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Abstract—The generalized-covering radius was recently pro-
posed as a fundamental property of linear codes. We consider
a natural extension of this property to general (not necessarily
linear) codes, and provide an asymptotic solution to our problem
by finding the optimal rate function of second-order covering
codes given a fixed normalized covering radius. We also prove
that the fraction of second-order covering codes among codes of
sufficiently large rate tends to 1 as the code length tends to ∞.

I. INTRODUCTION

The covering problem is a fundamental problem in metric
spaces: given a non-negative number r, find a set of points
in the space that is of minimal size, such that the balls of
radius r centered those points cover the entire space. Such
sets, often referred to as covering codes, have been thoroughly
studied due to their fascinating relations with various topics
in pure and applied mathematics, such as finite fields, discrete
geometry, linear algebra, communication and algorithms. We
refer to the excellent book [1] for further reading on covering
codes and their applications.

The generalized covering radius was recently introduced as
a fundamental property of linear codes, shown to characterize
a trade-off between access-complexity, storage and latency
in linear data-querying protocols (commonly used in PIR
schemes, as an example). In [3], the case of linear codes
was studied: some fundamental properties of the generalized
covering radii were examined, and asymptotic bounds on
the optimal rates of linear covering codes were derived. An
interesting relation between the generalized covering radius
and generalized Hamming weights of linear codes (see [9])
was also observed. In another paper [5], the generalized
covering radii of Reed-Muller codes were examined.

In this work, we focus on the generalized covering radii
of general codes, i.e., codes which are not necessarily linear.
The main result in the paper is the derivation of the exact
value of the minimal asymptotic rate of second-order covering
codes with a fixed normalized second covering radius over an
arbitrary finite alphabet. For a normalized radius ρ ∈ [0, 1], de-
noting the second-order optimal rate function over an alphabet
of size q by κ2(ρ, q), we prove in Theorem 6 that

κ2(ρ, q) =

{
1−Hq2(ρ) ρ ∈ [0, 1− 1

q2 ),

0 ρ ∈ [1− 1
q2 , 1],

where Hq2(·) denotes the q2-ary entropy function. This result
is an improvement upon the best known upper bound on the
minimal asymptotic rate of linear binary second-order covering
codes, given in [3, Theorem 22]. Thus, while a gap still
remains for linear codes, our main result for general codes
completely finds κ2(ρ, q), while also extending to general
finite alphabets.

Another important result in this paper is given in Theo-
rem 17, where we prove that second-order covering codes
are very common among codes of sufficiently large rate. For
ρ ∈ [0, 1− 1

q2 ) let αq(n, ρ,M) denote the fraction of codes of
length n over an alphabet of size q with normalized second
covering radius at most ρ in the set of (n,M)q codes. In
Theorem 17 we prove that for any ε > 0

lim
n→∞

αq

(
n, ρ, qn(1−Hq2 (ρ)+ε)

)
= 1.

The paper is organized as following: In Section II we
provide the exact definitions and notation used throughout the
paper, and we survey the relevant known results. In Section III
we give the main results. We conclude in Section IV with
a short discussion and open problems. Due to the page
limitation, proofs are omitted and may be found in [4].

II. PRELIMINARIES

We consider codes over finite Abelian groups. We use Gq

to denote an Abelian group of size q ∈ N and + for the group
operation. Naturally, Gn

q denotes the set of vectors of length
n with entries from Gq , and Gt×n

q denotes the set of t × n
matrices with entries from Gq . We also consider Gn

q and Gt×n
q

as Abelian groups with the entry-wise group operation. We
use lower-case letters, v, to denote scalars and group elements.
Overlined lower-case letters, v, shall be used to denote vectors,
and bold lower-case letters, v, to denote matrices.

For a vector v = (v1, . . . , vn) ∈ Gn
q , the support of

v is defined as supp(v) ≜ {1 ⩽ i ⩽ n | vi ̸= 0}, and
its Hamming weight is defined as wt(v) ≜ |supp(v)|. The
Hamming distance between two vectors v, v′ ∈ Gn

q is then
defined as d(v, v′) ≜ wt(v′ − v).

A set C ⊆ Gn
q is called an (n,M)q code if it has cardinality

M . The elements in a code C shall also be called codewords.
For an (n,M)q code, logq(M) is called the dimension of the
code. In the case where Gq is as also a field, we say that
C is a linear code if it is a linear subspace of Gn

q over Gq .
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In that case, C is said to be an [n, k]q linear code, where
k = logq(M) is its dimension (which is also the dimension
of C as a vector space).

For an (n,M)q code C, the covering radius of C, denoted
R(C), is the distance of the farthest point in Gn

q to the code,
with respect to the Hamming distance. That is,

R(C) ≜ max
v∈Gn

q

min
c∈C

d(c, v).

Equivalently, the covering radius of the code is the minimum
radius at which balls centered at the codewords of C cover
the entire space Gn

q . Here, a ball of radius r (not necessarily
an integer) centered at v ∈ Gn

q is defined as the set of vectors
in Gn

q that are at distance no more than r from v, i.e.,

Br(v) ≜
{
u ∈ Gn

q

∣∣ d(v, u) ⩽ r
}
.

The normalized covering radius of C is denoted by ρ(C), and
is defined to be

ρ(C) ≜
R(C)

n
.

The generalized covering radius was introduced in [3] as a
fundamental property of linear codes. While [3] only studied
linear codes, we extend our view to general codes, i.e., codes
which are not necessarily linear. We begin by recalling the
definition of the t-metric, also known as the block metric, on
the space of matrices Gt×n

q .

Definition 1 Let v ∈ Gt×n
q be a matrix with rows denoted by

v1, . . . , vt. The t-weight of v is defined by

wt(t)(v) ≜

∣∣∣∣∣∣
⋃
i∈[t]

supp vi

∣∣∣∣∣∣.
The t-distance between two matrices v and u in Gt×n

q is
defined to be

d(t)(v,u) ≜ wt(t)(u− v).

The t-Ball is defined in the usual manner, with respect to the
t-metric:

B(t)
r (v) ≜

{
u ∈ Gt×n

q

∣∣∣ d(t)(v,u) ⩽ r
}
.

We remark that for t = 1, we get the well known Hamming
metric. Thus, notationally, when t = 1 we may omit the
superscript (1). Next we define the t-th power of a code.

Definition 2 Let C be an (n,M)q code and t ∈ N. We define
Ct ⊆ Gt×n

q to be the set of t× n matrices over Gq such that
their rows are codewords in C. That is,

Ct ≜


c1...
ct

 ∈ Gt×n
q

∣∣∣∣∣∣∣∀i ∈ [t], ci ∈ C

.

We can now define the t-th-covering radius of a code.

Definition 3 Let C be an (n,M)q code and t ∈ N. The t-th-
covering radius of C is defined to be the (regular) covering
radius of Ct inside Gt×n

q with respect to the t-metric. That is,

Rt(C) ≜ max
u∈Gt×n

q

min
c∈Ct

d(t)(c,u).

Once again, we note that for t = 1, the t-th-covering radius
of a code is the regular well known covering radius of the
code (with respect to the Hamming metric).

Remark 4 The definition of the t-th-covering radius depends
on the t-metric, which is defined using the group operation.
However, it is easy to check that the t-metric is invariant to a
change of the group operation. Thus, the t-th-covering radius
may be considered as a property of codes over arbitrary finite
alphabets (by considering a finite alphabet of size q as a
cyclic group of order q). Nevertheless, for convenience and
simplification of notation, we think of all codes as codes over
finite Abelian groups.

The fundamental problem in any coverings-type setting is
to find the minimal size of a set with a covering radius which
is at most r. Thus, we are interested in the minimal size (or
equivalently, dimension or rate) of a code C ⊆ Gn

q such that
Rt(C) ⩽ r.

Definition 5 Let n, t, q ∈ N, and 0 ⩽ r ⩽ n. The optimal
dimension function, denoted by kt(n, r, q), is the minimal
dimension of a code of length n over a group of size q with
t-th-covering radius at most r. Namely,

kt(n, r, q) ≜ min
{
logq|C|

∣∣C ⊆ Gn
q , Rt(C) ⩽ r

}
.

For ρ ∈ [0, 1], the asymptotic optimal rate is then defined as

κt(ρ, q) ≜ lim inf
n→∞

kt(n, ρn, q)

n
.

We remark that the group Gq is omitted from the notation,
as by Remark 4, kt and κt only depend on the size q.

A restriction to linear codes of the above functions was
studied in [3]. Similarly to the general case, if Gq = Fq is the
finite field of size q, then kLint and κLin

t are defined to be

kLint (n, r, q) ≜ min
{
logq|C|

∣∣∣C⊆Fn
q ,Rt(C)⩽r

C is linear

}
,

and

κLin
t (ρ, q) ≜ lim inf

n→∞

kLint (n, ρn, q)

n
.

Obviously, for all n, t, r, ρ and prime power q we have

kt(n, r, q) ⩽ kLint (n, r, q) and κt(ρ, q) ⩽ κLin
t (ρ, q).

It is well known [2] that in the case of t = 1,

κ1(ρ, q) = κLin
1 (ρ, q) =

{
1−Hq(ρ) ρ ∈ [0, 1− 1

q ),

0 ρ ∈ [1− 1
q , 1],

(1)

where Hq is the q-ary entropy function defined by

Hq(x) ≜ x logq(q − 1)− x logq(x)− (1− x) logq(1− x),
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Fig. 1. A comparison of the bounds on κ2(ρ, 2): (a) the ball-covering lower
bound of (2), (b) the upper bound of (4), and (c) the upper bound of (3).

and for continuity, Hq(0) ≜ 0.
At this point, our knowledge of κt(ρ, q) becomes severely

limited, and we restrict ourselves to the first unresolved case,
i.e., t = 2. The lower bound from [3, Proposition 12] is:

κ2(ρ, q) ⩾

{
1−Hq2(ρ) ρ ∈ [0, 1− 1

q2 ),

0 ρ ∈ [1− 1
q2 , 1].

(2)

This bound is based on a simple ball-covering argument. We
also remark that while [3] only considered linear codes, the
proof for the bound does not use the linearity of the code in
any way, and thus the bound applies not only to κLin

2 (ρ, q),
but also to κ2(ρ, q). In the other direction, [3] only managed
to handle the further restricted case of q = 2, and thus [3,
Proposition 14 and Theorem 22] proved two upper bounds
which give us:

κ2(ρ, 2) ⩽ κLin
2 (ρ, 2) ⩽ 1−H2

(ρ
2

)
, (3)

κ2(ρ, 2) ⩽ κLin
2 (ρ, 2) ⩽

{
1− (4H4(ρ)− f(ρ)) ρ ∈ [0, 3

4 ),

0 ρ ∈ [ 34 , 1],

(4)

where, for all ρ ∈ [0, 3
4 ) we define

f(ρ) ≜ H2(s(ρ)) + 2s(ρ) + 2(1− s(ρ))H2

(
ρ− s(ρ)

1− s(ρ)

)
,

s(ρ) ≜
1

10

(
1 + 8ρ−

√
1 + 16ρ− 16ρ2

)
.

The bounds of [3] are depicted in Figure 1, and a gap between
the lower and upper bounds is evident. Our main theorem,
proved in the following section, closes the gap completely,
while extending the setting to a general alphabet of size q,
giving us the exact value of κ2(ρ, q).

A key component in the proofs ahead is an estimate of the
size of balls. Let V (t)

r,n,q denote the size of a t-ball of radius r in
Gt×n

q with respect to d(t), V (t)
r,n,q ≜

∣∣∣B(t)
r (v)

∣∣∣, which does not
depend on the center, v, as the metric is translation invariant.

By choosing v = 0, one can easily see that V (t)
r,n,q counts the

number of t × n matrices with at most r non-zero columns.
Thus, after conveniently denoting ρ = r

n ,

V (t)
ρn,n,q =

⌊ρn⌋∑
i=0

(
n

i

)
(qt − 1)i = V

(1)
ρn,n,qt .

By a standard use of Stirling’s approximation (e.g., see [6,
Chapter 3]) it is well known that for ρ ∈ [0, 1− 1

qt ]

qtn(Hqt (ρ)−o(1)) ⩽ V
(1)
ρn,n,qt ⩽ qtnHqt (ρ), (5)

and therefore

V (t)
ρn,n,q =

⌊ρn⌋∑
i=0

(
n

i

)
(qt − 1)i = V

(1)
ρn,n,qt

=

{
qtn(Hqt (ρ)+o(1)) ρ ∈ [0, 1− 1

qt ),

qtn(1−o(n)) ρ ∈ [1− 1
qt , 1].

(6)

Using the same approximation, we also mention that for 0 ⩽
m ⩽ n, n > 0,(

n

m

)
(q − 1)m = qn(Hq(m/n)+o(1)). (7)

Finally, here in (6)-(7) and throughout the paper, we use o(1)
to denote a function of n whose limit is 0 as n → ∞. Then,
given a continuous real function f(x), we shall often use the
fact that f(x+ o(1)) = f(x) + o(1).

III. THE SECOND-ORDER OPTIMAL RATE

The purpose of this section is to prove the following main
theorem:

Theorem 6

κ2(ρ, q) =

{
1−Hq2(ρ) ρ ∈ [0, 1− 1

q2 ),

0 ρ ∈ [1− 1
q2 , 1].

Since the proof of Theorem 6 is long and involved, we
first describe the overall strategy in brief. We start by noting
that the lower bound of (2) matches the claim of Theorem 6.
Additionally, the upper bound of (4) matches the claim of
Theorem 6 in the range [1 − 1

q2 , 1]. Furthermore, the case of
ρ = 0 is trivial. Hence, it remains to prove an upper bound
matching Theorem 6 in the interval (0, 1− 1

q2 ).
In order to show that κ2(ρ, q) is upper bounded by some

number γ, we are required to find a sequence of codes with
lengths that tend to infinity, whose normalized second covering
radius is no more then ρ, and whose rate (asymptotically) does
not exceed γ.

In order to find such codes, we take a probabilistic approach.
We generate random codes using a carefully chosen distribu-
tion. Then, we prove that the event of obtaining a second-order
covering code with a normalized radius not bigger than ρ, is
non-zero for a large-enough length. We then make sure that
some of these codes have a sufficiently low rate. This will
imply that the desired codes exist and the upper bound holds.
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From now on, we fix some ρ ∈ (0, 1− 1
q2 ). Let {χv}v∈Gn

2

be a set of i.i.d Ber(p) random variables. We consider the
random code C which consists of all the vectors v ∈ Gn

q such
that χv = 1, i.e.,

C ≜
{
v ∈ Gn

q

∣∣χv = 1
}
.

Let u1, u2 ∈ Gn
q be two vectors, and assume v ∈ G2×n

q .
We say that the unordered pair {u1, u2} covers v, denoted
{u1, u2} E v, if v is contained in at least one of the two balls
of radius ρn centered at

[
u1
u2

]
and

[
u2
u1

]
. That is,

{u1, u2} E v iff v ∈ B(2)
ρn (
[
u1
u2

]
) ∪B(2)

ρn (
[
u2
u1

]
) and u1 ̸= u2.

Equivalently,

{u1, u2} E v iff
{[

u1
u2

]
,
[
u2
u1

]}
∩B(2)

ρn (v) ̸= ∅ and u1 ̸= u2.

Then, for any matrix v ∈ G2×n
q we define the random variable

Xv ≜
∑

{u1,u2}Ev

χu1
· χu2

.

We observe that if Xv > 0 then v is 2-covered by at least one
matrix from C2 with distinct rows.

Aiming for a lower bound on P[Xv = 0], we use the Janson-
type concentration inequality given as follows:

Theorem 7 ([8, Theorem 11]) Let {χi}i∈Q be a finite set of
independent Boolean random variables, and let A ⊆ 2Q be a
family of non-empty subsets. Let X be the random variable
defined by

X ≜
∑
A∈A

IA, IA ≜
∏
i∈A

χi,

and for each A ∈ A let us define

XA ≜ IA +
∑

A̸=B∈A
A∩B ̸=∅

IB , and pA ≜ P[IA = 1].

Then,

P[X = 0] ⩽ exp

(
−
∑
A∈A

pA E

[
1

XA

∣∣∣∣ IA = 1

])
. (8)

One can easily see that for any v ∈ G2×n
q , our probabilistic

model exactly fits the setting of Theorem 7 with X = Xv,
Q = Gn

q , and A = {{u1, u2} |u1 ̸= u2 and {u1, u2} E v}.
Given A = {u1, u2}, with u1, u2 ∈ Gn

q , and given v =[
v1
v2

]
∈ G2×n

q , we shall conveniently define

wA ≜ min
i,j∈{1,2}

d(ui, vj), (9)

where the dependence on v is implicit in the notation wA.

Lemma 8 With the notation above, for any v =
[
v1
v2

]
∈ G2×n

q

and A = {u1, u2} ∈ A, we have that

1

2
· 1− (1− p)nA+1

p(nA + 1)
⩽ E

[
1

XA

∣∣∣∣ IA = 1

]
⩽

1− (1− p)nA+1

p(nA + 1)

where nA is an integer satisfying

qwA · V (1)
ρn−wA,n−wA,q ⩽ nA ⩽ 4 · qwA · V (1)

ρn−wA,n−wA,q.

By further analyzing the function 1−(1−p)nA+1

p(nA+1) from
Lemma 8, we immediately arrive at the following corollary:

Corollary 9 For any
[
v1
v2

]
= v ∈ G2×n

q and A = {u1, u2} ∈
A, with wA = m = µn ⩽ ρn we have that

E

[
1

XA

∣∣∣∣ IA = 1

]
⩾

1

2
· 1− (1− p)q

n·(f(µ)+o(1))

p · qn·(f(µ)+o(1))
,

where

f(µ) ≜

{
1 µ ∈ [0, 1− q(1− ρ)],

µ+ (1− µ)Hq

(
ρ−µ
1−µ

)
µ ∈ (1− q(1− ρ), ρ].

We now turn towards an asymptotic analysis of P[Xv =
0]. Our strategy is to show, using the Janson-type inequality
given in Theorem 7, that for an appropriate choice of p, this
probability decreases rapidly to 0 for all the matrices in G2×n

q .
Let A = {u1, u2} be such that wA = m = µn ⩽ ρn. As we
continue, we shall find the case of µ = q

q+1ρ of particular
interest. In the following lemma we show the existence of
a large subset A′ ⊆ A such that for all A ∈ A′ we have
wA = n(µ+ o(1)).

Lemma 10 Let
[
v1
v2

]
= v ∈ G2×n

q be any matrix, ρ ∈ (0, 1−
1
q2 ), and µ = q

q+1ρ. Then there exists a subset A′ ⊆ A with

|A′| ⩾ qn(Hq(µ)+µ+(1−µ)Hq( ρ−µ
1−µ )+o(1)),

such that for all A ∈ A′ we have

µn− 11 ⩽ wA ⩽ µn.

Another technical result we shall need is the following
entropy identity.

Lemma 11 For any ρ ∈ (0, 1− 1
q2 ) and µ = q

q+1ρ,

Hq(µ) + µ+ (1− µ)Hq

(
ρ− µ

1− µ

)
= 2Hq2(ρ).

Lemma 12 For any integer q ⩾ 2 and ρ ∈ (0, 1− 1
q2 ),

Hq

(
q

q + 1
ρ

)
−Hq2(ρ) > 0.

We now have all the technical lemmas needed to bound
P[Xv = 0].

Proposition 13 Let ρ ∈ (0, 1− 1
q2 ) and ε ∈ (0, Hq(

q
q+1ρ)−

Hq2(ρ)) be fixed. Assume that p = q−n(Hq2 (ρ)−ε),
[
v1
v2

]
=

v ∈ G2×n
q . Then,

P[Xv = 0] ⩽ exp
(
−qn(2ε+o(1))

)
,

where the o(1) term does not depend on v.
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The last components for the proof of Theorem 6 are the
following concentration inequality for binomial random vari-
ables, and a proposition that shows that, with high probability,
the cardinality of the random code C is close to its expected
value of qn(1−Hq2 (ρ)+ε).

Lemma 14 ([7, Theorem 1]) Let X ∼ Bin(n, p) be a bino-
mial random variable. Then for every real a > 0

P[X ⩾ E[X] + a] ⩽ exp

(
− a2

2np

(
1− a

3np

))
.

From Lemma 14 it follows that if X ∼ Bin(n, p), and
γ > 0, then

P[X ⩾ E[X](1 + γ)] ⩽ exp

(
−1

2
γ2np

(
1− γ

3

))
. (10)

Proposition 15 Under the assumptions of Proposition 13, for
all sufficiently large n,

P
[
{R2(C) ⩽ ρn} ∩

{
|C| < qn(1−Hq2 (ρ)+ε+1/n)

}]
⩾ 1− exp

(
−qn(2ε+o(1))

)
.

The proof of Theorem 6 now easily follows.
Proof of Theorem 6: As explained in the beginning

of Section III, the only remaining part we need to prove is
that κ2(ρ, q) ⩽ 1 − Hq2(ρ) for all ρ ∈ (0, 1 − 1

q2 ). Let
ρ ∈ (0, 1− 1

q2 )) and ε ∈ (0, Hq(
q

q+1ρ)−Hq2(ρ)) be fixed. By
Proposition 15, for all sufficiently large n, the random code
C satisfies

P
[
{R2(C) ⩽ ρn} ∩

{
|C ′| < qn(1−Hq2 (ρ)+ε+1/n)

}]
> 0.

In particular, there exists at least one (deterministic) code Cn

such that

R2(Cn) ⩽ ρn, and |Cn| < qn(1−Hq2 (ρ)+ε+1/n).

This immediately implies that,

k2(n, ρn, q) ⩽ qn(1−Hq2 (ρ)+ε+1/n) = qn(1−Hq2 (ρ)+ε+o(1)).

This proves that

κ2(ρ,q) = lim inf
n→∞

1

n
logq(k2(n, ρn, q))

⩽ lim inf
n→∞

(
1−Hq2(ρ) + ε+ o(1)

)
= 1−Hq2(ρ) + ε.

Taking ε → 0 we conclude the claim.
While for the proof of the upper-bound part of Theorem 6 it

is only required to show the existence of second-order covering
codes, we observe that a stronger conclusion may follow,
namely, that with high probability, a random code generated
according to our distribution is a second-order covering code.
We use this fact in order to prove that the fraction of second-
order covering codes (among the set of codes of sufficiently
large size) tends to 1 as n → ∞.

For an integer q ⩾ 2, ρ ∈ (0, 1− 1
q2 ), n ∈ N, and 0 ⩽ M ⩽

qn, let αq(n, ρ,M) denote the fraction of codes of length n

over Gq with second covering radius at most ρn in the set of
(n,M)q codes. Namely,

αq(n, ρ,M) ≜
|Cq(n, ρ,M)|(

qn

M

) ,

where

Cq(n, ρ,M) ≜
{
C ⊆ Gn

q

∣∣R2(C) ⩽ ρn, |C| = M
}
.

Lemma 16 Let ρ and n be fixed. For any 0 ⩽ M ⩽ qn − 1,

αq(n, ρ,M) ⩽ αq(n, ρ,M + 1).

The following theorem asserts that the fraction of second-
order covering codes tends to 1 as the length tends to infinity
when we consider codes with rate larger then the optimal rate
presented in Theorem 6 by an arbitrarily small amount.

Theorem 17 For any ρ ∈ (0, 1− 1
q2 ) and ε > 0, let us denote

M(n, ρ, ε) ≜ ⌊qn(1−Hq2 (ρ)+ε+1/n)⌋. Then,

lim
n→∞

αq(n, ρ,M(n, ρ, ε)) = 1.

IV. CONCLUSION AND FURTHER QUESTIONS

In this paper we studied the optimal rate of general second-
order covering codes over finite Abelian groups. Our main
result, the exact asymptotic minimal rate of second-order
covering codes, was proved using a probabilistic approach. In
summary, for the first-order covering radius we already know

κ1(ρ, q
t) =

{
1−Hqt(ρ) ρ ∈ [0, 1− 1

qt ),

0 ρ ∈ [1− 1
qt , 1].

In the second-order case, Theorem 6 reveals that

κ2(ρ, q) = κ1(ρ, q
2) =

{
1−Hq2(ρ) ρ ∈ [0, 1− 1

q2 ),

0 ρ ∈ [1− 1
q2 , 1].

In theory, the proof strategy of Theorem 6 may be applied for
higher values of t. However in practice, the analysis performed
in our proof, which is already involved in the second-order
case, seems not to be scalable for higher orders. We therefore
leave the higher-order problem for future study:

Question 1 Prove that for any q, t ⩾ 2

κt(ρ, q) = κ1(ρ, q
t) =

{
1−Hqt(ρ) ρ ∈ [0, 1− 1

qt ),

0 ρ ∈ [1− 1
qt , 1].

Another interesting direction of research involves linear
codes. In the case where Gq = Fq is a finite field, (1) raises
the suspicion that there is no different in asymptotic minimal
rate between general codes and linear codes. Thus, we suggest
the following open problem as well:

Question 2 Prove or disprove that for any q, t ⩾ 2

κt(ρ, q) = κLin
t (ρ, q). (11)

Except for the first-order case, it is unknown whether (11) is
true.

2023 IEEE International Symposium on Information Theory (ISIT)

226
Authorized licensed use limited to: McMaster University. Downloaded on August 25,2023 at 17:05:57 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering codes. North-
Holland, 1997.

[2] G. Cohen and P. Frankl, “Good coverings of Hamming spaces with
spheres,” Discrete Mathematics, vol. 56, no. 2-3, pp. 125–131, 1985.

[3] D. Elimelech, M. Firer, and M. Schwartz, “The generalized covering
radii of linear codes,” IEEE Transactions on Information Theory, vol. 67,
no. 12, pp. 8070–8085, 2021.

[4] D. Elimelech and M. Schwartz, “The second-order football-pool problem
and the optimal rate of generalized-covering codes,” arXiv preprint
arXiv:2210.00531, 2022.

[5] D. Elimelech, H. Wei, and M. Schwartz, “On the generalized covering
radii of reed-muller codes,” IEEE Transactions on Information Theory,
2022.

[6] V. Guruswami, A. Rudra, and M. Sudan, Essential Coding Theory, 2022.
[7] S. Janson, “Large deviation inequalities for sums of indicator variables,”

arXiv preprint arXiv:1609.00533, 2016.
[8] M. Schwartz and A. Vardy, “New bounds on the capacity of multidimen-

sional run-length constraints,” IEEE transactions on information theory,
vol. 57, no. 7, pp. 4373–4382, 2011.

[9] V. K. Wei, “Generalized Hamming weights for linear codes,” IEEE
Trans. Inform. Theory, vol. 37, no. 5, pp. 1412–1418, Sep. 1991.

2023 IEEE International Symposium on Information Theory (ISIT)

227
Authorized licensed use limited to: McMaster University. Downloaded on August 25,2023 at 17:05:57 UTC from IEEE Xplore.  Restrictions apply. 


