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Abstract—Linearized Reed-Solomon (LRS) codes are a class
of evaluation codes based on skew polynomials. They achieve the
Singleton bound in the sum-rank metric, and therefore are known
as maximum sum-rank distance (MSRD) codes. In this work,
we give necessary and sufficient conditions on the existence of
MSRD codes with support-constrained generator matrix. These
conditions are identical to those for MDS codes and MRD codes.
Moreover, the required field size for an rn, ksqm LRS codes with
support-constrained generator matrix is q ě ℓ ` 1 and m ě

maxlPrℓstk´1` logq k, nlu, where ℓ is the number of blocks and
nl is the size of the l-th block. The special cases of the result
coincide with the known results for Reed-Solomon codes and
Gabidulin codes.

I. INTRODUCTION

Designing error-correcting codes with support-constrained
generator matrices is motivated by its application in network
coding for wireless cooperative data exchange [1], wireless
sensor networks [2] and multiple access networks [3]. From
both, the theoretical and the practical point of view, the
objective is to design codes with support-constrained gener-
ator matrix achieving the maximum minimum distance. In
Hamming metric, research has been done in developing and
proving necessary and sufficient conditions such that there
exists an MDS code fulfilling the support constraints. It was
first conjectured in [4], referred as the GM–MDS conjecture,
and finally proven by Yildiz and Hassibi [5] and independently
by Lovett [6].

Theorem 1 (GM–MDS Condition [5], [6]). Let Z1, . . . , Zk Ď

t1, . . . , nu be such that for any nonempty Ω Ď t1, . . . , ku,
ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` |Ω| ď k . (1)

Then for any q ě n ` k ´ 1, there exists an rn, ksq Reed–
Solomon (RS) code with a generator matrix G P Fkˆn

q

fulfilling the support constraint:

Gij “ 0 , @i P t1, . . . , ku, @j P Zi . (2)

Yildiz and Hassibi adapted the approach to Gabidulin codes
in [7] and derived the following GM–MRD condition.

The work has been supported by the German Research Foundation (DFG)
with a German Israeli Project Cooperation (DIP) under grants no. PE2398/1-1,
KR3517/9-1.

Theorem 2 (GM–MRD Condition [7, Theorem 1]). Let
Z1, . . . , Zk Ď t1, . . . , nu fulfill (1) for any nonempty Ω Ď

t1, . . . , ku. Then for any prime power q and integer m ě

maxtn, k ´ 1 ` logq ku, there exists an rn, ksqm Gabidulin
code with a generator matrix G P Fkˆn

qm fulfilling (2).

Linearized Reed-Solomon codes [8], [9] are a class of
evaluation codes based on skew polynomials [10], achieving
the Singleton bound in the sum-rank metric, and therefore
known as maximum sum-rank distance (MSRD) codes. They
have been applied in network coding [11], locally repairable
codes [12] and code-based cryptography [13].

Motivated by the practical interest of codes with support-
constrained generator matrix and the prosperous research on
sum-rank metric codes (in particular, LRS codes), we investi-
gate the existence of MSRD codes with a support-constrained
generator matrix in this work. We present in Section III
our main results on the necessary and sufficient conditions
for the existence of MSRD codes with a support-constrained
generator matrix as in (2) and the sufficient field size of
an LRS code fulfilling the support constraint. Section IV
provides the proof of the sufficient condition. Due to the page
limit, some proofs are omitted and can be found in the full
version [14].

II. PRELIMINARIES

A. Notations
Denote by ra, bs the set of integers ta, a ` 1, . . . , b ´ 1, bu,

and let rbs :“ r1, bs. Let N be the set of natural numbers and
N0 – NY t0u. Denote by Fq the finite field of size q, and by
Fqm its extension field of extension degree m.

Given two vectors a “ pa1, . . . , anq, b “ pb1, . . . , bnq P Fn,
we define their star-product as the entry-wise multiplication,
i.e., a ‹ b – pa1b1, a2b2, . . . , anbnq P Fn. Given a vector
a P Fn, let diagpaq P Fnˆn be the diagonal matrix with
entries of a on its diagonal.

Throughout the paper, unless specified otherwise, the in-
dices of entries in vectors, elements in sets, etc., start from 1,
while the coefficients of polynomials start from 0.

B. Skew Polynomials
Let FqmrX; θs be a skew polynomial ring over Fqm with

automorphism θ : Fqm Ñ Fqm . The degree of a skew
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polynomial fpXq “
ř

i fiX
i P FqmrX; θs is deg fpXq –

maxti | fi ‰ 0u. The addition in FqmrX; θs is defined to
be the usual addition of polynomials and the multiplication is
defined by the basic rule X ¨ α “ θpαq ¨ X,@α P Fqm and
extended to all elements of FqmrX; θs by associativity and
distributivity. For two skew polynomials fpXq “

ř

i fiX
i

and gpXq “
ř

j gjX
j , their product is

fpXq ¨ gpXq “
ÿ

i

ÿ

j

fiθ
ipgjqXi`j . (3)

The degree of the product is deg pfpXq ¨ gpXqq “ deg fpXq`

deg gpXq. For ease of notation, when it is clear from the
context, we may omit the variable notation in fpXq for
f P FqmrX; θs, and write only f .

Since skew polynomials are non-commutative under mul-
tiplication and division, we denote by |r and |l the right
and left division respectively. The powers of θ are θipαq “

θpθi´1pαqq. For any α P Fqm , its i-th truncated norm is
defined as Nipαq –

śi´1
j“0 θ

jpαq and N0pαq “ 1. For the
Frobenius automorphism, σ : α ÞÑ αq , σipαq “ αqi , and
Nipαq “ αpqi´1q{pq´1q.

Definition 1 (θ-Conjugacy Classes). Two elements a, b P Fqm

are called θ-conjugate if there exists a nonzero element c P

Fqm such that b “ θpcqac´1. Otherwise, they are called θ-
distinct. The conjugacy class of a with respect to θ is the set

Cθpaq – tθpcqac´1 | c P Fqmzt0uu .

The remainder evaluation of f P FqmrX; θs at α P Fqm

is fpαq “
řdeg f

i“0 fiNipαq (see [15, Lemma 2.4]). With this
form, α is a root of f if and only if pX ´ αq|rf . Similar to
the evaluation of conventional polynomials, the evaluation of a
f P FqmrX; θs at Ω “ tα1, . . . , αnu Ď Fqm can be written as
pfpα1q, . . . , fpαnqq “ f ¨V θ

kpΩq, where k is the degree of f ,
f “ pf0, . . . , fkq contains the coefficients of f , and V θ

k`1pΩq

is the first k ` 1 rows of V θ
pΩq defined below.

Definition 2 (θ-Vandermonde Matrix). Let θ be an automor-
phism θ : Fqm Ñ Fqm . Given a set Ω “ tα1, . . . , αnu Ď Fqm ,
the θ-Vandermonde matrix of Ω is given by

V θ
pΩq –

¨

˚

˚

˚

˝

N0pα1q N0pα2q . . . N0pαnq

N1pα1q N1pα2q . . . N1pαnq

...
...

. . .
...

Nn´1pα1q Nn´1pα2q . . . Nn´1pαnq

˛

‹

‹

‹

‚

,

where N0pαq “ 1, and for i ě 1, Nipαq “
śi´1

j“0 θ
jpαq is the

i-th truncated norm of α.

Definition 3 (Minimal Polynomial). Given a nonempty set
Ω Ď Fqm , we define its minimal polynomial in FqmrX; θs as
a monic polynomial fΩ P FqmrX; θs of minimal degree such
that fΩpαq “ 0 for all α P Ω.

It was shown in [16, Lemma 5] (see also [17, Theorem
2.5]) that the minimal polynomial of any nonempty set Ω “

tα1, . . . , αnu Ď Fqm is unique. The minimal polynomial can

be constructed by an iterative Newton interpolation approach
as in [17, Proposition 2.6] or by computing

fΩpXq “ lclm
αPΩ

tX ´ αu. (4)

where lclm is defined as follows.

Definition 4. The least common left multiple (lclm) of gi P

FqmrX; θs, denoted by lclmitgiu, is the unique monic polyno-
mial h P FqmrX; θs s.t. gi|rh,@i.

The polynomial independence of a set is defined via its
minimal polynomials.

Definition 5 (P-independent Set [17, Def. 2.6]). A set Ω Ď

Fqm is P-independent in FqmrX; θs if degpfΩq “ |Ω|.

Given a P-independent set Ω Ď Fqm , degpfΩq “ |Ω| “

rankpV θ
pΩqq [16, Theorem 8] and all of its subsets are P-

independent [17, Corollary 2.8].

Lemma 1. Given a P-independent set Ω, for any subset Z Ă

Ω, let fZpxq P FqmrX; θs be the minimal polynomial of Z .
Then, for any element α P ΩzZ , fZpαq ‰ 0.

Proof: Assume fZpαq “ 0, then the minimal polynomial
fZYtαu “ fZ and degpfZYtαuq “ |Z| ă |Z Y tαu|, which
contradicts to that Z Y tαu Ď Ω is P-independent.

C. Linearized Reed-Solomon Codes

The definition of LRS codes adopted in this paper follows
from the generalized skew evaluations codes [8, Section III]
with particular choices of the evaluation points and column
multipliers.

Definition 6 (Linearized Reed-Solomon (LRS) Codes). Let
ℓ ď q ´ 1, ni ď m be positive integers for all i “ 1, . . . , ℓ
and n –

řℓ
i“1 ni. Let a1, . . . , aℓ P Fqm be from distinct σ-

conjugacy classes of Fqm , and called block representatives.
Let

b “ pβ1,1, . . . , β1,n1

... ¨ ¨ ¨
... βℓ,1, . . . , βℓ,nℓ

q P Fn
qm

be a vector of column multipliers, where βl,1, . . . , βl,nl
are

linearly independent over Fq,@l P rℓs.
Let the set of code locators be

L “ta1β
q´1
1,1 , . . . , a1β

q´1
1,n1

... ¨ ¨ ¨
...aℓβ

q´1
ℓ,1 , . . . , aℓβ

q´1
ℓ,nℓ

u . (5)

An rn, ksqm linearized Reed-Solomon code is defined as

Cσ
k pL, bq :“ tb ‹ pfpαqqαPL | fpXq P FqmrX;σs,

deg fpXq ă ku,

where the evaluation fpαq “
řdeg f

i“0 fiNipαq is the remainder
evaluation.

The code locator set L of LRS codes is P-independent
[17, Theorem 2.11]. A generator matrix of the LRS code in
Definition 6 is given by

GpLRSq
“

ˆ

G
pLRSq

1

... . . .
... G

pLRSq

ℓ

˙

P Fkˆn
qm (6)
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where for each l P rℓs,

G
pLRSq

l “ V σ
kpLplqq ¨ diagpbplq

q

“

¨

˚

˚

˚

˝

1 . . . 1

N1palβ
q´1
l,1 q . . . N1palβ

q´1
l,nl

q

...
. . .

...
Nk´1palβ

q´1
l,1 q . . . Nk´1palβ

q´1
l,nl

q

˛

‹

‹

‹

‚

¨

¨

˚

˝

βl,1

. . .
βl,nl

˛

‹

‚

“

¨

˚

˝

1
. . .

Nk´1palq

˛

‹

‚

¨

¨

˚

˚

˚

˚

˝

βl,1 βl,2 . . . βl,nl

βq1

l,1 βq1

l,2 . . . βq1

l,nl

...
...

. . .
...

βqk´1

l,1 βqk´1

l,2 . . . βqk´1

l,nl

˛

‹

‹

‹

‹

‚

, (7)

where Lplq – talβl,1, . . . , alβl,nl
u and bplq

–

pβl,1, . . . , βl,nl
q. Eq. (7) holds because for σpaq “ aq ,

Nipβ
q´1
l,t q ¨ βl,t “

´

βq´1
l,t

¯pqi´1q{pq´1q

¨ βl,t “ βqi

l,t.

III. LRS CODES WITH SUPPORT CONSTRAINTS

In this section we show that (1) is also a necessary and
sufficient condition that a matrix G fulfilling (2) generates an
MSRD code.

Since the sum-rank weight is at most the Hamming weight
for any vector in Fn

qm , an MSRD code is necessarily an MDS
code. Therefore, (1) is also a necessary condition for G to
generate an MSRD code.

Now we proceed to show the sufficiency of (1) for MSRD
codes, in particular, LRS codes. Note that for any Ω “ tiu, we
have |Zi| ď k´ 1. One can add elements from rns to each Zi

until |Zi| reaches k ´ 1 while preserving (1) [7, Corollary 3].
This operation will only put more zero constraints on G but
not remove any. This means that the code we design under the
new Zi’s of size k´1 will also satisfy the original constraints.
Therefore, without loss of generality, along with (1), we will
further assume that

|Zi| “ k ´ 1, @i P rks . (8)

Let GpLRSq be a generator matrix of an LRS code as given
in (6). Given the following matrix

G “ T ¨ GpLRSq, (9)

if T P Fkˆk
qm has full rank, then G is another generator

matrix of the same LRS code generated by GpLRSq. Re-
call that a1, . . . , aℓ P Fqm are the block representatives,
β1,1, . . . , β1,n1

, . . . , βℓ,1, . . . , βℓ,nℓ
P Fqm are the column

multipliers, and L “ tα1, . . . , αnu is the code locator set as
defined in Definition 6, where αj “ alβ

q´1
l,t for some l P rℓs

and t P rnls, @j P rns. Let n0 “ 0. Define the following
bijective map between the indices, φ : N ˆ N Ñ N,

pl, tq ÞÑ j “ t `

l´1
ÿ

r“0

nr, (10)

such that αj “ alβ
q´1
t . The inverse map φ´1 : N Ñ N ˆ N

is j ÞÑ pl, tq, where l “ maxti |
ři

r“1 nr ď ju and t “

j ´
řl´1

r“0 nr.

For all i P rks, define the skew polynomials

fipXq –

k´1
ÿ

j“0

Ti,j`1X
j P FqmrX;σs , (11)

where Ti,j`1 is the entry at i-th (1 ď i ď k) row, j ` 1-th
(1 ď j ` 1 ď k) column in T . The entries of G will be
Gij “ fipalβ

q´1
l,t qβl,t, i P rks, j “ φpl, tq P rns. Then, the

zero constraints in (2) become root constraints on fi’s:

fipalβ
q´1
l,t q “ 0, @i P rks, @j “ φpl, tq P Zi . (12)

For brevity, we denote by

Zi – talβ
q´1
l,t | φpl, tq P Ziu (13)

corresponding to the zero set Zi. We simplify the notation,
denoting by fipXq – fZi

pXq, the minimal polynomial of Zi,
which can be written in the form

fipXq “ fZi
pXq “ lclm

αPZi

tpX ´ αqu. (14)

Since L and any subset Zi Ă L are all P-independent, it fol-
lows from Lemma 1 that fipαq ‰ 0, for all α P LzZi. Hence,
there is no other zero in G than the required positions in Zi’s.
Moreover, by the assumption in (8), |Zi| “ |Zi| “ k ´ 1, and
deg fipXq “ k ´ 1,@i P rks. Hence the coefficients of fipXq

in (11) are uniquely determined (up to scaling) in terms of
a1β

q´1
1,1 , . . . , aℓβ

q´1
ℓ,nℓ

. In the following, we assume a1, . . . , aℓ
are fixed, non-zero, and from distinct σ-conjugacy classes.
We see βl,t’s as variables of the following commutative
multivariate polynomial ring

Rn –Fqmrβ1,1, . . . , βℓ,nℓ
s, (15)

and the coefficients Ti,j`1 of fipXq can be seen as polyno-
mials in Rn. Then the problem of finding βl,t’s such that G
generates the same LRS code as GpLRSq becomes finding βl,t’s
such that

P pβ1,1, . . . , βℓ,nℓ
q –PT pβ1,1, . . . , βℓ,nℓ

q

¨

ℓ
ź

l“1

PM l
pβl,1, . . . , βl,nl

q ‰ 0 (16)

where PT is the determinant of T , whose entries are deter-
mined by the minimal polynomials fi’s, and

PM l
–det

¨

˚

˚

˚

˚

˝

βl,1 βl,2 . . . βl,nl

βq1

l,1 βq1

l,2 . . . βq1

l,nl

...
...

. . .
...

βqnl´1

l,1 βqnl´1

l,2 . . . βqnl´1

l,nl

˛

‹

‹

‹

‹

‚

.

Since the coefficient of the monomial
śnl

i“1 β
qi´1

l,i in PM l
is 1,

PM l
is a nonzero polynomial in Rn. With Claim 1 below, we

can conclude that P pβ1,1, . . . , βℓ,nℓ
q is a nonzero polynomial

in Rn.

Claim 1. If the condition in (1) is satisfied, then PT is a
nonzero polynomial in Rn.
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Now we proceed to present the result on the field size by
assuming Claim 1 is true. A more general version (Theorem 4)
of the claim is given in Section IV-B.

For a fixed l P rℓs, t P rnℓs, the degree in βl,t of
PM l

is degβl,t
PM l

“ qnl´1 [18, Lemma 3.51]. Moreover,
degβl,t

PT ď pk ´ 1qpq ´ 1q ¨ qk´2, which can be shown by
extending the analysis of linearized polynomials for Gabidulin
codes in [7, Section II.F] to skew polynomials. The details of
this extension are provided in [14, Appendix B]. Then, the
degree of P pβ1,1, . . . , βℓ,nℓ

q in (16) as a polynomial in βl,t is

degβl,t
P ď pk ´ 1qpq ´ 1q ¨ qk´2 ` qnl´1 .

Theorem 3. Let ℓ, nl be positive integers and n –
řℓ

l“1 nl.
Let Z1, . . . , Zk Ă rns fulfill (1) for any nonempty Ω Ď rks.
Then for any prime power q ě ℓ ` 1 and integer m ě

maxlPrℓstk´1`logq k, nlu, there exists an rn, ksqm linearized
Reed-Solomon code with ℓ blocks, and each block of length
nl, l P rℓs with a generator matrix G P Fkˆn

qm fulfilling the
support constraints in (2).

Proof: Claim 1 has shown that P pβ1,1, . . . , βℓ,nℓ
q is a

nonzero polynomial. By the Combinatorial Nullstellensatz [19,
Theorem 1.2], there exist β̂1,1, . . . , β̂ℓ,nℓ

in Fqm such that

P pβ̂1,1, . . . , β̂ℓ,nℓ
q ‰ 0

if

qm ą max
lPrℓs,tPrnls

tdegβl,t
P u

“ max
lPrℓs

tpk ´ 1qpq ´ 1q ¨ qk´2 ` qnl´1u . (17)

If m ě maxlPrℓstk ´ 1 ` logq k , nlu, we have

qm “pq ´ 1qqm´1 ` qm´1

ěmax
lPrℓs

tkpq ´ 1q ¨ qk´2 ` qnl´1u ą (17) .

To have a1, . . . , aℓ from different nontrivial σ-conjugacy class
of Fqm , by the structure of σ-conjugacy classes [17, Theorem
2.12], we require q ´ 1 ě ℓ.

Remark 1. Consider the extreme cases:

1) For ℓ “ 1, the sum-rank metric is the rank metric and
LRS codes are Gabidulin codes.

2) For ℓ “ n and nl “ 1,@l P rℓs, the sum-rank metric is
the Hamming metric. In addition, with θ “ Id, LRS codes
are generalized RS codes with distinct nonzero a1, . . . , aℓ
as code locators and nonzero βl,t’s as column multipliers
(see [17, Theorem 2.17], [11, Table II]).

For the first case, our result on the field size in Theorem 3 co-
incides with [7, Theorem 1]. For the second case, by adapting
the setup in (15)-(16) to θ “ Id, and the proof in [14, Appendix
B] with the usual evaluation of commutative polynomials, one
can obtain the same results as in [5, Theorem 2].

IV. PROOF OF CLAIM 1

A. Problem Setup

Let Rn be the multivariate commutative polynomial ring as
defined in (15). Note that R0 “ Fqm . Let σ be the Frobenius
automorphism of R0, which we extend to any a “

ř

iPNn
0
ai ¨

βi1
1,1 ¨ ¨ ¨βin

ℓ,nℓ
P Rn by

σ : Rn Ñ Rn
ÿ

iPNn
0

ai ¨ βi1
1,1 ¨ ¨ ¨βin

ℓ,nℓ
ÞÑ

ÿ

iPNn
0

σpaiq ¨ σpβi1
1,1q ¨ ¨ ¨σpβin

ℓ,nℓ
q .

Let RnrX;σs be the univariate skew polynomial ring with
indeterminate X , whose coefficients are from Rn, i.e.,

RnrX;σs –

#

d
ÿ

i“0

ciX
i

ˇ

ˇ

ˇ

ˇ

ˇ

d ě 0, c0, . . . , cd P Rn,

+

.

For ease of notation, when it is clear from the context, we
may omit the variable notation in fpXq for f P RnrX;σs,
and write only f . The degree of f “

řd
i“0 ciX

i P RnrX;σs

is deg f “ d if d is the largest integer such that cd ‰ 0. We
define deg 0 “ ´8.

Similar to skew polynomials over a finite field, addition is
commutative and multiplication is defined using the commu-
tation rule

X ¨ a “ σpaq ¨ X, @a P Rn, (18)

which is naturally extended by distributivity and associativity.
Just like (3), the product of f, g P RnrX;σs with deg f “ df
and deg g “ dg is

f ¨ g “

df
ÿ

i“0

dg
ÿ

j“0

fiσ
ipgjqXi`j , (19)

and the degree of the product is deg pf ¨ gq “ df ` dg . Note
that in general, f ¨ g ‰ g ¨ f , for f, g P RnrX;σs.

By abuse of notation, in the following, we also denote by

L “ta1β
q´1
1,1 , . . . , a1β

q´1
1,n1

... . . .
... aℓβ

q´1
ℓ,1 , . . . , aℓβ

q´1
ℓ,nℓ

u Ď Rn

the P-independent set as a subset of Rn. Let Zi Ď L be the
set as in (13) corresponding to Zi and fZi P RnrX;σs be
the minimal polynomial of Zi as in (14). In the main result
in Theorem 4, we are interested in skew polynomials in the
following form: for any Z Ď rns, τ ě 0

fpZ, τq – Xτ ¨ lclm
αPtalβ

q´1
l,t |

φpl,tqPZu

tpX ´ αqu P RnrX;σs , (20)

where φpl, tq is as defined in (10).
Define the set of skew polynomials of this form:

Sn,k – tfpZ, τq | τ ě 0, Z Ď rns

s.t. |Z| ` τ ď k ´ 1u Ď RnrX;σs.
(21)

Note that deg f ď k ´ 1,@f P Sn,k.
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B. Main Result
The following theorem is a more general statement than

Claim 1 and it is the analog of [7, Theorem 3.A] for skew
polynomials.

Theorem 4. Let k ě s ě 1 and n ě 0. For any
f1, f2, . . . , fs P Sn,k, the following are equivalent:

(i) For all g1, g2, . . . , gs P RnrX;σs such that degpgi ¨fiq ď

k ´ 1, we have
s

ÿ

i“1

gi ¨ fi “ 0 ùñ g1 “ g2 “ ¨ ¨ ¨ “ gs “ 0 .

(ii) For all nonempty Ω Ď rss, we have

k ´ degpgcrd
iPΩ

fiq ě
ÿ

iPΩ

pk ´ deg fiq . (22)

The proof of Theorem 4 is given in [14, Appendix C]. We
will show in Corollary 1 that Claim 1 is a special case of
Theorem 4. For this purpose, we give an equivalent way of
writing it in terms of matrices with entries from Rn. This is
done in Theorem 5, which is an analog to [7, Theorem 3.B].

We first describe the multiplication between skew polyno-
mials in matrix language. Let u “

ř

i uiX
i P RnrX;σs. For

b ´ a ě deg u, define the following matrix in Raˆb
n

Saˆbpuq –
¨

˚

˚

˚

˝

u0 ¨ ¨ ¨ ub´a

σpu0q ¨ ¨ ¨ σpub´aq

. . . . . . . . .
σa´1pu0q ¨ ¨ ¨ σa´1pub´aq

˛

‹

‹

‹

‚

.

In particular, for a “ 1, denote by RnrX;σsăb the set of skew
polynomials of degree strictly less than b. The map

S1ˆbp¨q : RnrX;σsăb Ñ Rb
n

u ÞÑ pu0, . . . , ub´1q
(23)

is bijective and S1ˆbp0q “ 0,@b P N. For any skew polyno-
mial v “

ř

i viX
i P RnrX;σs, we have

Saˆbpv ¨ uq “ Saˆcpvq ¨ Scˆbpuq , (24)

where a, b, c P N are such that c ´ a ě deg v, b ´ c ě deg u.
As a special case, when v “ Xτ , τ P N, we can write

Saˆpb`τqpXτ ¨ uq “Saˆpa`τqpXτ q ¨ Spa`τqˆpb`τqpuq

“ p0aˆτ Iaˆaq ¨ Spa`τqˆpb`τqpuq. (25)

By the definition in (20), fpZ, τq “ Xτ ¨ u for some u P

RnrX;σs. It can be readily seen from (25) that the first τ
columns of Saˆpb`τqpfpZ, τqq are all zero.

For s P rks, i P rss, let fi “ fpZi, τiq P Sn,k. We write
Spfiq instead of Spk´τi´|Zi|qˆkpfiq for ease of notation. By
(25), Spfiq looks like

Spfiq “

¨

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 ˆ ˆ ¨ ¨ ¨ ˆ

0 ¨ ¨ ¨ 0 ˆ ˆ ¨ ¨ ¨ ˆ

...
...

. . . . . . . . .

looomooon

τi

0 ¨ ¨ ¨ 0
loooomoooon

k´1´τi´|Zi|

loooooomoooooon

|Zi|`1

ˆ ˆ ¨ ¨ ¨ ˆ

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

k´τi´|Zi|

where the ˆ’s represent possibly non-zero entries. Then,
applying (24) to the expression gi ¨ fi in Theorem 4 yields

S1ˆkpgi ¨ fiq “ ui ¨ Spfiq ,

where ui “ S1ˆpk´τi´|Zi|qpgiq is a row vector. Therefore, we
can write

S1ˆkp

s
ÿ

i“1

gi ¨ fiq “ pu1, ¨ ¨ ¨ ,usq ¨

¨

˚

˝

Spf1q

...
Spfsq

˛

‹

‚

loooomoooon

“:Mpf1,...,fsq

(26)

which is a linear combination of the rows of Mpf1, . . . , fsq.
The following theorem is an equivalent statement to Theo-

rem 4, in matrix language.

Theorem 5. Let k ě s ě 1 and n ě 0. For i P rss, let
Zi P rns, τi ě 0 such that τi ` |Zi| ď k ´ 1 and fi “

fpZi, τiq P Sn,k. The matrix Mpf1, . . . , fsq defined in (26)
has full row rank if and only if, for all nonempty Ω Ď rss,

k ´

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

´ min
iPΩ

τi ě
ÿ

iPΩ

pk ´ τi ´ |Zi|q . (27)

The proof of Theorem 5 is omitted here due to page limit.
It can be found in the full version [14] of this paper.

As a special case, when s “ k, τi “ 0 and |Zi| “ k´1,@i P

rks, each block Spfiq becomes a row vector with entries
being the coefficients of fi “ fpZi, τiq “

řk´1
j“0 fi,j`1X

j P

RnrX;σs and

Mpf1, . . . , fkq “

¨

˚

˚

˚

˝

f11 f12 ¨ ¨ ¨ f1k
f21 f22 ¨ ¨ ¨ f2k

...
...

. . .
...

fk1 fk2 ¨ ¨ ¨ fkk

˛

‹

‹

‹

‚

P Rkˆk
n . (28)

Note that Mpf1, . . . , fkq coincides with the matrix T in (9).
Hence we have Corollary 1 below, which is Claim 1.

Corollary 1. For i P rks, let Zi Ď rns with |Zi| “ k´1. Then
detMpf1, . . . , fkq is a nonzero polynomial in Rn if and only
if for all nonempty Ω Ď rks, k ´ |

Ş

iPΩ Zi| ě |Ω|.
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[11] U. Martı́nez-Peñas and F. R. Kschischang, “Reliable and secure mul-
tishot network coding using linearized Reed-Solomon codes,” IEEE
Transactions on Information Theory, 2019.
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