2023 IEEE Information Theory Workshop (ITW) | 979-8-3503-0149-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ITW55543.2023.10161635

2023 IEEE Information Theory Workshop (ITW)

Linearized Reed-Solomon Codes with
Support-Constrained Generator Matrix

Hedongliang Liu*, Hengjia Wei'*, Antonia Wachter-Zeh*, Moshe Schwartz’
*School of Computation, Information and Technology, Technical University of Munich, Germany
TPeng Cheng Laboratory, Shenzhen, China
1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
§School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

lia.liu@tum.de, hjwei05 @gmail.com, antonia.wachter-zeh@tum.de, schwartz@ee.bgu.ac.il

Abstract—Linearized Reed-Solomon (LRS) codes are a class
of evaluation codes based on skew polynomials. They achieve the
Singleton bound in the sum-rank metric, and therefore are known
as maximum sum-rank distance (MSRD) codes. In this work,
we give necessary and sufficient conditions on the existence of
MSRD codes with support-constrained generator matrix. These
conditions are identical to those for MDS codes and MRD codes.
Moreover, the required field size for an [n, k];~ LRS codes with
support-constrained generator matrix is ¢ > ¢+ 1 and m >
maxep{k—1+ log, k, n;}, where ¢ is the number of blocks and
n, is the size of the [-th block. The special cases of the result
coincide with the known results for Reed-Solomon codes and
Gabidulin codes.

I. INTRODUCTION

Designing error-correcting codes with support-constrained
generator matrices is motivated by its application in network
coding for wireless cooperative data exchange [1], wireless
sensor networks [2] and multiple access networks [3]. From
both, the theoretical and the practical point of view, the
objective is to design codes with support-constrained gener-
ator matrix achieving the maximum minimum distance. In
Hamming metric, research has been done in developing and
proving necessary and sufficient conditions such that there
exists an MDS code fulfilling the support constraints. It was
first conjectured in [4], referred as the GM-MDS conjecture,
and finally proven by Yildiz and Hassibi [5] and independently
by Lovett [6].

Theorem 1 (GM-MDS Condition [5], [6]). Let Z1, ..., 2y <
{1,...,n} be such that for any nonempty Q < {1,... k},

2z

€Y

+QI<k . (1)

Then for any q = n + k — 1, there exists an [n, k], Reed-
Solomon (RS) code with a generator matrix G € IF’;X"
fulfilling the support constraint:

Gy =0, Yie{l,....k}, VjieZ . )

Yildiz and Hassibi adapted the approach to Gabidulin codes
in [7] and derived the following GM-MRD condition.
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Theorem 2 (GM-MRD Condition [7, Theorem 1]). Let
Z1y .y < {1,...,n} fulfill (1) for any nonempty ) <
{1,...,k}. Then for any prime power q and integer m >
max{n,k — 1 + log, k}, there exists an [n,k]sm Gabidulin
code with a generator matrix G € Iﬁ'zﬁ" Sulfilling (2).

Linearized Reed-Solomon codes [8], [9] are a class of
evaluation codes based on skew polynomials [10], achieving
the Singleton bound in the sum-rank metric, and therefore
known as maximum sum-rank distance (MSRD) codes. They
have been applied in network coding [11], locally repairable
codes [12] and code-based cryptography [13].

Motivated by the practical interest of codes with support-
constrained generator matrix and the prosperous research on
sum-rank metric codes (in particular, LRS codes), we investi-
gate the existence of MSRD codes with a support-constrained
generator matrix in this work. We present in Section III
our main results on the necessary and sufficient conditions
for the existence of MSRD codes with a support-constrained
generator matrix as in (2) and the sufficient field size of
an LRS code fulfilling the support constraint. Section IV
provides the proof of the sufficient condition. Due to the page
limit, some proofs are omitted and can be found in the full
version [14].

II. PRELIMINARIES
A. Notations

Denote by [a, b] the set of integers {a,a +1,...,b—1,b},
and let [b] := [1,b]. Let N be the set of natural numbers and
Ny = N u {0}. Denote by F, the finite field of size ¢, and by
Fgm its extension field of extension degree m.

Given two vectors @ = (a1,...,a,),b = (by,...,b,) € F",
we define their star-product as the entry-wise multiplication,
ie, axb = (ajby,asbs,...,a,b,) € F". Given a vector
a € F", let diag(a) € F"*™ be the diagonal matrix with
entries of a on its diagonal.

Throughout the paper, unless specified otherwise, the in-
dices of entries in vectors, elements in sets, etc., start from 1,
while the coefficients of polynomials start from 0.

B. Skew Polynomials

Let Fym[X; 6] be a skew polynomial ring over Fym with
automorphism 6 : Fym — IFgm. The degree of a skew
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polynomial f(X) = Y, fiX® € Fym[X;0] is deg f(X) =
max{i | f; # 0}. The addition in Fym[X; 6] is defined to
be the usual addition of polynomials and the multiplication is
defined by the basic rule X - o = 0(a) - X,Va € Fym and
extended to all elements of F,m[X;6] by associativity and
distributivity. For two skew polynomials f(X) = >, f; X®
and g(X) = 33, g; X7, their product is

F(X) - g(X) = 230 6 (9) X", (3)

The degree of the product is deg (f(X) - g(X)) = deg f(X)+
deg g(X). For ease of notation, when it is clear from the
context, we may omit the variable notation in f(X) for
f eFm[X;0], and write only f.

Since skew polynomials are non-commutative under mul-
tiplication and division, we denote by |, and |; the right
and left division respectively. The powers of @ are 0'(a) =
0(0° "' (). For any o € Fym, its i-th truncated norm is
defined as N;(«a) = H;.;t % (a) and Ny(a) = 1. For the
Frobenius automorphism, o : /
Ni(a) = ald'=D/(a=1)

a — ad, o'(a) = a?, and

Definition 1 (0-Conjugacy Classes). Two elements a,b € Fym
are called 0-conjugate if there exists a nonzero element c €
F,m such that b = 0(c)ac™. Otherwise, they are called 6-
distinct. The conjugacy class of a with respect to 0 is the set

Cy(a) ={0(c)ac™* | ce Fym\{0}} .

The remainder evaluation of f € Fym[X;0] at a € Fym
is f(a) = Z?i%f fiNi(a) (see [15, Lemma 2.4]). With this
form, « is a root of f if and only if (X — «)|,f. Similar to
the evaluation of conventional polynomials, the evaluation of a
feFm[X;0] at Q = {aq,...,a,} S Fgm can be written as
(f(@1),..., f(an)) = f-V(Q), where k is the degree of f,
f = (fo,..., fr) contains the coefficients of f, and Viﬂ(ﬂ)
is the first k + 1 rows of V?(Q) defined below.

Definition 2 (6-Vandermonde Matrix). Let 6 be an automor-

phism 0 : Fym — Fym. Given a set Q = {aq,..., 0} S Fym,
the 0-Vandermonde matrix of € is given by
No(az) No(az) No ()
V‘Q(Q) _ Nl(.ozl) Nl(.ozg) Nl(.an) 7
No_1(@1) No_i(as) N1 ()

where No(a) = 1, and for i > 1, N;(a) = H;.;t 07 () is the
i-th truncated norm of .

Definition 3 (Minimal Polynomial). Given a nonempty set
Q < Fym, we define its minimal polynomial in Fym[X; 6] as
a monic polynomial fo € Fom[X;0] of minimal degree such
that fo(a) =0 for all o€ Q.

It was shown in [16, Lemma 5] (see also [17, Theorem
2.5]) that the minimal polynomial of any nonempty set {2 =
{ai,...,a,} € Fym is unique. The minimal polynomial can

be constructed by an iterative Newton interpolation approach
as in [17, Proposition 2.6] or by computing

fo(X) = lem{X - a}. 4)
(611
where lclm is defined as follows.

Definition 4. The least common left multiple (Iclm) of g; €
F,m[X; 0], denoted by lclm;{g;}, is the unique monic polyno-
mial h € Fym[X; 0] s.t. gi|,h, Vi.

The polynomial independence of a set is defined via its
minimal polynomials.

Definition 5 (P-independent Set [17, Def. 2.6]). A set 2
Fym is P-independent in Fyn[X; 0] if deg(fa) = Q.

Given a P-independent set Q < Fym, deg(fa) = |Q] =
rank(V?(€)) [16, Theorem 8] and all of its subsets are P-
independent [17, Corollary 2.8].

IN

Lemma 1. Given a P-independent set (), for any subset Z c
Q, let fz(x) € Fym[X;0] be the minimal polynomial of Z.
Then, for any element o € Q\Z, fz(a) # 0.

Proof: Assume fz(«) = 0, then the minimal polynomial

fzutay = fz and deg(fzuqay) = |Z] < |2 U {a}|, which
contradicts to that Z U {a} < Q is P-independent. [

C. Linearized Reed-Solomon Codes

The definition of LRS codes adopted in this paper follows
from the generalized skew evaluations codes [8, Section III]
with particular choices of the evaluation points and column
multipliers.

Definition 6 (Linearized Reed-Solomon (LRS) Codes). Let
{ < qg—1,n; < m be positive integers for all i = 1,... ./
and n == Y, n; Let ay,...,ap € Fgm be from distinct o-
conjugacy classes of Fgm, and called block representatives.
Let

b= (Bl,lv"‘vﬁl,nl B@,la"'?ﬁﬁ,ng) E]Fgm

be a vector of column multipliers, where [3;1,...
linearly independent over F, V1 € [{].
Let the set of code locators be

,Bin, are

L={aB{7", . aBl B aBi . ()
An [n, k]gm linearized Reed-Solomon code is defined as
Cl(L,b) :={bx (f(a)aec | f(X)€Fm[X;0],
deg f(X) <k},
deg f

where the evaluation f(o) = .70
evaluation.

fiNi(«) is the remainder

The code locator set £ of LRS codes is P-independent
[17, Theorem 2.11]. A generator matrix of the LRS code in
Definition 6 is given by

G(LRS) _ ( GgLRS) GELRS) > c Flgén (6)
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where for each [ € [{],

G = v (£D) - diag(b")
1 e 1

Nl(azﬂﬁfl) Nl(alﬂz;ll) A
. q—1 ’ ) qg—1 Bl,m
Nk—l(alﬂl,l ) Nk—l(alﬂl,nl )
. 51,11 51,12 Bl,?,
Bin Bis Bl
= ) : . . , (D
Ni—1(ar) k-1 kel ke
Blv Bia - Bin,
where £O = {af1,...,a00n} and bD =
(Bia,---+Bin). Eq. (7) holds because for o(a) = af,

_ _\ (@ =1)/(a-1)
Nz(ﬁqu 1)'51,1& = ( Zt 1) 'ﬁl,t:ﬁﬁt.

III. LRS CODES WITH SUPPORT CONSTRAINTS

In this section we show that (1) is also a necessary and
sufficient condition that a matrix G fulfilling (2) generates an
MSRD code.

Since the sum-rank weight is at most the Hamming weight
for any vector in .., an MSRD code is necessarily an MDS
code. Therefore, (1) is also a necessary condition for G to
generate an MSRD code.

Now we proceed to show the sufficiency of (1) for MSRD
codes, in particular, LRS codes. Note that for any Q2 = {i}, we
have |Z;| < k—1. One can add elements from [n] to each Z;
until | Z;| reaches k — 1 while preserving (1) [7, Corollary 3].
This operation will only put more zero constraints on G but
not remove any. This means that the code we design under the
new Z;’s of size k—1 will also satisfy the original constraints.
Therefore, without loss of generality, along with (1), we will
further assume that

Zi| =k —1, Vie[k] . )

Let GRS be a generator matrix of an LRS code as given
in (6). Given the following matrix

G=T G 9)

if T € F’;ﬁk has full rank, then G is another generator
matrix of the same LRS code generated by GRS Re-
call that ay,...,a; € Fgm are the block representatives,
Biise s BBty Ben, € Fgm are the column
multipliers, and £ = {aq,...,a,} is the code locator set as
defined in Definition 6, where a; = a;87; " for some I € [/]
and t € [ny], Vj € [n]. Let ng = 0. Define the following
bijective map between the indices, ¢ : N x N — N,
-1

(l,t)Hth-f—an,

r=0

(10)

such that a; = alﬂffl. The inverse map 0 1:N—>NxN
is j — (I,t), where | = max{i | }._,n, < j} and t =
. -1

J— Zr:() M.

For all i € [k], define the skew polynomials

k=1
filX) =) T X7 €Fgn[X;0],
=0

(an

where T; ;1 is the entry at i-th (1 < 7 < k) row, j + 1-th
(1 < j+1 < k) column in T. The entries of G will be
Gij = filawBf;)Biryi € [k],§ = @(l,t) € [n]. Then, the
zero constraints in (2) become root constraints on f;’s:

flapiy’) =0, Vielk], Vi=w(,t)eZ; . (12)
For brevity, we denote by
Zi = A{aBf; | o(l,t) € Z;} (13)

corresponding to the zero set Z;,. We simplify the notation,
denoting by f;(X) = fz,(X), the minimal polynomial of Z;,
which can be written in the form

filX) = fz,(X) = ldm{(X — a)}. (14)
aEZ;

Since £ and any subset Z; — L are all P-independent, it fol-
lows from Lemma 1 that f;(a) # 0, for all « € £\Z;. Hence,
there is no other zero in G than the required positions in Z;’s.
Moreover, by the assumption in (8), |Z;| = |Z;| = k — 1, and
deg f;(X) = k — 1, Vi € [k]. Hence the coefficients of f;(X)
in (11) are uniquely determined (up to scaling) in terms of
alﬁfjl, . ,agﬁg;i. In the following, we assume aq, ..., ay
are fixed, non-zero, and from distinct o-conjugacy classes.
We see f3;;’s as variables of the following commutative
multivariate polynomial ring

Rn ::Fq’” [Bl,lv CI) 65,7%]7

and the coefficients T; j11 of f;(X) can be seen as polyno-
mials in R,,. Then the problem of finding /;;’s such that G
generates the same LRS code as GRS becomes finding 3 ;’s
such that

P(ﬂl,la s

15)

aﬂf,ng) ::PT(/Bl,la cee 75@,n2)

14
TP (Bras s Bin) #0 - (16)

=1

where Pr is the determinant of T', whose entries are deter-
mined by the minimal polynomials f;’s, and

Bi.1 B2 Bi,ny
1 1 1
q q q
B B2 Byl
PMZ = det . . .
e e
11 1,2 s Py

i—1
Since the coefficient of the monomial [ [}, 8/, in Pag, is 1,
Pps, is a nonzero polynomial in R,,. With Claim 1 below, we
can conclude that P(81,1, ..., Ben,) is @ nonzero polynomial
in R,.

Claim 1. If the condition in (1) is satisfied, then Pr is a
nonzero polynomial in R,,.
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Now we proceed to present the result on the field size by
assuming Claim 1 is true. A more general version (Theorem 4)
of the claim is given in Section IV-B.

For a fixed [ € [{],t € [ng], the degree in f;; of
P, ois degﬁlyt Pr, = ¢™~! [18, Lemma 3.51]. Moreover,
degg, , Pr < (k—1)(¢—1)- q*~2, which can be shown by
extending the analysis of linearized polynomials for Gabidulin
codes in [7, Section IL.F] to skew polynomials. The details of
this extension are provided in [14, Appendix B]. Then, the
degree of P(B11,--.,Ben,) in (16) as a polynomial in §; ; is

degg, , P<(k—=1)(g—1)-¢" 2 +g"".

Theorem 3. Let ¢, n; be positive integers and n = Zf=1 ny.
Let Zy,...,Zy < [n] fulfill (1) for any nonempty Q2 < [k].
Then for any prime power q = { + 1 and integer m >
maxe(q{k—1+log, k,n;}, there exists an [n, k]ym linearized
Reed-Solomon code with { blocks, and each block of length
ny, 1 € [£] with a generator matrix G € IE‘k fulfilling the
support constraints in (2).

Proof: Claim 1 has shown that P(511,...,08¢n,) is a
nonzero polynomial. By the Combinatorial Nullstellensatz [19,
Theorem 1.2], there exist 81,1,. .., B¢n, in Fgm such that

P(BLl,n-;B&W) #0

if

m

>  max {degﬁ”P}

le[4],te[n]
= max{(k—1)(¢—1)-¢" > +¢"7'}.

17
le[4] (17

If m > maxepq{k — 1 +log, k , ni}, we have

¢" =(g-1)¢" " +q""
>1;nax{k(q -2y > 7).
E
To have ag, ..., ay from different nontrivial o-conjugacy class

of Fym, by the structure of o-conjugacy classes [17, Theorem
2.12], we require ¢ — 1 > /. ]

Remark 1. Consider the extreme cases:

1) For ¢ = 1, the sum-rank metric is the rank metric and
LRS codes are Gabidulin codes.

2) For £ = n and n; = 1,1 € [{], the sum-rank metric is
the Hamming metric. In addition, with 6 = 1d, LRS codes
are generalized RS codes with distinct nonzero a1, ..., ay
as code locators and nonzero B +’s as column multipliers
(see [17, Theorem 2.17], [11, Table II]).

For the first case, our result on the field size in Theorem 3 co-
incides with [7, Theorem 1]. For the second case, by adapting
the setup in (15)-(16) to 6 = 1d, and the proof in [14, Appendix
B] with the usual evaluation of commutative polynomials, one
can obtain the same results as in [5, Theorem 2].

IV. PROOF OF CLAIM 1
A. Problem Setup

Let R,, be the multivariate commutative polynomial ring as
defined in (15). Note that Ry = Fym. Let o be the Frobenius
automorphism of Ry, which we extend to any a = ZieNg a; -

100 B, € B by

c: R,— R,
D i B B, e Y olai) - o(Br) o (B,) -
1eNg 1eNg

Let R,[X; o] be the univariate skew polynomial ring with
indeterminate X, whose coefficients are from R,,, i.e.,

d

R,[X;0] = {Z X!

=0

d}O,cO,...,cdeRn,} .

For ease of notation, when it is clear from the context, we
may omit the variable notation in f(X) for f € R,[X;0],
and write only f. The degree of f = Z?:o ;X' e Ry[X;0]
is deg f = d if d is the largest integer such that c¢g # 0. We
define deg0 = —o0

Similar to skew polynomials over a finite field, addition is
commutative and multiplication is defined using the commu-
tation rule

X-a=o0(a) X, Ya€ R, (18)

which is naturally extended by distributivity and associativity.
Just like (3), the product of f,g € R, [X;0] with deg f = dy
and deg g = d, is

dy dy

fg=>> fio'(

1=07=0

X’ﬂ (19)

and the degree of the product is deg (f - g) = dy + dg. Note
that in general, f - g # g - f, for f,g € R,[X;0].
By abuse of notation, in the following, we also denote by

£ ={aiB{, ... e =

the P-independent set as a subset of R,,. Let Z; < L be the
set as in (13) corresponding to Z; and fz, € R,[X;o] be
the minimal polynomial of Z; as in (14). In the main result
in Theorem 4, we are interested in skew polynomials in the
following form: for any Z € [n],7 = 0

: . -1
al/Blnl P .agﬁg’l yeeay

f(Z,7)=X"- lcm {( —a)le R,[X;0], (20)
ae{a By
e, Hez)
where ¢(l,t) is as defined in (10).
Define the set of skew polynomials of this form:
Sn = {f(Z, =>0,Zc
k= {(Z,7) | 720,2< ) o

st. |[Z|+7<k—-1} € R,[X;0]

Note that deg f < k —1,Yf € S, 1.
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B. Main Result

The following theorem is a more general statement than
Claim 1 and it is the analog of [7, Theorem 3.A] for skew
polynomials.

Theorem 4. Let £k > s > 1 and n > 0. For any
fis fas- -5 fs € Sn i, the following are equivalent:
(i) Forall g1,92,-..,9s € Ry[X; 0] such that deg(g; - f;) <
k — 1, we have

s
S fi =0
1=1

(ii) For all nonempty Q2 € [s], we have

k — deg(gerd f;) = Y (k —deg fi) -
ieQ =

The proof of Theorem 4 is given in [14, Appendix C]. We
will show in Corollary 1 that Claim 1 is a special case of
Theorem 4. For this purpose, we give an equivalent way of
writing it in terms of matrices with entries from R,,. This is
done in Theorem 5, which is an analog to [7, Theorem 3.B].
We first describe the multiplication between skew polyno-
mials in matrix language. Let v = Y, u; X' € R,,[X;0]. For

b — a > degu, define the following matrix in R2*?

Saxb(u) =
uO .« .. Ub_a
o(uo)

— G1=g=-=9=0.

(22)

o(up—q)

a—l& a—1

(Up—a)
In particular, for a = 1, denote by R,,[X; o] the set of skew
polynomials of degree strictly less than b. The map

Sixp(r) ¢ Ry[X;0]<p — R,

u— (ug, . ..

o u0> o

23
7ub71) ( )

is bijective and S1x5(0) = 0,Vb € N. For any skew polyno-
mial v = Y, v, X’ € R,[X; 0], we have
Saxp(v-u) = Saxc(v) - Sexv(u) ,

where a,b,c € N are such that ¢ — a > degv,b—c >
As a special case, when v = X7, 7 € N, we can write

Sa><(b+7-)(XT ’u) :Sax(a+7')( ) S(a+7’ b+'r)( )
= (0a><7' Iaxa) ' S(a+r)><(b+‘r)(u)- (25)

By the definition in (20), f(Z,7) = X7 - u for some u €
R,[X;0]. It can be readily seen from (25) that the first 7
columns of S, 44+ (f(Z,7)) are all zero.

For s € [k], i € [s], let f; = f(Z;,7;) € Sp . We write
S(fi) instead of S(;_r,_|z,)xk(fi) for ease of notation. By
(25), S(f:) looks like

(24)
deg u.

O O X X e X
0 ---0 X X e X
S(fi) = bri—2i
0---0 X X e X
i k—1—7;—|Z;| |Z;|+1

where the X’s represent possibly non-zero entries. Then,
applying (24) to the expression g; - f; in Theorem 4 yields

Sixk(gi- fi) =ui - S(fi),

where u; = Slx(k_ﬂ_‘zi‘)(gi) is a row vector. Therefore, we
can write

] S(f1)
S1an(D g+ i) = (ua, -+ ug) - : (26)
= 5(fs)
—_——
=M(f1,..,fs)
which is a linear combination of the rows of M (fi,..., fs).

The following theorem is an equivalent statement to Theo-
rem 4, in matrix language.

Theorem 5. Let k > s = 1 and n = 0. For i € [s], let
Z; € [n],7 = 0 such that 7, + |Z;| < k—1 and f; =
f(Zi, ;) € Sni. The matrix M (f1,..., fs) defined in (26)

has full row rank if and only if, for all nonempty 2 < [s],

-1 2

€2

mlnn > Z(k -7 —|Zi)) . (27)

i€

The proof of Theorem 5 is omitted here due to page limit.
It can be found in the full version [14] of this paper.

As a special case, when s = k, 7, = 0and |Z;| = k—1,Vie
[k], each block S(f;) becomes a row vector with entries
being the coefficients of f; = f(Z;, ;) = Z?;& fij1 X7 €
R,[X;0] and

fll f12 flk
M(f,. ., fx) = ffl f%Q f%k e Rk (28)
fer fr2 Srk

Note that M (f1,..., fr) coincides with the matrix T in (9).
Hence we have Corollary 1 below, which is Claim 1.

Corollary 1. Fori € [k], let Z; < [n] with |Z;| = k—1. Then
det M (f1,..., fx) is a nonzero polynomial in R,, if and only
if for all nonempty Q < [k], k — | \;cq Zi| = [
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