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Abstract. We examine the well-known problem of determining the ca-
pacity of multi-dimensional run-length-limited constrained systems. By
recasting the problem, which is essentially a combinatorial counting prob-
lem, into a probabilistic setting, we are able to derive new lower and
upper bounds on the capacity of (0, k)-RLL systems. These bounds are
better than all previously-known bounds for k � 2, and are even tight
asymptotically. Thus, we settle the open question: what is the rate at
which the capacity of (0, k)-RLL systems converges to 1 as k → ∞?
While doing so, we also provide the first ever non-trivial upper bound
on the capacity of general (d, k)-RLL systems.

1 Introduction

A (d, k)-RLL constrained system is the set of all binary sequences in which every
two adjacent 1’s are separated by at least d zeroes, and no more than k 0’s appear
consecutively. The study of these systems was initiated by Shannon [10, 11] who
defined the capacity of a constrained system S as

cap(S) = lim
n→∞

log2 |S(n)|
n

,

where S(n) denotes the number of sequences of S of length exactly n.
Constrained systems are widely used today in all manners of storage systems

[7, 8]. However, the emergence of two-dimensional recording systems brought
to light the need for two-dimensional and even multi-dimensional constrained
systems. A two-dimensional (d, k)-RLL constrained system is the set of all binary
arrays in which every row and every column obeys the one-dimensional (d, k)-
RLL constraint. The generalization to the D-dimensional case is obvious, and we
denote such a system as SD

d,k. Though we consider in this paper only symmetrical
constrains, i.e., the same d and k along every dimension, the results generalize
easily to asymmetrical RLL constraints as well.

In the one-dimensional case it is well known that cap(S1
d,k), for 0 � d � k, is

the logarithm in base 2 of the largest positive root of the polynomial

xk+1 − xk−d − xk−d−1 − · · · − x − 1 .

However, unlike the one-dimensional case, almost nothing is known about the
two-dimensional case, and even less in the multi-dimensional case. In [1], Calkin
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and Wilf gave a numerical estimation method for the capacity of the two-
dimensional (0, 1)-RLL constraint which gives,

0.5878911617 � cap(S2
0,1) � 0.5878911618 .

Their method ingeniously uses the fact that the transfer matrix is symmetric,
but unfortunately, this happens only for the case of (0, 1)-RLL (and by inverting
all the bits, the equivalent (1, ∞)-RLL case). Using the same method in the
three-dimensional case, it was shown in [9] that

0.522501741838 � cap(S3
0,1) � 0.526880847825 .

Some general bounds on the capacity were given in [5]. Using bit-stuffing en-
coders, the best known lower bounds on two-dimensional (d, ∞)-RLL were shown
in [2]. Amazingly, we still do not know the exact capacity of the
multi-dimensional RLL-constraint except when it is zero [3].

The bounds we improve upon in this work are those of two-dimensional (0, k)-
RLL, k � 2. These are given in the following three theorems:

Theorem 1 (Theorem 3, [5]). For every positive integer k,

cap(S2
0,k) � 1 −

1 − cap(S2
0,1)

�k/2� .

Theorem 2 ([12]). For all integers k � 8,

cap(S2
0,k) � 1 +

log2(1 − (�k/2� + 1)2−(�k/2�−1))
(�k/2� + 1)2

.

Theorem 3 (Theorem 7, [5]). For every positive integer k,

cap(S2
0,k) � 1 − 1

k + 1
log2

(
1

1 − 2−(k+1)

)
.

Our new bounds are given in Theorem 6 and Theorem 13. A numerical com-
parison with the previously-best bounds for 2 � k � 10 is given in Table 1.
Furthermore, our lower and upper bounds agree asymptotically, thus settling
the open question of the rate of convergence to 1 of cap(SD

0,k) as k → ∞ by
showing it to be D log2 e

4·2k .
Our approach to the problem of bounding the capacity is to recast the prob-

lem from a combinatorial counting problem to a probability bounding problem.
Suppose we randomly select a sequence of length n with uniform distribution.
Let AS

n denote the event that this sequence is in the constrained system S. Then
the total number of sequences in S of length n may be easily written as

|S(n)| = Pr[AS
n ] · 2n .

It follows that

cap(S) = lim
n→∞

log2 |S(n)|
n

= lim
n→∞

log2(Pr[AS
n ]2n)

n
= lim

n→∞
log2 Pr[AS

n ]
n

+ 1 .
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Table 1. Comparison of lower bounds (LB) and upper bounds (UB) on cap(S2
0,k), for

2 � k � 10. Lower and upper bounds are rounded down and up, respectively, to six
decimal digits.

k LB by [5] LB by [12] LB by Theorem 6 UB by Theorem 13 UB by [5]
2 0.587891 0.758292 0.904373 0.935785
3 0.793945 0.893554 0.947949 0.976723
4 0.793945 0.950450 0.970467 0.990840
5 0.862630 0.976217 0.983338 0.996214
6 0.862630 0.988383 0.990816 0.998384
7 0.896972 0.994268 0.995068 0.999295
8 0.896972 0.943398 0.997155 0.997410 0.999687
9 0.917578 0.943398 0.998583 0.998663 0.999860
10 0.917578 0.981164 0.999293 0.999318 0.999936

This translates in a straightforward manner to higher dimensions as well. By
calculating or bounding Pr[AS

n ], we may get the exact capacity or bounds on it,
which is the basis for what is to follow.

The work is organized as follows. In Section 2 we use monotone families to
achieve lower bounds on cap(SD

0,k) and an upper bound on cap(SD
d,k). While

this method may also be used to lower bound cap(SD
d,∞), the resulting bound

is extremely weak. We continue in Section 3 by deriving an upper bound on
cap(SD

0,k) using a large-deviation bound for sums of nearly-independent random
variables. We conclude in Section 4 by discussing the asymptotics of our new
bounds and comparing them with the case of (d, ∞)-RLL.

2 Bounds from Monotone Families

We can use monotone increasing and decreasing families to find new lower bounds
on the capacity of (0, k)-RLL, and a new upper bound on the capacity of (d, k)-
RLL, d � 1. We start with the definition of these families.

Definition 4. Let n > 0 be some integer, and [n] denote the set {1, 2, . . . , n}.
A family F ⊆ 2[n] is said to be monotone increasing if when A ∈ F and A ⊆
A′ ⊆ [n], then A′ ∈ F . It is said to be monotone decreasing if when A ∈ F and
A′ ⊆ A, then A′ ∈ F .

The following theorem is due to Kleitman [6]:

Theorem 5. Let A, B be monotone increasing families, and C, D be
monotone decreasing families. Let X be a random variable describing a
uniformly-distributed random choice of subset of [n] out of the 2n possible sub-
sets. Then,

Pr[X ∈ A ∩ B] � Pr[X ∈ A] · Pr[X ∈ B] , (1)
Pr[X ∈ C ∩ D] � Pr[X ∈ C] · Pr[X ∈ D] , (2)
Pr[X ∈ A ∩ C] � Pr[X ∈ A] · Pr[X ∈ C] . (3)
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We can now apply Kleitman’s theorem to (0, k)-RLL constrained systems:

Theorem 6. For all integers k � 0, cap(S2
0,k) � 2cap(S1

0,k) − 1.

Proof. The constrained system we examine is S = S2
0,k, and with our notation,

AS
n denotes the event that a randomly chosen n × n array is (0, k)-RLL.
We now define two closely related constraints. Let R denote the set of two-

dimensional arrays in which every row is (0, k)-RLL, and C denote the set of
two-dimensional arrays in which every column is (0, k)-RLL. Similarly we define
the events AR

n and AC
n . By definition,

AS
n = AR

n ∩ AC
n .

It is easy to verify that both constraints R and C are monotone increasing
families. Hence, by Theorem 5,

Pr[AS
n ] = Pr[AR

n ∩ AC
n ] � Pr[AR

n ] Pr[AC
n ] .

It follows that,

cap(S) = lim
n→∞

log2 Pr[AS
n ]

n2 + 1 � lim
n→∞

log2(Pr[AR
n ] Pr[AC

n ])
n2 + 1 . (4)

Now, both Pr[AR
n ] and Pr[AC

n ] may be easily expressed in terms of one-
dimensional constrained systems. An n × n binary array chosen randomly with
uniform distribution is equivalent to a set of n2 i.i.d. random variables for each
of the array’s bits, each having a “1” with probability 1/2. Thus,

Pr[AR
n ] = Pr[AC

n ] =
(
Pr[AS′

n ]
)n

,

where S′ = S1
0,k is the one-dimensional (0, k)-RLL constraint. Plugging this back

into (4) we get

cap(S2
0,k) � lim

n→∞
2 log2 Pr[AS′

n ]
n

+ 1 = 2cap(S1
0,k) − 1 .


�
This is generalized to higher dimensions in the following corollary.

Corollary 7. Let D1, D2 � 1 be integers, then

cap(SD1+D2
0,k ) � cap(SD1

0,k) + cap(SD2
0,k) − 1 .

We note that similar lower bounds may be given for the (d, ∞)-RLL constraint,
since such arrays form a monotone decreasing family. However, the resulting
bounds are very weak. We can also mix monotone increasing and decreasing
families to get the following result.

Theorem 8. Let D � 1 be some integer, and k � d also integers, then

cap(SD
d,k) � cap(SD

d,∞) + cap(SD
0,k) − 1 .

Proof. Omitted. 
�
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3 New Upper Bounds

In this section we present upper bounds on the capacity of (0, k)-RLL. Unlike
the previous section, these bounds are explicit. For this purpose we introduce
a new probability bound. It is derived from the bound by Janson [4], but by
requiring some symmetry, which applies in our case, we can make the bound
stronger.

Suppose that ξi, i ∈ [n], is a family of independent 0–1 random variables. Let
S ⊆ [n]�k, where [n]�k denotes the set of all subsets of [n] of size at most k. We
then define the following indicator random variables,

IA =

{∏
i∈A ξi A ∈ S ,

0 A �∈ S .

For A, B ∈ S, we denote A ∼ B if A �= B and A ∩ B �= ∅. Let X =
∑

A∈S IA,
and define

∆ =
∑
A

∑
B∼A

Pr[IA = 1 ∧ IB = 1] .

Janson [4] gave the following bound:

Theorem 9. With the setting as defined above, let µ = E(X) =
∑

A E(IA),
then

Pr[X = 0] � e−
µ2

µ+∆ .

Our goal is to use Theorem 9 to show an upper bound on the capacity of
two-dimensional (0, k)-RLL systems. If S(n, m) denotes the number of two-
dimensional (0, k)-RLL arrays of size n × m then by definition,

cap(S2
0,k) = lim

n,m→∞
log2 |S(n, m)|

nm
.

However, it would be more convenient to work in a more symmetric setting.
In a sense, positions which are close enough to the edge of the array are “less
constrained” than others lying within the array. We overcome this difficulty by
considering cyclic (0, k)-RLL arrays.

We say that a binary n × m array A is cyclic (0, k)-RLL if there does not
exist 0 � i � n − 1, 0 � j � m − 1 such that Ai,j = Ai+1,j = · · · = Ai+k,j = 0
or Ai,j = Ai,j+1 = · · · = Ai,j+k = 0, where the indices are taken modulo n and
m respectively. We denote the set of all such n×m arrays as Sc(n, m). The next
lemma shows that by restricting ourselves to cyclic (0, k)-RLL arrays, we do not
change the capacity.

Lemma 10. For all positive integers k,

cap(S2
0,k) = lim

n,m→∞
log2 |Sc(n, m)|

nm
.

Proof. Omitted. 
�
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We start by considering a random n × n binary array, chosen with uniform
distribution, which is equivalent to saying that we have an array of n2 i.i.d. 0–1
random variables ξi,j , 0 � i, j � n − 1, with ξi,j ∼ Be(1/2).

For the remainder of this section, we invert the bits of the array, or equiva-
lently, we say that an array is (0, k)-RLL if it does not contain k +1 consecutive
1’s along any row or column. Furthermore, by Lemma 10, we consider only cyclic
(0, k)-RLL arrays. Suppose we define the following subsets of coordinates of the
arrays:

SV = {{(i, j), (i + 1, j), . . . , (i + k, j)} | 0 � i, j � n − 1} ,

SH = {{(i, j), (i, j + 1), . . . , (i, j + k)} | 0 � i, j � n − 1} ,

S = SV ∪ SH ,

where all the coordinates are taken modulo n. We now define the following
indicator random variables

IA =
∏

(i,j)∈A

ξi,j for all A ∈ S .

If IA = 1 for some A ∈ S, we have a forbidden event of k + 1 consecutive 1’s
along a row or a column. Finally, we count the number of forbidden events in
the random array by defining X =

∑
A∈S IA. It is now clear that the probability

that this random array is (0, k)-RLL is simply

Pr[A
S2

0,k
n ] = Pr[X = 0] .

It is easy to be convinced that this setting agrees with the requirements of
Theorem 9. All we have to do now to upper bound Pr[X = 0], is to calculate
µ and ∆. We note that X is the sum of 2n2 indicator random variables, so by
linearity of expectation,

µ = E(X) =
1

2k+1 · 2n2 =
n2

2k
,

since each of the indicator random variables has probability exactly 1/2k+1 of
being 1. Calculating ∆ is equally easy,

∆ =
∑
A

∑
B∼A

Pr[IA = 1 ∧ IB = 1] = 2n2

(
(k + 1)2

1
22k+1 + 2

k∑
i=1

1
2k+1+i

)

= n2
(

(k + 1)2

22k
+

2
2k

(
1 − 1

2k

))
.

By Theorem 9,

Pr[X = 0] � e−
µ2

µ+∆ = e
− n2

3·2k+(k+1)2−2 ,

which immediately gives us:

cap(S2
0,k) � 1 − log2 e

3 · 2k + (k + 1)2 − 2
. (5)
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The bound of (5) is already better than the best known bounds for k � 2 given
in [5]. But we can do even better by improving the bound of Theorem 9. This
is achieved by assuming some more symmetry than the general setting of the
theorem. Given some A ∈ S ⊆ [n]�k, let XA = IA +

∑
B∼A IB. We define

ΓA =
∑

i

Pr[XA = i | IA = 1]
i

.

If ΓA does not depend on the choice of A ∈ S, we simply denote it as Γ .

Theorem 11. With the setting as defined above, let µ = E(X) =
∑

A E(IA). If
the distribution of XA given IA = 1 does not depend on the choice of A, then

Pr[X = 0] � e−µΓ .

Proof. Omitted. 
�

It is obvious that the symmetry requirements of Theorem 11 hold in our case.
So now, in order to apply Theorem 11 we have to calculate Γ , which is a little
more difficult than calculating ∆. Since Γ does not depend on the choice of A,
we arbitrarily choose the horizontal set of coordinates

A = {(0, 0), (0, 1), . . . , (0, k)} .

We now have to calculate Pr[XA = i | IA = 1]. We note that we can partition
the set {B | B ∼ A} into the following disjoint subsets:

{B | B ∼ A} = SHL ∪ SHR ∪ SV,0 ∪ SV,1 ∪ · · · ∪ SV,k ,

where

SHL = {B ∈ SH − {A} | (0, 0) ∈ B} ,

SHR = {B ∈ SH − {A} | (0, k) ∈ B} ,

SV,j = {B ∈ SV | (0, j) ∈ B} , for all 0 � j � k .

We define XHL =
∑

B∈SHL
IB , and in a similar fashion, XHR and XV,j for all 0 �

j � k. Since the indicators for elements from different subsets are independent
given IA = 1 because their intersection contains only coordinates from A, it
follows that XHL, XHR and XV,j , 0 � j � k, are independent given IA = 1.

The distribution of XHL and XHR given IA = 1 is easily seen to be

Pr[XHL = i | IA = 1] = Pr[XHR = i | IA = 1] =

{
1

2i+1 0 � i � k − 1
1
2k i = k

since the 0 closest to A determines the number of runs of 1’s of length k +1. We
denote

f
‖
k (i) = 2k Pr[XHL = i | IA = 1] = 2k Pr[XHR = i | IA = 1] .

For the distribution of XV,j we need the following lemma.
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Lemma 12. Let f⊥
k (i) denote the number of binary strings of length 2k+1 with

their middle position a 1, and which contain exactly 0 � i � k + 1 runs of k + 1
1’s. Then,

f⊥
k (i) =

⎧⎪⎨
⎪⎩

22k − (k + 2)2k−1 i = 0
(k − i + 4)2k−i−1 1 � i � k

1 i = k + 1 .

Proof. Omitted. 
�

Using this lemma, we can now say that

Pr[XV,j = i | IA = 1] =
f⊥

k (i)
22k

.

Since XA = XHL + XHR +
∑k

j=0 XV,j + IA, we have that

Pr[XA = i | IA = 1]

=
∑

iL+iR+i0+...+ik=i−1
0�iL,iR�k

0�i0,...,ik�k+1

Pr[XHL = iL | IA = 1] Pr[XHR = iR | IA = 1]

·
k∏

j=0

Pr[XV,j = ij | IA = 1] .

It follows that

Γ =
∑
i�1

1
i

∑
iL+iR+i0+...+ik=i−1

0�iL,iR�k
0�i0,...,ik�k+1

f
‖
k (iL)f‖

k (iR)
22k

k∏
j=0

f⊥
k (ij)
22k

. (6)

We can now apply Theorem 11 and get that

Pr[X = 0] � e−n2Γ/2k

,

where Γ is given by (6). This immediately gives us the following theorem.

Theorem 13. Let k � 1 be some integer, then

cap(S2
0,k) � 1 − log2 e

2k
Γ ,

where Γ is given by (6)

We can make the bound of Theorem 13 weaker for small values of k, but more
analytically appealing for an asymptotic analysis. This is achieved by noting
that f⊥

k (0)/22k is almost 1 for large values of k.
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Theorem 14. Let k � 1 be some integer, then

cap(S2
0,k) � 1 − log2 e

2k

(
1
2

− 1
2k+1

)
(1 − (k + 2)2−(k+1))k+1 .

Proof. Omitted. 
�

We can generalize both Theorem 13 and Theorem 14, and for simplicity, show
just the latter in the following theorem.

Theorem 15. Let D � 2 and k � 1 be some integers, then

cap(SD
0,k) � 1 − D log2 e

2 · 2k

(
1
2

− 1
2k+1

)
(1 − (k + 2)2−(k+1))(D−1)(k+1) .

4 Conclusion

In this work we showed new lower and upper bounds on the multi-dimensional
capacity of (0, k)-RLL systems, as well as a new upper bound on the capacity of
(d, k)-RLL systems. We conclude with an interesting comparison of the asymp-
totes of our new bounds with those of the best previously known bounds. We
examine the rate of convergence to 1 of cap(S2

0,k) as k → ∞. The best asymptotic
bounds were given in [5]:

log2 e

2(k + 1)2k
< 1 − cap(S2

0,k) � 4
√

2 log2 e

(k + 1)2k/2 +
8
2k

,

for sufficiently large k. Our bounds, given in Theorem 6 and Theorem 14, show:

log2 e

2k

(
1
2

− 1
2k+1

)
(1 − (k + 2)2−(k+1))k+1 � 1 − cap(S2

0,k) � 2(1 − cap(S1
0,k))

for all integers k � 1. As mentioned in [5], the one-dimensional capacity of (0, k)-
RLL converges to 1 when k → ∞ as log2 e

4·2k . Hence, our lower and upper bounds
agree asymptotically and the rate of convergence to 1 of cap(S2

0,k) as k → ∞ is
log2 e
2·2k . In the D-dimensional case this rate becomes D log2 e

4·2k .
It is also interesting to make a comparison with (d, ∞)-RLL. While cap(S2

d,∞)
converges to 0 as log2 d

d , just as it does in one dimension, for D-dimensional (0, k)-
RLL the capacity converges to 1 slower than the one-dimensional case by a factor
of D.
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