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Abstract—We prove a new lower bound on the field size
of locally repairable codes (LRCs). Additionally, we construct
maximally recoverable (MR) codes which are cyclic. While a
known construction for MR codes has the same parameters,
it produces non-cyclic codes. Furthermore, we prove necessary
and sufficient conditions that specify when the known non-cyclic
MR codes may be permuted to become cyclic, thus proving our
construction produces cyclic MR codes with new parameters.
Furthermore, using our new bound on the field size, we show
that the new cyclic MR codes have optimal field size in certain
cases. Other known LRCs are also shown to have optimal field
size in certain cases.

I. INTRODUCTION

In large-scale cloud storage and distributed file systems,
such as Amazon Elastic Block Store (EBS) and Google File
System (GoogleFS), disk failures are the norm and not the
exception, due to the sheer scale of the system. To protect
the data integrity, coding theory is used to recover from
data loss due to disk failures. Erasure codes such as [n, k]
maximum distance separable (MDS) codes, may be employed
as storage codes. These codes encode k information symbols
to n symbols and store them across n disks, and they can
recover from the loss of any n − k symbols. This scheme
achieves a dramatic improvement in redundancy compared
with replication. However, for MDS codes, even if one disk
fails, the system needs to access k surviving disks in order
to recover the lost symbol, which makes the repair process
costly.

For locally repairable codes, other code properties are also
desirable. For a given code length n and dimension k, we
would like the Hamming distance to be as large as possible, in
order to maximize erasure-correcting capabilities. Additional-
ly, we would like the field size (or alphabet size) to be as small
as possible, in order to reduce the computation complexity for
coding and decoding. Other desirable properties may include a
cyclic structure for the code, since it allows for fast encoding
algorithms. Finally, even if the code has optimal distance, we
would like to be able to correct some pre-determined erasure
patterns beyond the minimum Hamming distance.

In the past a few years, many results have been obtained
for LRCs. Upper bounds on the minimum Hamming distance
were proved, e.g., Singleton-type bounds [6], [16], [28], [35],
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and bounds related with the alphabet size [1], [5]. Optimal
LRCs (with respect to these bounds), were constructed, e.g.,
[12], [22], [25], [31]–[33], [36]. In [7], [20], lower bounds on
the field size of optimal LRCs were derived for δ = 2 [20],
and δ > 2 [7]. Among the known optimal LRCs, some of them
also achieve order-optimal field size [2], [11], [23], [37] when
δ = 2, and [7] when δ > 2. Otherwise, constructions of opti-
mal cyclic LRCs were introduced in [12], [13], [29], [30], [34].
When considering pre-determined recoverable erasure patterns
beyond the minimum Hamming distance, codes that can
recover from all information-theoretically recoverable erasure
patterns are called maximally recoverable (MR) codes [16],
also known as partial MDS codes [3]. In [18], lower bounds
on the field size requirement for MR codes were introduced.
For explicit constructions of MR codes, the reader may refer
to [3], [8], [14], [15], [17], [19], [25]. Notably, there are MR
codes have order-optimal field size (with respect to the bound
in [18]): [3] for a single global parity check (h = 1), [4],
[18] for h = 2, [15] for h = 3 and δ = 2, and [8], [17] for
h 6 δ + 1 a constant, and n = Θ(r2).

The above summary shows how subsets of the mentioned
desired properties may be obtained simultaneously. However,
to the best of our knowledge, there are no explicit construction-
s that achieve all them, namely, cyclic MR codes with optimal
field size. In this paper, we propose a construction which gives
a positive answer to this problem. Our construction produces
cyclic MR codes that share the same parameters as one of
the known non-cyclic constructions in [18]. We also show that
under certain conditions, the non-cyclic construction from [18]
can be permuted to become a cyclic code, whereas in other
cases it cannot, thus proving our construction produces cyclic
MR codes with new parameters. To prove the optimality of the
field size, we prove a new general bound for LRCs, and show
that our construction has an optimal field size when r = 2.
Since the bound is for general LRCs, as a byproduct we get
that some known constructions have optimal field size when
r = 2, a result which has not been claimed before.

Due to space limitations we omit all proofs, which are
available in a full version of this work [10].

II. PRELIMINARIES

In this section, we present notation and some necessary
known results, which are used throughout the paper. For a
positive integer n ∈ N, we define [n] = {0, 1, . . . , n− 1}. If
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m|n is a positive integer, we denote

〈m〉 , mZ ∩ [n] = {0,m, 2m, . . . , n−m} .

Thus, 〈m〉 implicitly depends on n, whose value should be
understood from the context.

For any prime power q, let Fq denote the finite field of size
q, let Fmq denote the set of vectors of length m over Fq , and
let Fm×nq denote the set of all possible m × n matrices over
Fq .

An [n, k]q linear code, C, over Fq , is a k-dimensional
subspace of Fnq . Such a code may be specified as the row-space
of a k×n generator matrix G = (g0, g1, . . . , gn−1), where gi
is a column vector of length k for all i ∈ [n]. Specifically, it
is called an [n, k, d]q linear code if the minimum Hamming
distance of the code is d. For a subset S ⊆ [n], we define

span(S) , span {gi : i ∈ S} ,
rank(S) , rank(span(S)).

The code C can also be specified by a parity-check matrix
H ∈ F(n−k)×n

q , i.e., C =
{
c ∈ Fnq : Hcᵀ = 0

}
, where

rank(H) = n − k. Given a non-empty set of coordinates,
S ⊆ [n], the punctured code C|S is the code obtained from C
by deleting the code symbols at positions [n] \ S. Thus, C|S
is generated by G|S which is obtained from G by deleting the
columns at [n] \ S. Similarly, the shortened code C|S is the
code whose parity matrix is H|S , namely, the matrix obtained
from H by deleting the columns at [n] \ S.

An [n, k]q linear code, C, is said to be a cyclic code if c =
(c0, c1, · · · , cn−1) ∈ C implies that σ(c) , (cn−1, c0, c1, · · · ,
cn−2) ∈ C, where σ is the cyclic shift operator by one place. It
is well known (see [24]) that a cyclic code with length n over
Fq corresponds to a principal ideal of Fq[x]/(xn−1). Thus, let
C be generated by a monic polynomial g(x)|(xn−1), which is
called the generator polynomial of C. When n|qm−1, assume
α is a primitive nth root of unity of Fqm , then the cyclic
code C can be also be determined by the roots of g(x), i.e.,
RC =

{
αi : g(αi) = 0

}
.

A. Locally Repairable Codes

In [16], Gopalan et al. introduced a definition for the locality
of code symbols. For j ∈ [n], the jth code symbol, cj , of an
[n, k, d]q linear code, C, is said to have locality r if it can be
recovered by accessing at most r other symbols of C. This has
been generalized in [28] to the following definition:

Definition 1: Let C be an [n, k, d]q linear code, and let G
be a generator matrix for it. For j ∈ [n], the jth code symbol,
cj , of C, is said to have (r, δ)-locality if there exists a subset
Sj ⊆ [n] such that:
• j ∈ Sj and |Sj | 6 r + δ − 1; and
• the minimum Hamming distance of the punctured code
C|Sj is at least δ.

In that case, the set Sj is also called a repair set of cj . The
code C is said to have information (r, δ)-locality if there exists
S ⊆ [n] with rank(S) = k such that for each j ∈ S, cj
has (r, δ)-locality. Furthermore, the code C is said to have

all-symbol (r, δ)-locality if all the code symbols have (r, δ)-
locality.

Lemma 1 ([16], [28]): For an [n, k, d]q linear code with
information (r, δ)-locality,

d 6 n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1).

Codes with information (r, δ)-locality are said to be optimal
locally repairable codes (optimal LRCs) if their minimum
Hamming distance attains the bound of Lemma 1 with equal-
ity.

In [20], Guruswami et al. asked a fundamental interesting
question: How long can an optimal LRC with (r, δ = 2)-
locality be? They derived the following upper bound on the
code length.

Lemma 2 ([20]): Let C be an optimal [n, k, d]q LRC with
all-symbol (r, 2)-locality. If d > 5, k > r, (r + 1)|n, and
additionally, r|k or k > 2r2 + 2r − (2r − 1)(k mod r), then

n =

O
(
dq

4(d−2)
d−a −1

)
, if a = 1, 2,

O
(
dq

4(d−3)
d−a −1

)
, if a = 3, 4,

(1)

where a ∈ {1, 2, 3, 4}, and a ≡ d (mod 4).

In [7], this problem is further considered for optimal LRCs
with all-symbol (r, δ)-locality, δ > 2.

Lemma 3 ([7]): Let n = w(r+δ−1), δ > 2, k = ur+v,
0 6 v 6 r − 1, and additionally, u > 2(r − v + 1) or v = 0,
where all parameters are integers. Assume that there exists an
optimal [n, k, d]q linear code C with all-symbol (r, δ)-locality,
and define t = b(d− 1)/δc. If t > 2, then

n 6

{
(t−1)(r+δ−1)

2r(q−1) q
2(w−u)r−2v

t−1 if t is odd
t(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t if t is even

= O

(
t(r + δ)

r
q

(w−u)r−v
bt/2c −1

)
,

where w − u can also be rewritten as w − u = b(d − 1 +
v)/(r + δ − 1)c.

B. Maximally Recoverable Codes

Maximally recoverable (MR) codes are an extremal case of
LRCs, that maximize the erasure-repair capability.

Definition 2: Let C be an [n, k, d]q code with all-symbol
(r, δ)-locality, and define S , {Si : i ∈ [n]}, where Si
is a repair set for coordinate i. The code C is said to be a
maximally recoverable (MR) code if S is a partition of [n],
and for any Ri ⊆ Si such that |Si \Ri| = δ−1, the punctured
code C|∪i∈[n]Ri is an MDS code.

In general, Si for i ∈ [n], are not required to be of the
same size. However, from an application point of view, equal-
sized repair sets simplify the implementation, bringing us to
the following definition:

Definition 3: Let C be an [n, k, d]q MR code, as in
Definition 2. If each Si ∈ S is of size |Si| = r + δ − 1
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(implying r+δ−1|n), we define m , n
r+δ−1and h , mr−k.

Then C is said to be an (n, r, h, δ, q)-MR code.
We first note that it is easy to verify that (n, r, h, δ, q)-

MR codes are optimal [n, k, d]q LRCs with all-symbol (r, δ)-
locality. We can regard each codeword of an (n, r, h, δ, q)-MR
code, as an m × (r + δ − 1) array, by placing each repair
set in S as a row, when S forms a parition of [n]. In this
way, (n, r, h, δ, q)-MR codes match the definition of partial
MDS (PMDS) codes, as defined in [3]. When implemented in
a distributed-storage setting, each entry of a codeword array
corresponds to a sector, each column of the array corresponds
to a disk, and each row to a stripe. Thus, an (n, r, h, δ, q)-MR
code can recover from δ−1 sector erasures in each stripe, and
additional h erased sectors anywhere. We mention in passing
that a more restricted type of codes, called sector-disk (SD)
codes, are capable of recovering from δ−1 disk erasures, and
additional h erased sectors (see [9], [27]).

Paralleling the general case of optimal LRCs, it is interesting
to ask what is the minimum alphabet size required by MR
codes.

Lemma 4 ([18, Theorem I.1]): Let C be an (n, r, h, δ, q)-
MR code, h > 2. If m , n

r+δ−1 > 2, then q = Ω(nrε),

where ε = min{δ − 1, h − 2d hme}/d
h
me, and where h and δ

are regarded as constants. Additionally,
1) If m > h:

q = Ω
(
nrmin{δ−1,h−2}

)
.

2) If m 6 h, m|h, and δ − 1 6 h− 2h
m :

q = Ω
(
n1+

m(δ−1)
h

)
.

3) If m 6 h, m|h, and δ − 1 > h− 2h
m :

q = Ω
(
nm−1

)
.

Remark 1: For the case h = 1, the field size requirement
of an (n, r, h, δ, q)-MR code may be as small as q = Θ(r +
δ − 1). This is attainable since the punctured code over any
repair set together with the single global parity check is an
[r+ δ, r, δ+ 1]q MDS code when (r+ δ− 1)|k or u > 2(r−
v + 1), where k = ur + v with 0 6 v 6 r − 1 (see [7]).

Definition 4: A family of (n, r, h, δ, q)-MR codes has
order-optimal field size if it attains one of the bounds of
Lemma 4 asymptotically for h > 2, or if it has q = Θ(r+δ−1)
for h = 1.

III. A NEW BOUND ON OPTIMAL LRCS

In this section we present a new bound on the parameters
of optimal LRCs with all-symbol (r, δ)-locality. This bound
is not specific to MR codes or cyclic codes. The bound
does, however, require certain divisibility conditions, which
are common to several constructions of optimal LRCs. We
proceed by describing two base cases in the next two lemmas.
We then recall a parameter reduction lemma. The combination
of these three parts results in the main bound.

Let us begin with the case 2 | r.

Lemma 5: Let C be an optimal [n = (u + 1)(r + δ −
1), ur, r+2δ−1]q LRC with all-symbol (r, δ)-locality. If 2|r,
then

u+ 1 6 (qr/2 + 1)
/⌊2r + 2δ − 2

r

⌋
.

For the case 2 - r, we also have a similar lemma.

Lemma 6: Let C be an optimal [n = (u + 2)(r + δ −
1), ur, 2r + 3δ − 2]q LRC with all-symbol (r, δ)-locality. If
2 - r, then

u 6 q(r+1)/2.

The final component in our main bounding theorem is a
parameter-reduction lemma. This lemma was proved in [7].

Lemma 7 ([7] Corollary 2): Let n = m(r+δ−1), δ > 2,
k = ur + v > r, and additionally, r|k or u > 2(r + 1 − v),
where all parameters are integers. If there exists an optimal
[n, k, d]q linear code C with d > r + δ and all-symbol (r, δ)-
locality, then there exists an optimal linear code C′ with all-
symbol (r, δ)-locality and parameters [n−ε(r+δ−1), k, d′ =
d− ε(r + δ − 1)]q, where ε 6 d(d− 1)/(r + δ − 1)e − 1.

Combining the preceding lemmas, we prove the next the-
orem, which gives a lower bound on the size of the field
required for LRCs with all-symbol (r, δ)-locality.

Theorem 1: Let C be an optimal [n, k, d]q linear code
with all-symbol (r, δ)-locality. Assume n = m(r + δ − 1),
k = ur, u > 2. If 2|r and m > u+ 1 then,

q > ψ

(((
k

r
+ 1

)⌊
2r + 2δ − 2

r

⌋
− 1

) 2
r

)
,

where ψ(x) is the smallest prime power greater or equal to x.
If 2 - r and m > u+ 2 then

q > ψ

((
k

r

) 2
r+1

)
.

The new bound of Theorem 1 has some implications which
we now discuss. The case of r = 2 is of particular interest,
since we can then use Theorem 1 to prove that some known
LRCs have optimal field size. We first consider some Tamo-
Barg codes [33].

Lemma 8 ([33]): Let q be a prime power, q = r + δ −
1, then there exists an optimal LRC with all-symbol (r, δ)-
locality and parameters [qb, ur, (qb−1−u)q+δ]qb , where b > 2
and 0 < u < qb−1.

Corollary 1: Let C be a code from Lemma 8 with r = 2
and u = qb−1 − 1. If qb − 1 is not a prime power then C has
optimal field size.

Example 1: Let n = 24, r = 2, δ = 3, then by Lemma 8
there exists an optimal LRC with all-symbol (2, 3)-locality
and parameters [16, 6, 7]24 , which has optimal field size since
15 is not a prime power.

We now examine a construction of cyclic optimal LRCs
from [34].
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Lemma 9 ([34]): Let r = 2, n = m(r+ δ− 1) = qb− 1,
and k = ur + v with 0 6 v < r, where qb is prime power.
Then there exists a cyclic optimal LRC with all-symbol (2, δ)-
locality and parameters [qb − 1, k, d]qb .

Corollary 2: Let C be a code from Lemma 9 with m =
u + 1 and v = 0. If neither qb − 2, nor qb − 1, are prime
powers, then C has optimal field size.

Example 2: Let n = 26 − 1, r = 2, and δ = 2. Then by
Lemma 9, there exists a cyclic optimal LRC with all-symbol
(2, 2)-locality, and parameters [63, 40, 5]26 , which has optimal
field size since both 62 and 63 are not prime powers.

Yet another construction of cyclic optimal LRCs comes
from [12].

Lemma 10 ([12]): Let r = 2, δ = 2, n = m(r + δ −
1) = 3m = qb + 1, and k = 2u, with u an even integer, and
where qb is prime power. Then there exists a cyclic optimal
LRC with all-symbol (2, 2)-locality and parameters [qb + 1 =
3m, 2u, d]qm .

Corollary 3: Let C be a code from Lemma 10 with m =
u+ 1. Then C has optimal field size.

Example 3 ([12]): Let n = 9 = 23 + 1, r = 2, δ = 2,
k = 4, then there exists a cyclic optimal [9, 4, 5]8-LRC, which
has optimal field size.

IV. CYCLIC MAXIMALLY RECOVERABLE (MR) CODES

This section is divided into two parts. In the first part
we construct cyclic MR codes, and show that for certain
parameters they have the exact optimal field size. In the second
part we study a known class of MR codes which are non-
cyclic, but have the same parameters as the cyclic codes
we construct. We then show that these non-cyclic codes can
sometimes be permuted to obtain cyclic MR codes.

A. A New Construction

We immediately present our construction for cyclic MR
codes. It is inspired by the construction of [34].

Construction A: Let b, r, δ > 2 be integers, q a prime
power, n = qb− 1, α ∈ Fqb a primitive element, a = (r+ δ−
1)|(q − 1), and m = n/a. Define

R ,
{
αja+t : 1 6 j 6 m, 1 6 t 6 δ − 1

}
∪
{

1, αδ
}
.

The constructed code, C, is the cyclic code of length n over
Fqb with root set R.

Our goal is now to show that the code from Construction A
is indeed a cyclic MR code, which is described in the following
theorem.

Theorem 2: Assume the setting and notation of Con-
struction A. Then the code C of Construction A is a cyclic
(n = qb − 1, r, h = 2, δ, qb)-MR code, equivalently, a cyclic
MR code with parameters [n = qb − 1, k = mr− 2, d]qb with
repair sets of size r + δ − 1, and

d =

{
δ + 2 r > 2,

2δ + 1 r = 2.

The cyclic MR codes by Construction A have optimal
Hamming distance, and order-optimal field size with respect
to the bound in Lemma 4-(1), where we consider δ > 2 as a
constant. However, we can do better than that when r = 2.

Theorem 3: Let C be an (n, r = 2, h = 2, δ, q)-MR code.
Then q > n− 1.

Corollary 4: When r = 2, the cyclic MR codes generated
by Construction A have optimal field size by Theorem 1,
provided that neither qb − 1, nor qb − 2, are prime powers.
When r > 2, the cyclic MR codes by Construction A have
optimal Hamming distance, and order-optimal field size with
respect to the bound in Lemma 4-(1), where we consider δ > 2
as a constant.

B. Turning Non-cyclic Codes into Cyclic Codes

Previous works that constructed non-cyclic (n, r, h, δ, q)-
MR codes, for h = 2, did so with q = Θ(n(δ − 1)) in [4],
and later, with q = Θ(n) [18] (see also [21], that obtained
q = Θ(n) for the special case of n = 2(r + δ − 1)).
Of particular interest to us are the (n, r, 2, δ, qb)-MR codes
from [18, Theorem IV.2]. These MR codes have the same
parameters as Construction A. However, they are not cyclic
MR codes directly. In what follows, we shall attempt to
determine whether the MR codes generated in [18, Theorem
IV.2] can be rearranged to become cyclic codes. Along the
way, we shall prove some interesting facts concerning cyclic
optimal LRCs.

As a first step, we show the repair sets of cyclic optimal
LRCs are severely restricted.

Theorem 4: Let C be a cyclic optimal LRC with parame-
ters [n, k, d]q and all-symbol (r, δ)-locality. Write k = ur+ v
with 0 < v 6 r. If u > 2(r − v + 1), then for any repair set
S ⊆ Zn, and any j ∈ Zn, either S+j = S or (S+j)∩S = ∅.

As an immediate consequence, we now show that the repair
sets of cyclic optimal LRCs must be cosets of Zn.

Corollary 5: Let C be a cyclic optimal LRC with pa-
rameters [n, k, d]q and all-symbol (r, δ)-locality (where, to
avoid trivial cases, we assume that C does not have all-
symbol (r − 1, δ)-locality). Let k = ur + v, 0 < v 6 r.
If u > 2(r − v + 1), then n = m(r + δ − 1), m ∈ N, and the
repair sets of C are

Gi , 〈m〉+ i = {jm+ i : j ∈ Z} ⊆ Zn, for all i ∈ Z.

Remark 2: Corollary 5 shows that the condition (r+ δ−
1)|n is not a restriction when u > 2(r − v + 1), but rather a
consequence.

Remark 3: For the case u = 1 (i.e., k = r + v), and
(r + δ − 1) - n, explicit constructions were proposed in [30,
Corollaries 27, 37, 43] for cyclic optimal LRCs. Corollary 5
implies that constructions with such parameters are possible
only if 1 = u < 2(r − v + 1), i.e., r > v.

Now we recall a construction, which was first introduced
in [18].
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Construction B ([18]): Let q be a prime power, b ∈ N,
n = qb−1, a = r+δ−1, a|(q−1), and m = n/a. Let α be a
primitive element of Fqb , β = αm, and λ = αa. The following
parity-check matrix defines an (n, r, 2, δ, qb)-MR code,

HT =



1 0 · · · 0 λ0 1
0 1 · · · 0 λ1 1
...

... · · ·
...

...
...

0 0 · · · 1 λm−1 1
β 0 · · · 0 λ0 1
0 β · · · 0 λ1 1
...

... · · ·
...

...
...

0 0 · · · β λm−1 1
...

... · · ·
...

...
...

βm−1 0 · · · 0 λ0 1
0 βm−1 · · · 0 λ1 1
...

... · · ·
...

...
...

0 0 · · · βm−1 λm−1 1



,

where, to simply our notation, we define,

xT , (xx2 · · · xδ−1).

One cannot avoid seeing a similarity between the parity-
check matrix of Construction B, and the parity-check matrix
for the code from Construction A. However, the code from
Construction B is not cyclic, but rather quasi-cyclic. In what
follows we study whether permuting it produces a cyclic code.

Let Sn denote the set of permutations over Zn, for any n ∈
N. Each permutation in Sn may be thought of as a bijection
in ZZn

n , namely, a bijection from Zn to Zn. Let C be a code
of length n, whose coordinates are indexed by Zn. If ` ∈ Sn
is a permutation, we define the permutation of C by ` as

C` ,
{

(c`(0), c`(1), . . . , c`(n−1)) : (c0, c1, . . . , cn−1) ∈ C)
}
.

If C is a cyclic code, it is natural to ask for what permutations
` ∈ Sn, C` is also cyclic. Apart from the trivial cyclic shifts of
C, a natural subset of candidate permutations are multipliers,
namely,

µt(x) , xt mod n,

Z×n , {1 6 t 6 n : gcd(t, n) = 1} ,
Υ(n) ,

{
µt : t ∈ Z×n

}
.

Pálfy [26] proved that, in many cases, multipliers are the
essential permutations keeping a code cyclic:

Lemma 11 ([26]): Consider codes of length n whose
coordinates are indexed by Zn.

1) When gcd(n, ϕ(n)) = 1 or n = 4, for all cyclic codes
C, if C`′ , `′ ∈ Sn, is also a cyclic code, then there is a
multiplier ` ∈ Υ(n) such that C`′ = C`.

2) When gcd(n, ϕ(n)) 6= 1 and n 6= 4, there exists a cyclic
code C, and `′ ∈ Sn such that C`′ is cyclic, but C`′ 6= C`
for all multipliers ` ∈ Υ(n).

Here ϕ(·) denotes Euler’s totient function.

Drawing inspiration from Lemma 11, we address the (d-
ifferent) question of finding permutations from Sn that turn
the non-cyclic code of Construction B into a cyclic code.
Recall that in the setting of Construction B, a,m, n ∈ N,
and n = ma. We now define a set of functions from Zn to
Zn as follows:

µt,z(xm+ i) , (xmti + zi) mod n,

where we assume x ∈ [a], i ∈ [m], t = (t0, . . . , tm−1) ∈ Zm,
and z = (z0, . . . , zm−1) ∈ Zm. We then define the set,

Ψ(n, a) ,
{
µt,z : t ∈ (Z×a )m, z ∈ Zm, (z mod m) ∈ Sm

}
,

and where by abuse of notation, z mod m denotes the Zm →
Zm mapping that maps i 7→ (zi mod m).

We would like to make some easy observations concerning
the elements of Ψ(n, a). Denote G0 , 〈m〉 ⊆ Zn. Then G0

is an additive subgroup of Zn, and G0
∼= Za. Let us denote

the cosets of G0 by Gi , G0 + i, for all i ∈ Z. We now
note that j 7→ jt mod n is a bijection from G0 to G0 if and
only if gcd(t, a) = 1. Thus, `t,z|Gi (i.e., the restriction of
`t,z to Gi) is a bijection from Gi to Gzi mod m. With the
extra requirement that (z mod m) ∈ Sm, we have that distinct
cosets Gi are mapped to distinct cosets Gzi mod m, and hence,
Ψ(n, a) ⊆ Sn, namely, Ψ comprises of permutations over Zn.

Theorem 5: Assume the notation and setting of Construc-
tion B, and let C be the resulting code when r > 3. Then there
exists a permutation ` ∈ Ψ(n, a) such that C` is a cyclic code
if and only if gcd(m, a

gcd(a,δ) ) = 1.
While the last theorem shows us a sufficient condition under

which the known code of Construction B may be permuted to
a cyclic code, the next theorem shows us that for almost all
cases, this condition is in fact necessary.

Theorem 6: Assume the notation and setting of Construc-
tion B. Let C be the resulting code. Denote k = dim(C) =
ur + v with 0 < v 6 r and u > 2(r − v + 1). Additionally,
let a = 4 or gcd(a, ϕ(a)) = 1. Furthermore, assume that
a = qb

′ − 1|qb − 1 = n, and that one of the following holds:
1) δ > 4 and r > 5
2) δ = 3 and r > 4
3) δ = 2 and r > 3 is odd

Then there exists a permutation ` ∈ Sn such that C` is cyclic
if and only if gcd(m, a

gcd(δ,a) ) = 1.
To conclude this section, we make use of Theorem 6 in order

to show that Construction A may produce cyclic MR codes
with new parameters. Namely, in certain case, the construction
of [18], which produces codes with the same parameters as our
Construction A, results in codes that are neither cyclic, nor can
be permuted to become cyclic.

Example 4: Set q = 3, b1 = 2, b = 4, r = 6, δ = 3,
a = 8, n = 80, and m = 10. By using Construction A, we may
generate a cyclic (n = 80, r = 6, h = 2, δ = 3, qb = 34)-MR
code. A non-cyclic MR code with the same parameters may
be constructed using [18]. However, since gcd(m, a

gcd(a,δ) ) =

gcd(8, 10) = 2 6= 1, by Theorem 6 this code cannot be
permuted to become a cyclic code.

2022 IEEE International Symposium on Information Theory (ISIT)

2648



REFERENCES

[1] A. Agarwal, A. Barg, S. Hu, A. Mazumdar, and I. Tamo, “Combinatorial
alphabet-dependent bounds for locally recoverable codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 5, pp. 3481–3492, 2018.

[2] A. Beemer, R. Coatney, V. Guruswami, H. H. López, and F. Piñero,
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