce a code

C = {(u, u + v) | u ∈ C1, v ∈ C2}.

As a base for the recursion, we define

RM(0, m) ,
{

0, 1
}

, RM(m, m) , F2m

2 .

Finally, for 1 6 r 6 m − 1, we define RM(r, m) to
be the code produced by the (u, u + v) construction using
RM(r, m− 1) and RM(r− 1, m− 1).

Reed-Muller codes are nested, namely, for all 1 6 r 6 m,

RM(r− 1, m) ⊆ RM(r, m).

Additionally, the family of Reed-Muller code is closed under
code duality, and in particular

RM(r, m)⊥ = RM(m− r− 1, m).

This implies that

dim(RM(r, m)) = 2m − dim(RM(m− r− 1, m)).

To avoid cumbersome notation, we denote the t-th gener-
alized covering radius of the r-th order Reed-Muller code by

Rt(r, m) , Rt(RM(r, m)).

The following fundamental property of Rt(r, m) will be used
frequently in this work:

Proposition 6 For all m, t ∈N, and 1 6 r 6 m− 1,

Rt(r, m) 6 Rt(r− 1, m− 1) + Rt(r, m− 1).

Proof: The claim follows from the (u, u + v) construc-
tion of Reed-Muller codes. In [9, Proposition 24] it is proved
that if a code C is produced using the (u, u + v) construction
with C1 and C2, then Rt(C) 6 Rt(C1) + Rt(C2).

III. BOUNDS

Our main results are presented in this section. We prove
bounds on the generalized covering radii of Reed-Muller
codes, RM(r, m), in different asymptotic regimes, as m→ ∞:
• r is constant.
• m− r is constant.
• r/m is constant.
• ∑r

i=0 (
m
i )/2m is constant.

Upper bounds will be derived using two main strategies: The
first is by considering the upper bounds from [6] and using

the subadditivity formula from Lemma 4. The second strategy
involves the use of the recursive formula from Proposition 6
and analysis of the base cases. Our lower bounds will essen-
tially be the well known ball-covering lower bound (over the
field F2t ), analyzed separately for each of the different cases.

A. The case where r is constant

In this parameter regime, the Reed-Muller codes have
vanishing asymptotic rate, and high covering radius. We first
consider the extreme case of RM(0, m), which is none other
than the repetition code. In this simple case we can determine
the generalized covering radii exactly.

Proposition 7 For all m, t ∈N,

Rt(0, m) = 2m −
⌈
2m−t⌉.

For the more general cases of RM(r, m) with r > 1, we
provide separate upper and lower bound on the generalized
covering radii. The upper bounds are proved by induction on
r. The base case of RM(1, m) is proved first.

Lemma 8 For all m, t ∈N,

Rt(1, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t 2m/2.

Proof: Denote C = RM(1, m). It is well known that
C⊥ = RM(m− 2, m) is the extended binary Hamming code
(see [17, Ch. 13]), and hence the dual distance of C is d′ = 4.
Clearly, d′ = 4 is the dual distance of Ct of (1) as well. By
Lemma 1, the covering radius of Ct is upper bounded by

Rt(C) = R1(Ct) 6 x(2, 2m; 2t),

i.e., the smallest root of the Krawtchouk polynomial
K2(x; 2m, 2t). A simple calculation shows that

x(2, n; q) 6
(

1− 1
q

)
n−

√
(q− 1)n

q
.

Plugging in n = 2m and q = 2t, we obtain the result.
We can now prove the general upper bound on Rt(r, m) for

r > 1.

Theorem 9 For all m, t ∈N, 1 6 r 6 m,

Rt(r, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t (1 +

√
2)r−12m/2

+ O(mr−2).

where we consider r and t to be constants.

The proof of the claim proceeds by induction on r.
Lemma 8 shows that the claim holds for r = 1, and for all
m ∈ N. The induction step is proved by repeatedly using
Proposition 6, the induction hypothesis, and an analysis of
the extreme case where r = m.

The corresponding lower bound on Rt(r, m) is proved next.
It is obtained by carefully considering both a ball-covering
argument, and the upper bound we just proved.
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Theorem 10 For all m, t ∈N, 1 6 r 6 m,

Rt(r, m) >
(

1− 1
2t

)
2m

−
√

2t(2t − 1) ln 2
2t
√

r!
mr/22m/2(1 + o(1)),

where we consider r and t to be constants.

B. The case where m− r is constant

The opposite case to the one studied in the previous section,
is that of Reed-Muller codes RM(r, m) with m − r being
constant. These codes have a high rate and a vanishing normal-
ized covering radius. As we show shortly, in this asymptotic
regime, the t-th generalized covering radius is approximately
linear in t. We begin, however, with the two extreme cases of
RM(m− 1, m) and RM(m− 2, m).

Proposition 11 For all m, t ∈N,

Rt(m, m) = 0, Rt(m− 1, m) = 1,
Rt(m− 2, m) = min{t, m}+ 1.

Proof: The case of Rt(m, m) is trivial since
RM(m, m) = F2m

2 . For the next case, RM(m − 1, m)
is the binary [2m, 2m − 1, 2] parity code. Its parity-check
matrix is H1 = (1, 1, . . . , 1). Then, by directly using
Definition 2, we get that for all t ∈ N, Rt(m− 1, m) = 1.
Finally, RM(m − 2, m) is the binary [2m, 2m − m − 1, 4]
extended Hamming code. In this case, the Rt(m − 2, m) is
calculated directly by Definition 3, using the well known
(m + 1) × 2m parity-check matrix for this code, containing
all the binary column vectors that start with a 1.

Turning to the more general case of RM(m − s, m), we
have the following bound.

Theorem 12 For all m, t ∈N, 3 6 s 6 m,

t
(s− 1)!

ms−2 + O(ms−3 log(m))

6 Rt(m− s, m) 6
t

(s− 2)!
ms−2 + O(ms−3),

where we consider s and t to be constants.

Proof: In [6, Section 3] it is proved for the (first) covering
radius that

R1(m− s, m) 6
ms−2

(s− 2)!
+ O(ms−3).

Combining this with Lemma 4, the upper bound follows
immediately. The lower bound is proven using the ball-
covering argument from Lemma 5 and a careful analysis of
the ball size in this regime.

We note that the ratio between the upper and lower bounds
from Theorem 12 tends to s − 1 when m tends to infinity.
In particular, this implies that for fixed s, Rt(m − s, m) =
Θ(ms−2).

C. The case where r/m is constant

The next asymptotic regime we study is when r/m = α is
constant. For technical reasons, we divide the discussion into
two different cases: 1

2 < α < 1, and 0 < α < 1
2 . We begin

with the range 1
2 < α < 1.

Theorem 13 For all m, t ∈N and 1
2 < α < 1,

t ·
√

1− α

8(αm)3 · 2
mH2(α) · (1 + o(1))

6 Rt(αm, m) 6 t · 4H2(α) · 2mH2(α) · (1 + o(1)),

where we consider t and α to be constants.

The upper bound is proved by applying the subadditivity
property from Lemma 4 to [5, Theorem 9.4.25]. The lower
bound is followed from the ball-covering argument presented
in Lemma 5.

We now move on to the range 0 < α < 1
2 . The upper bound

in Theorem 14 is a weaker, more general version of an upper
bound on Rt(r, m).

Theorem 14 For all m, t ∈N, and 0 < α < 1
2 ,(

1− 1
2t

)
2m −

√
2t(2t − 1) ln 2

2t · 2
m
2 (1+H2(α)) · (1 + o(1))

6 Rt(αm, m)

6
(

1− 1
2t

)
2m −

√
2t − 1
2t · 1√

8mα(1− α)
· 2mH2(α),

where t and α are constants.

For the the upper bound we first prove by induction, using
Lemma 8 and Proposition 6, that for all m, t ∈N, 1 6 r 6 m,

Rt(r, m) 6
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
m
r

)
. (2)

We conclude by combining it with an approximation of
binomial coefficients using the binary entropy function. The
lower bound, is proven using ball-covering argument and
an approximation of the ball size with the binary entropy
function.

In the region 0 < α 6 1 − 1√
2
, we follow a similar

procedure to that of [6], in order to improve the upper bound
of Theorem 14. The bound is obtained by sharpening the upper
bound of Theorem 14 in this region, requiring more involved
work.

Theorem 15 For all m, t ∈N, and 0 < α < 1− 1√
2

,

Rt(αm, m) 6
(

1− 1
2t

)
2m

−
√

2t − 1
2t(2 +

√
2)

2m( 1
2+α log2(1+

√
2))(1 + o(1)),

where t and α are constants.
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TABLE I
A SUMMARY OF THE BOUNDS

Rt(r, m)
6
(

1− 1
2t

)
2m −

√
2t−1
2t (1 +

√
2)r−12m/2 + O(mr−2) Theorem 9

>
(

1− 1
2t

)
2m −

√
2t(2t−1) ln 2

2t
√

r!
mr/22m/2(1 + o(1)) Theorem 10

Rt(m− s, m)
6 t

(s−2)! ms−2 + O(ms−3)
Theorem 12

> t
(s−1)! ms−2 + O(ms−3 log(m))

Rt(αm, m)

6
(

1− 1
2t

)
2m −

√
2t−1

2t(2+
√

2)
2m( 1

2 +α log2(1+
√

2))(1 + o(1)) Theorem 15, assuming 0 < α < 1− 1√
2

6
(

1− 1
2t

)
2m −

√
2t−1
2t · 1√

8mα(1−α)
· 2mH2(α) Theorem 14, assuming 1− 1√

2
6 α < 1

2

6 t · 4H2(α) · 2mH2(α) · (1 + o(1)) Theorem 13, assuming 1
2 < α < 1

>
(

1− 1
2t

)
2m −

√
2t(2t−1) ln 2

2t · 2 m
2 (1+H2(α)) · (1 + o(1)) Theorem 14, assuming 0 < α < 1

2

> t ·
√

1−α
8(αm)3 · 2mH2(α) · (1 + o(1)) Theorem 13, assuming 1

2 < α < 1

Rt(r, m)
6
(

1− 1
2t

)
2m −

√
2t−1
2t

2m√
1
2 mπ

e−
(m−2r)2

2m (1 + o(1))
Theorem 16, assuming ∑r

i=0 (
m
i ) = κ2m

> H−1
2t (1− κ)2m(1 + o(1))

The bounds from Theorem 14 and Theorem 15 show that
for 0 < α < 1

2 , the t covering radius of RM(αm, m) is
smaller than (1− 1

2t )2m by a number which is exponential
in m. However, due to the gap between our lower and upper
bounds, the dependency of that exponential term in α can only
be bounded. The bound from Theorem 14 provides a bound
for this exponential term for all 0 < α < 1

2 :

2m(H2(α)+o(1)) 6
(

1− 1
2t

)
2m − Rt(αm, m)

6 2m( 1
2+

1
2 H2(α)+o(1)).

In Theorem 15 we improve the upper bound for 0 < α <
1− 1√

2
by showing that

2m( 1
2+α log2(1+

√
2)+o(1)) 6

(
1− 1

2t

)
2m − Rt(αm, m).

D. The case where r = m
2 + Θ(

√
m)

We now focus on the case where the code rate is constant,
i.e., r = m

2 + Θ(
√

m). Using similar techniques as in
the previous cases, involving analysis of the ball-covering
argument for the lower bound and (2) for the upper bound,
we obtained the following lower and upper bounds:

Theorem 16 Let 0 < κ < 1 be a constant. Let r be an integer
such that ∑r

i=0 (
m
i ) = κ2m. Then

H−1
2t (1− κ)2m 6 Rt(r, m)

6
(

1− 1
2t

)
2m −

√
2t − 1
2t

2m√
1
2 mπ

e−
(m−2r)2

2m (1 + o(1)).

We observe that in this case, the ratio between the lower and
upper bounds from Theorem 16 does not tend to 1 as m→ ∞.
However, our bounds show that in the case of constant rate,

TABLE II
A SUMMARY OF EXACT VALUES

Rt(0, m) 2m −
⌈
2m−t⌉ Proposition 7

Rt(m− 2, m) min{t, m}+ 1 Proposition 11

Rt(m− 1, m) 1 Proposition 11

Rt(m, m) 0 Proposition 11

the t-covering radius is in some linear dependency with the
length of the code. That is, for any sequence (rm)m such that
∑rm

i=0 (
m
i ) = κ2m,

H−1
2t (1− κ) 6 lim inf

m→∞

Rt(rm, m)

2m

6 lim sup
m→∞

Rt(rm, m)

2m 6 1− 1
2t .

It remains unclear whether the limit always exists, and if it
does, what is its value. We would like to remark that even in
the case where t = 1 and r = m

2 , an answer to that intriguing
question is still unknown, as similarly to our case, the best
known lower and upper bounds (presented in [6]) exhibit an
asymptotic gap between them.
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