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Abstract—We introduce a novel framework for implementing
error-correction in constrained systems. The main idea of our
scheme, called Quantized-Constraint Concatenation (QCC), is
to employ a process of embedding the codewords of an error-
correcting code in a constrained system as a (noisy, irreversible)
quantization process. This is in contrast to traditional methods,
such as concatenation and reverse concatenation, where the
encoding into the constrained system is reversible. The possible
number of channel errors QCC is capable of correcting is linear
in the block length n, improving upon the O(

√
n) possible with

the state-of-the-art known schemes. For a given constrained
system, the performance of QCC depends on a new fundamental
parameter of the constrained system – its covering radius.

Motivated by QCC, we study the covering radius of con-
strained systems in both combinatorial and probabilistic settings.
We reveal an intriguing characterization of the covering radius
of a constrained system using ergodic theory.

I. INTRODUCTION

Constrained codes are often employed in communication
and storage systems in order to mitigate the occurrence of
data-dependent errors. In many channels, some words are
more prone to error than others, and therefore by avoiding
them, the number of errors is reduced. Such codes are called
constrained codes. While the use of constrained codes may
significantly reduce the occurrence of data-dependent errors,
in many realistic scenarios, the transmitted data may still be
corrupted by data-independent errors.

A well-known strategy for handling the corruption of data
is to combine error-correcting codes with constrained codes.
This has been extensively studied during the past 40 years
(see for example [2], [5], [8]–[10], [15]), and recently regained
attention due to the increased interest in DNA storage systems.
Over the last years, error-correcting constrained codes for
DNA storage have been studied in numerous works [1], [3],
[4], [12], [14], [18]–[21], with particular attention given to
the GC-content constraint and the run-length (homopolymer)
constraint.

Despite the considerable recent progress made in con-
struction and analysis of error-correcting constrained codes
for specific families of constraints, still, only a few general
frameworks for implementing error correction in constrained
systems are known (see [17, Ch. 8] for a survey). An important
example for such a framework is the method of reverse
concatenation, sometimes called modified concatenation (see
[2], [8], [10], [15]), in which an error-correction encoding

w ECC
Encoder

y ∈ C Quantizer x ∈ Bn Channel x′ ECC
Decoder

w′

Fig. 1. A block diagram for quantized-constraint concatenation (QCC)

follows a constrained encoder. Recently, an improvement of
the reverse-concatenation method, called segmented reverse
concatenation, was suggested [9]. A principle limitation to
these methods is in the error-correction capability. While the
state-of-the-art method presented in [9] allows for a correction
of O(

√
n) errors (where n is the block length), a general

technique for correcting Θ(n) errors in constrained systems
is unknown.

Motivated by this gap, we propose an alternative strategy,
quantized-constraint concatenation (QCC), for the implemen-
tation of error correction in constrained systems, which also
works in the presence of Θ(n) errors. The basic idea behind
our proposed method is simple: we suggest to consider the
embedding process of information in the constrained media
as a quantization process, rather than a coding process.
In traditional methods (including concatenation and reverse
concatenation) a constrained word represents the data to be
transmitted and protected against errors. Thus, the constrained
encoder is reversible, and it incurs a rate penalty, on top of the
rate penalty for the error-correcting code. In QCC, we consider
the constrained word as a corrupted version of the information,
obtained by a quantization procedure. Thus, the constrained
quantizer incurs no rate penalty. Instead, the parameters of
the error-correcting code are designed to handle both errors
caused by the channel and by the quantization process.

Let Bn ⊆ Σn be some set of constrained words of length
n over some finite alphabet Σ. Assume furthermore that
r < n is an integer such that for any word y ∈ Σn there
exists a corresponding word x ∈ Bn with Hamming distance
d(x, y) ⩽ r. Given an error-correcting code C ⊆ Σn that can
correct t > r errors, we propose the following constrained
error-correction procedure (see Figure 1):

• Encoding: Given an information word w, use an error-
correcting code encoder to map it to a codeword y ∈ C.

• Quantization: Given y ∈ C, find a constrained word x ∈
Bn such that d(y, x) ⩽ r, and transmit x.

• Channel: At the channel output, x′ ∈ Σn, a corrupted
version of x, is observed.
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• Decoding: Use the decoder for C on x′ and obtain w′.
If the channel does not introduce more than t − r errors,

i.e., d(x, x′) ⩽ t − r, then d(y, x′) ⩽ t. Since C can correct
t errors, we have w = w′, namely, it is possible to correct
t− r channel errors. We are therefore interested in the minimal
number r, such that any word in the space can be quantized
to a word in Bn with at most r coordinates changed. In
coding-theory terminology, this quantity, denoted by R(Bn),
is called the covering radius of Bn. Using this technique, it is
now possible to correct Θ(n) errors: assume that we have a
constrained system such that for all n we have R(Bn) ⩽ ρ · n,
and (Cn)n∈N is a sequence of codes capable of correcting δ · n
errors for some δ > ρ. Using the scheme presented above, it is
therefore possible to correct (δ − ρ) · n channel errors, which
is linear in n.

In order to further our understanding of the proposed
scheme, it is crucial to study the covering radius of constrained
systems, which is the goal of this paper. We outline the con-
tributions we make. In Section III, we provide a combinatorial
definition for the covering radius of a constrained system,
and investigate some of its fundamental properties. We also
observe an intriguing phenomenon: We present an example
of a constrained system with positive capacity that has the
same covering radius as the repetition code, which has zero
capacity. Inspired by this phenomenon, in Section IV we
take a probabilistic approach and define the essential covering
radius. We show that this version disregards the extreme cases
causing the unwanted phenomenon described above. We also
use the framework of ergodic theory to give an alternative
characterization of the essential covering radius. Due to space
limitations, proofs are omitted, and may be found in [7].

II. PRELIMINARIES

Throughout this paper we shall use lower-case letters, x,
to denote scalars and symbols, overlined lower-case letters,
x, to denote finite-length words, and bold lower-case letters,
x, to denote bi-infinite sequences. We use upper-case letters,
X, for constrained systems. For a bi-infinite sequence x =
. . . , x−1, x0, x1, . . . and n ⩽ m we denote the subword xm

n ≜
xn, . . . , xm (and similarly xm

n for finite words). We use Σ to
denote a finite alphabet, and [n] ≜ {0, 1, . . . , n − 1}.

The set of words of length n over Σ is denoted by Σn. If u ∈
Σn, we shall index its letters by [n], i.e., u = u0, u1, . . . , un−1.
For any v, u ∈ Σn, we define the Hamming distance as
d(u, v) ≜ |{i ∈ [n] | ui ̸= vi}|. The ball of radius r (with
respect to the Hamming distance) centered in x is denoted by
Br(x). The covering radius of a code C ⊆ Σn is the minimal
integer r such that the union of balls of radius r, centered at
the codewords of C, covers the whole space. That is,

R(C) ≜ min

{
r ∈ N ∪ {0}

∣∣∣∣∣ ⋃
c∈C

Br(c) = Σn

}
.

Elements in Σn whose distance to the closest codeword of C
is R(C), are called deep holes (e.g., see [6, Definition 2.1.3]).

We turn to discuss constrained systems. These are often
studied in the framework of symbolic dynamics (see for

example [13], [17]). In a typical setting we have a finite al-
phabet Σ, and the space of bi-infinite sequences of Σ, denoted
ΣZ, is considered as a compact metrizable topological space,
equipped with the product topology (where Σ has the discrete
topology). The dynamics on the system ΣZ are realized by the
shift transformation, T : ΣZ → ΣZ, (Tx)n ≜ xn+1, which is
a topological homeomorphism of the system.

A subshift (or shift space) X ⊆ ΣZ is a compact subspace,
which is invariant under the shift transformation. For a subshift
X, the language of X is the set of all finite words that appear
as subwords of some element in X. That is

B(X) ≜
{

x = (x0 . . . xk)
∣∣∣ ∃x∈X,n∈Z s.t.

xn+k
n =x,k∈N∪{0}

}
.

The set of words of length n in the language is denoted by
Bn(X) ≜ B(X) ∩ Σn. The topological entropy, also called
capacity, of X is defined to be the following limit (which
exists by Fekete’s lemma)

h(X) ≜ lim
n→∞

log|Σ| |Bn(X)|
n

.

In our setting, constrained systems are those shift spaces
which can be realized by walks on some labeled graph.

Definition 1 A shift space X ⊆ ΣZ is called a constrained
system (or a sofic shift) if there exists a finite directed graph
G = (V, E) and a labeling function L : E → Σ such that

X = XG ≜
{
(L(ei))i∈Z

∣∣∣ (ei)i∈Z is a bi-infinite
directed path in G

}
.

A labeled graph G = (V, E, L) is called irreducible if any
two vertices are connected by a directed path. An irreducible
graph is called primitive if the greatest common divisor of all
cycle lengths is 1. It is well known (e.g., see [13, Theorem
4.5.8]) that an irreducible graph is primitive if and only if
there exists n ∈ N such that for any two vertices v, v′ ∈ V
there exists a directed path of length n from v to v′.

Definition 2 A constrained system X ⊆ ΣZ is called irre-
ducible (respectively: primitive), if there exists an irreducible
(respectively: primitive) labeled graph G such that X = XG.

A special family of constrained systems of particular interest
is the family of systems defined by a finite set of local
constraints. These are referred to as systems of finite type. A
constrained system X ⊆ ΣZ is said to be a system of finite
type (SFT) if there exists some m ∈ N and a finite set of
forbidden words F ⊆ Σm such that X is the set of all bi-
infinite sequences not containing any forbidden pattern from
F . That is

X = XF ≜
{

x ∈ ΣZ
∣∣∣ ∀n ∈ Z, xn+m−1

n /∈ F
}

.

III. THE COVERING RADIUS OF A CONSTRAINED SYSTEM

We begin with a definition of the covering radius of a set
B ⊆ Σn with respect to another set A ⊆ Σn.
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Definition 3 Let A, C ⊆ Σn, then the covering radius of C
with respect to A is defined to be

R(C, A) ≜ min

{
r ∈ N ∪ {0}

∣∣∣∣∣ A ⊆
⋃

x∈C
Br(x)

}
= max

y∈A
min
x∈C

d(x, y).

For constrained systems X, Y ⊆ ΣZ we define the asymp-
totic covering radius of X with respect to Y to be the
asymptotic normalized covering radius of n-tuples from X
with respect to n-tuples from Y.

Definition 4 Let X, Y ⊆ ΣZ be shift spaces, then we define

R(X, Y) ≜ lim inf
n→∞

R(Bn(X),Bn(Y))
n

, (1)

where we remind that Bn(X) and Bn(Y) are the subwords of
length n from X and Y respectively.

In a typical coding-theoretic framework, the covering radius
is considered as a property of a single code in the Hamming
space of a finite length n. A constrained system on the other
hand may be associated with a sequence of codes, which are
the sets of constrained words of fixed lengths. The covering
radius of the constrained system, as defined above, is in fact
the asymptotic value of the (normalized) covering radii of this
corresponding sequence of codes. An immediate question that
comes up when considering our definition of the covering
radius, is whether the limit from (1) exists. Under certain
conditions, we can show it does:

Proposition 5 Assume that X, Y ⊆ ΣZ are constrained sys-
tems. If X or Y are primitive, then the lim inf in the definition
of R(X, Y) is actually a limit:

R(X, Y) = lim
n→∞

R(Bn(X),Bn(Y))
n

.

Remark 1 Our proof of Proposition 5 gives in the case Y =
ΣZ that

R(X, Y) = lim
n→∞

R(Bn(X), Σn)

n
= sup

n∈N

R(Bn(X), Σn)

n
.

Example 1 Consider the binary alphabet, [2] ≜ {0, 1}. Let
X0,k ⊆ [2]Z be the (0, k)-RLL system, which comprises of all
the binary sequences that do not contain k+ 1 consecutive ze-
ros. That is, X0,k = XF , where F =

{
0k+1 = (0, . . . , 0)

}
⊆

[2]k+1. We claim that

R(X0,k, [2]Z) =
1

k + 1
.

Indeed, by Remark 1

R(X0,k, [2]Z) ⩾
R(Bk+1(X0,k), [2]k+1)

k + 1

=
R([2]k+1 \ {0k+1}, [2]k+1)

k + 1
=

1
k + 1

.

We now show that the obtained lower bound is tight. Let y ∈
[2]n be any binary word. Consider x given by

xi ≜

{
yi i mod (k + 1) ̸= 0,
1 i mod (k + 1) = 0.

Clearly x does not contain any subword of k + 1 consecutive
zeros and therefore x ∈ Bn(X0,k). Since d(x, y) ⩽ ⌈ n

k+1⌉ we
conclude that 1

n R(Bn(X0,k), [2]n) ⩽ 1
n ⌈

n
k+1⌉, and by taking

the limit,

R(X0,k, [2]Z) = lim
n→∞

R(Bn(X0,k), [2]n)
n

⩽
1

k + 1
.

Using a ball-covering argument, we lower-bound the cover-
ing radius in terms of the capacities of the systems. We recall
that Hq : [0, 1] → [0, 1] denotes the q-ary entropy function
defined by

Hq(x) ≜ x logq(q − 1)− x logq(x)− (1 − x) logq(1 − x),

and for continuity, Hq(0) ≜ 0 as well as Hq(1) ≜ logq(q −
1). We also use H−1

q : [0, 1] → [0, 1− 1
q ] to denote its inverse.

Proposition 6 Let X, Y ⊆ ΣZ be constrained systems with
capacities h(X) ⩽ h(Y), and let us denote |Σ| = q. Then

R(X, Y) ⩾ H−1
q (h(Y)− h(X)).

Example 2 Fix Σ = [q] ≜ {0, . . . , q − 1} and consider the
repetition shift Xrep ≜ {(. . . , a, a, a, . . . ) | a ∈ [q]}. Clearly,
Xrep is the SFT defined by the forbidden patterns F =
{ab | a, b ∈ [q], a ̸= b} ⊆ [q]2. Since h(Xrep) = 0, by Propo-
sition 6

R(Xrep, [q]Z) ⩾ H−1
q (1 − 0) = 1 − 1

q
.

On the other hand, for any n ∈ N and for any y ∈ [q]n, it
is clear that there exists at least one symbol a ∈ [q] which
appears in at least ⌈ n

q ⌉ coordinates of y, and in particular

d(y, (a, . . . , a)) ⩽ ⌊ q−1
q n⌋. This proves that

R(Bn(Xrep), [q]n) ⩽
⌊

q − 1
q

n
⌋

.

Taking the limit and combining with the lower bound we obtain

R(Xrep, [q]Z) = 1 − 1
q

.

At this point we have reached a curious situation. For the
sake of illustrating it, fix the binary alphabet Σ = [2]. If we
consider X0,1, the (0, 1)-RLL system from Example 1, then
its capacity is known to be h(X0,1) = log2((1 +

√
5)/2) ≈

0.694, and we have shown that its covering radius (with respect
to [2]Z) is R(X0,1, [2]Z) = 1

2 . However, in Example 2 we have
seen that the binary repetition shift, Xrep, has the same cover-
ing radius R(Xrep, [2]Z) = 1

2 , but zero capacity, h(Xrep) = 0.
From a coding perspective, even though Bn(X0,1) has expo-
nentially more words than Bn(Xrep), the worst-case covering
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scenario, namely, a deep hole, is asymptotically within the
same distance from the constrained code.

As a final comment for this section, we would like to
comment on the relation of R(X, ΣZ) to the QCC frame-
work. Since we are interested in asymptotics, assume that
the sequence of error-correcting codes in the QCC scheme
is (Cn)n∈N, where Cn is of length n. The expression
R(X, ΣZ) = limn→∞

1
n R(Bn(X), Σn) is an upper bound on

the worse-case quantization error rate using a sequence of
codes (Cn)n∈N, which is actually limn→∞

1
n R(Bn(X), Cn).

The bound R(X, ΣZ) is pessimistic twice: once for allowing
deep holes to determine the covering radius, and twice, for
assuming they reside in Cn. Since limn→∞

1
n R(Bn(X), Cn)

may be hard to compute and depends on the sequence of error-
correcting codes, we may use R(X, ΣZ) as an upper bound
on the worse-case quantization error, which is independent of
the sequence of codes.

IV. THE ESSENTIAL COVERING RADIUS

The covering radius that was studied in the previous sec-
tion may be perhaps too pessimistic in the sense that it is
determined by the worst-case quantization distance. In this
section we study a different definition of the covering radius,
which we call the essential covering radius. Given ε > 0, the
ϵ-covering radius of a constraint system is, loosely speaking,
the smallest r such that (1− ε)-fraction the words in the space
can be quantized to the constraint system. In what follows, we
further generalize this to a probabilistic definition.

We begin by stating some basic definitions and well known
results from ergodic theory. For any finite alphabet Σ, we
consider ΣZ as a measurable space, together with the Borel
Σ-algebra induced by the product topology on ΣZ. Similarly,
any subshift Y ⊆ ΣZ is considered as a measurable space.

Definition 7 (Invariant and ergodic measures) Let Y ⊆
ΣZ be a subshift. A probability measure µ on Y is called
shift invariant if µ(T−1B) = µ(B) for any measurable set
B. A shift-invariant measure µ is further said to be ergodic
if T−1B = B implies µ(B) = 0 or µ(Y \ B) = 0. The set
of shift-invariant probability measures on Y is denoted by
M(Y), and the set of ergodic measures in M(Y) is denoted
by ME (Y).

For a measure µ ∈ M(Y) we denote by µn the marginal
measure of µ on the first n coordinates, which is a probability
measure on Σn. To avoid cumbersome notation, throughout
this work we shall use Pµ[A] in order to denote the mea-
sure µ(A), and Y for a random bi-infinite sequence on Y.
Throughout this article we use bold upper-case letters for bi-
infinite sequences of random variables, not to be confused with
non-bold capital letters used to denote constrained systems.

We are now ready to define the essential covering radius.

Definition 8 For any real ε > 0, two sets A, C ⊆ Σn, and η,
a probability measure on A, we define Rε(C, A, η) to be

min

{
r ∈ N ∪ {0}

∣∣∣∣∣ η

(
A ∩

(⋃
x∈C

Br(x)

))
⩾ 1 − ε

}
.

We remark that when η is the uniform measure on A,
Rε(C, A, η) is the ε-covering radius of A, namely the smallest
r such that at least (1 − ϵ)-fraction of the words in C are at
distance at most r from A, as desired.

Definition 9 Let X, Y ⊆ ΣZ be constrained systems, and µ ∈
ME (Y) be an ergodic measure. We define the ε-covering radius
of X with respect to (Y, µ) by

Rε(X, Y, µ) ≜ lim inf
n→∞

R(Bn(X),Bn(Y), µn)

n
,

and the essential covering radius by

R0(X, Y, µ) ≜ lim
ε→0

Rε(X, Y, µ).

We comment that the limit in the previous definition exists
due to the monotonicity of Rε(X, Y, µ) in ε. We also observe
that, trivially, the essential covering radius is upper bounded
by the (worst-case) covering radius, and we have

Rε(X, Y, µ) ⩽ R0(X, Y, µ) ⩽ R(X, Y).

We now revisit the examples from the previous section and
consider their essential covering radius.

Proposition 10 Consider the q-ary repetition system Xrep ⊆
[q]Z from Example 2, and assume Y = [q]Z is equipped with
the uniform Bernoulli i.i.d measure, denoted by µu. Then the
essential covering radius is equal to the covering radius, i.e.,

R0(Xrep, [q]Z, µu) = R(Xrep, [q]Z) = 1 − 1
q

.

As we have seen, the repetition system, whose capacity
is zero, has the same covering radius and essential covering
radius. The (0, k)-RLL system has positive capacity. While its
covering radius is 1

k+1 , the following theorem asserts that its
essential covering radius decays exponentially fast with k, in
stark contrast to the repetition system.

Theorem 11 Let X0,k ⊆ [2]Z be the (0, k)-RLL system from
Example 1, and let Y = [2]Z be equipped with the uniform
Bernoulli i.i.d measure µu. Then

R0(X0,k, [2]Z, µu) =
1

2(2k+1 − 1)
.

It is desirable to have alternative expressions for the es-
sential covering radius, which could assist in calculating or
estimating its value. Inspired by tools used in the proof of
Theorem 11, we give an ergodic-theoretic characterization.

Definition 12 Let X, Y ⊆ ΣZ be shift spaces, we consider
X × Y as shift space, with the left shift acting as T(x, y) =
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(Tx, Ty). For an ergodic measure µ ∈ ME (Y), an extension
of µ over X ×Y is a shift-invariant measure ν on the product
space X × Y whose Y-marginal is µ. Namely, ν satisfies
that for any measurable A ⊆ Y, ν(X × A) = µ(A). An
extension on X × Y is said to be ergodic if it is an ergodic
measure with respect to the shift transformation on the product
space. We let M(X, Y, µ) denote the set of all extensions of
µ, and ME (X, Y, µ) denote the set of all ergodic extensions
in M(X, Y, µ).

We are now ready to state the main result of the section
that gives an equivalent formulation of the essential covering
radius via a minimization problem over invariant extensions.

Theorem 13 Let X, Y ⊆ ΣZ be constrained systems, and let
µ ∈ ME (Y) be an ergodic measure. Then

R0(X, Y, µ) = inf{Pν[X0 ̸= Y0] | ν ∈ ME (X, Y, µ)}
= inf{Pν[X0 ̸= Y0] | ν ∈ M(X, Y, µ)}.

In the following example, we explicitly describe a sequence
of extensions in ME (X, Y, µ) which approximates the essen-
tial covering radius of the (0, k)-RLL system from Example 1
with respect to the full-shift.

Example 3 Let X0,k ⊆ [2]Z denote the (0, k)-RLL shift as in
Example 1. Let y ∈ [2]n be a finite binary word. We define
c(y) to be the length of longest zero suffix of y, i.e.,

c(y) ≜ max
{

i
∣∣∣ y = yn−i−1

0 0i

}
.

We fix N ∈ N and consider the map f (N) : [2]Z → X0,k

f (N)(y)m =

{
1 c

(
ym−1

m−(N(k+1)−1)

)
≡ k (mod k + 1),

ym otherwise.

Clearly, Im( f ) ⊆ X0,k since no run of k + 1 zeroes may
appear in f (N)(y). We note that the map ( f (N), Id) : [2]Z →
X0,k × [2]Z is a sliding-block-code function (i.e., a function
such that the value in each coordinate is determined by a finite
block of adjacent coordinates), and therefore it is measurable
and commutes with the shift transformation. Let µu be the
uniform measure over [2]Z, and let νN be its push-forward
measure on X0,k × [2]Z using f (N). Clearly νN is an invariant
measure, which is also ergodic (as a factor of an ergodic
measure). Therefore, νN ∈ ME (X0,k, [2]Z, µu). We note that

PνN [X0 ̸= Y0]

= Pµu

[
c
(

Y−1
−(N(k+1)−1)

)
≡ k (mod k + 1) and Y0 = 0

]
=

N−1

∑
i=0

Pµu

[
c
(

Y−1
−(N(k+1)−1)

)
= i(k + 1) + k and Y0 = 0

]
= Pµu

[
Y0
−(N(k+1)−1) = 0

]
+

N−1

∑
i=1

Pµu

[
Y0
−i(k+1) = 10

]
=

1
2N(k+1)

+
1
2

N−1

∑
i=1

1
2i(k+1)

.

Taking N → ∞ we obtain

lim
N→∞

PνN [X0 ̸= Y0] =
1

2(2k+1 − 1)
= R0(X0,k, [2]Z, µu).

To conclude this section we briefly discuss the essential
covering radius in the context of the QCC scheme. Loosely
speaking, asymptotically, all but a vanishing fraction of Σn

may be quantized to Bn(X) by changing an R0(X, ΣZ, µu)-
fraction of the positions. This fraction may be significantly
lower than the worst-case fraction R(X, ΣZ). In a finite-length
setting, at least a (1 − ε)-fraction of Σn may be quantized
to Bn(X) by changing at most rε = Rε(Bn(X), Σn, µu

n)
positions. A small obstacle we need to overcome is the fact
that in the QCC scheme we do not quantize any word from
Σn, but rather only codewords of the error-correcting code
C. The ε-fraction of words from Σn that are a long distance
from Bn(X) may disproportionately reside in C. However, if
we further assume that C is a linear error-correcting code, by
a simple averaging argument there exists at least one coset
of the code, C′, such that the fraction of codewords whose
distance to the language of X is at most rε. This means that
there exists C′′ ⊆ C′ with |C′′| ⩾ (1 − ϵ)|C′| such that
R(Bn(X), C′′) ⩽ rϵ.

V. CONCLUSION

While the covering radius of constrained systems is of
independent intellectual merit, let us put our results in the
context of the QCC scheme. Consider X0,k, the (0, k)-RLL
system described in Example 1. Using the coding scheme
presented in [9, Theorem 1], it is possible to correct up to
O(

√
n) errors. However, using QCC with the combinatorial

covering radius (which in that case is 1
k+1 ), since there

exist error-correcting codes with non-vanishing rate capable
of correcting up to ( 1

4 − δ)n errors (for every δ > 0), we
obtain codes with non-vanishing rate capable of correcting up
to ( 1

4 −
1

k+1 − δ)n channel errors. On the other hand, we may
use the essential covering radius of X0,k to bound the essential
quantization noise. In that case, since

R 1
2
(X0,k, [2]Z, µu) ⩽ R0(X0,k, [2]Z, µu) =

1
2(2k+1 − 1)

,

using the QCC, it is possible to find error-correcting codes
such that by removing at most half of the codewords (which
asymptotically does not effect the rate), it is possible to im-
prove our error correction capability to ( 1

4 − 1
2(2k+1−1)

− δ)n
channel errors. Previous lower bounds on the possible rates
for error-correcting constrained codes have been established
in previous works [11], [16], via somewhat non-constructive
methods. A certain advantage of our scheme is its simplicity
and constructive nature.

Finally, we mention two major goals for subsequent work:
The first goal is to find efficient methods to compute or
estimate the essential covering radius. The second goal is to
find efficient quantization algorithms that will enable the use
of the QCC scheme.
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