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Abstract—Motivated by applications for error-correcting con-
strained codes, we study the essential covering radius of con-
strained systems. In a recent work, the essential covering radius
was suggested as new fundamental parameter of constrained
systems that characterizes the error-correction capabilities of the
quantized-constraint concatenation (QCC) scheme. We provide
general efficiently computable upper-bounds on the essential
covering radius using Markov chains and sliding-block codes,
which in some cases, we show to be tight.

I. INTRODUCTION

The essential covering radius was introduced in [6] as a
fundamental parameter of constrained systems that reflects
the error-correction capabilities of a new coding scheme for
constrained systems, called quantized-constraint concatena-
tion (QCC). Constrained error correction has a long history,
and interest in it has been recently rekindled, motivated by
applications for DNA-storage (see for example [4], [5], [7]–
[9], [11]). The QCC scheme was suggested in [6] as a general
framework for implementing error-correction in constrained
codes, capable of correcting a Θ(n) channel errors (where n
is the code length), improving upon the O(

√
n) possible by

known schemes.
The main idea of QCC is to employ a process of embedding

the codewords of an error-correcting code in a constrained
system as a (noisy, irreversible) quantization process. This is
in contrast to traditional methods, such as concatenation and
reverse concatenation, where the encoding into the constrained
system is reversible. The error-correction capabilities of QCC
are therefore determined by the amount of quantization noise
introduced in the embedding process of the codewords in the
constrained system. The amount of noise is upper bounded by
the minimal number of coordinates that need to be changed
in an arbitrary word in order to transform it into a constrained
word. In coding-theoretic terminology, this quantity is the
covering radius of the code composed of all constrained words
of a fixed length. The essential covering radius is a parameter
generalizing this concept of quantization noise to the setting
where the words to be quantized are generated with respect to a
probabilistic model and the block length increases to infinity. A
precise expression for the essential covering radius was found
in [6], which we cite here in Theorem 7. This expression,
however, does not immediately give an efficient computation
procedure.

The goal of this paper is to efficiently compute upper bounds
on the essential covering radius of constrained systems. We
first propose a general efficiently computable upper bound via
a solution of a linear program. We show a non-trivial example
in which our bound is in fact tight. We also provide bounds
using sliding-block codes. We show that in the primitive
case, these bounds asymptotically attain the essential covering
radius. Due to space limitations, the proofs are omitted, and
may be found in [6].

II. CONSTRAINED SYSTEMS AND THE ESSENTIAL
COVERING RADIUS

Throughout this paper we shall use lower-case letters, x,
to denote scalars and symbols, overlined lower-case letters,
x, to denote finite-length words, and bold lower-case letters,
x, to denote bi-infinite sequences. We use upper-case letters,
X, for constrained systems. For a bi-infinite sequence x =
. . . , x−1, x0, x1, . . . and n ⩽ m we denote the subword xm

n ≜
xn, . . . , xm (and similarly xm

n for finite words). We use Σ to
denote a finite alphabet, and [n] ≜ {0, 1, . . . , n − 1}.

The set of words of length n over Σ is denoted by Σn. If u ∈
Σn, we shall index its letters by [n], i.e., u = u0, u1, . . . , un−1.
For any v, u ∈ Σn, we define the Hamming distance as
d(u, v) ≜ |{i ∈ [n] | ui ̸= vi}|. The ball of radius r (with
respect to the Hamming distance) centered in x is denoted by
Br(x). The covering radius of a code C ⊆ Σn is the minimal
integer r such that the union of balls of radius r, centered at
the codewords of C, covers the whole space. That is,

R(C) ≜ min

{
r ∈ N ∪ {0}

∣∣∣∣∣ ⋃
c∈C

Br(c) = Σn

}
.

We begin by discussing constrained systems. These are
often studied in the framework of symbolic dynamics (see for
example [10], [12]). In a typical (one dimensional) setting we
have a finite alphabet Σ, and the space of bi-infinite sequences
of Σ, denoted ΣZ, is considered as a compact metrizable
topological space, equipped with the product topology (where
Σ has the discrete topology). The dynamics on the system
ΣZ are realized by the shift transformation, T : ΣZ → ΣZ,
defined by (Tx)n ≜ xn+1. For a finite word x ∈ Σn we let
[x] denote the cylinder set defined by x, which is

[x] ≜
{

x ∈ ΣZ
∣∣∣ xn−1

0 = x
}

. (1)
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A subshift (or shift space) X ⊆ ΣZ is a compact subspace,
which is invariant under the shift transformation. For a subshift
X, the language of X is the set of all finite words that appear
as subwords of some element in X. That is

B(X) ≜
{

x = (x0 . . . xk)
∣∣∣ ∃x∈X,n∈Z such that

xn+k
n =x,k∈N∪{0}

}
.

The set of words of length n in the language is denoted by
Bn(X) ≜ B(X)∩ Σn. In our setting, constrained systems are
those shift spaces which can be realized by walks on some
labeled graph.

Definition 1 A shift space X ⊆ ΣZ is called a constrained
system (or a sofic shift) if there exists a finite directed graph
G = (V, E) and a labeling function L : E → Σ such that

X = XG ≜
{
(L(ei))i∈Z

∣∣∣ (ei)i∈Z is a bi-infinite
directed path in G

}
.

A labeled graph G = (V, E, L) is called irreducible if any
two vertices are connected by a directed path. An irreducible
graph is called primitive if the greatest common divisor of all
cycle lengths is 1. It is well known (e.g., see [10, Theorem
4.5.8]) that an irreducible graph is primitive if and only if
there exists n ∈ N such that for any two vertices v, v′ ∈ V
there exists a directed path of length n from v to v′.

Definition 2 A constrained system X ⊆ ΣZ is called irre-
ducible (respectively: primitive), if there exists an irreducible
(respectively: primitive) labeled graph G such that X = XG.

We now turn to discuss the essential covering radius. Moti-
vated by the QCC scheme, we are interested in the following
question: Given an arbitrarily small ε > 0, what is the the
smallest r such that (1 − ε)-fraction the words in the space
can be quantized to the constraint system by changing at most
r symbols? Roughly speaking, the asymptotic answer to this
questions is the essential covering radius of the system. Aim-
ing toward an exact definition we state some basic definitions
and well known results from ergodic theory. For any finite
alphabet Σ, we consider ΣZ as a measurable space, together
with the Borel Σ-algebra induced by the product topology
on ΣZ. Similarly, any subshift Y ⊆ ΣZ is considered as a
measurable space.

Definition 3 (Invariant and ergodic measures) Let Y ⊆
ΣZ be a subshift. A probability measure µ on Y is called
shift invariant if µ(T−1B) = µ(B) for any measurable set
B. A shift-invariant measure µ is further said to be ergodic
if T−1B = B implies µ(B) = 0 or µ(Y \ B) = 0. The set
of shift-invariant probability measures on Y is denoted by
M(Y), and the set of ergodic measures in M(Y) is denoted
by ME (Y).

For a measure µ ∈ M(Y) we denote by µn the marginal
measure of µ on the first n coordinates, which is a probability
measure on Σn. To avoid cumbersome notation, throughout
this work we shall use Pµ[A] in order to denote the mea-
sure µ(A), and Y for a random bi-infinite sequence on Y.

Throughout this article we use bold upper-case letters for bi-
infinite sequences of random variables, not to be confused with
non-bold capital letters used to denote constrained systems.

Definition 4 For any real ε > 0, two sets A, C ⊆ Σn, and η,
a probability measure on A, we define Rε(C, A, η) to be

min

{
r ∈ N ∪ {0}

∣∣∣∣∣ η

(
A ∩

(⋃
x∈C

Br(x)

))
⩾ 1 − ε

}
.

We remark that when η is the uniform measure on A,
Rε(C, A, η) is the ε-covering radius of A, namely the smallest
r such that at least (1 − ϵ)-fraction of the words in C are at
distance at most r from A.

Definition 5 Let X, Y ⊆ ΣZ be constrained systems, and µ ∈
ME (Y) be an ergodic measure. We define the ε-covering radius
of X with respect to (Y, µ) by

Rε(X, Y, µ) ≜ lim inf
n→∞

R(Bn(X),Bn(Y), µn)

n
,

and the essential covering radius by

R0(X, Y, µ) ≜ lim
ε→0

Rε(X, Y, µ),

where the limit exists due to the monotonicity of Rε(X, Y, µ)
in ε.

We remark that a typical case of particular interest is where
µ = µu is the uniform Bernoulli measure, where µn is the
uniform measure on Σn. In [6] an ergodic-theoretic character-
ization of the essential covering radius was established. This
characterization uses an object from ergodic theory called an
invariant extension.

Definition 6 Let X, Y ⊆ ΣZ be shift spaces, we consider
X × Y as shift space, with the left shift acting by T(x, y) =
(Tx, Ty). For an ergodic measure µ ∈ ME (Y), an extension
of µ to X × Y is a shift-invariant measure ν ∈ M(X × Y),
whose Y-marginal is µ. Namely, ν satisfies that for any
measurable A ⊆ Y, ν(X × A) = µ(A). An ergodic extension
of µ to X × Y is an extension ν of µ that is furthermore
ergodic, that is ν ∈ inME (X ×Y). We let M(X, Y, µ) denote
the set of all extensions of µ, and ME (X, Y, µ) denote the set
of all ergodic extensions.

The equivalent characterization of the essential covering
radius is given by a minimization problem over invariant
extensions.

Theorem 7 ([6]) Let X, Y ⊆ ΣZ be constrained systems, and
let µ ∈ ME (Y) be an ergodic measure. Then

R0(X, Y, µ) = inf{Pν[X0 ̸= Y0] | ν ∈ ME (X, Y, µ)}
= inf{Pν[X0 ̸= Y0] | ν ∈ M(X, Y, µ)}.
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III. UPPER BOUNDS ON THE ESSENTIAL COVERING
RADIUS

While Theorem 7 gives an exact expression for the essential
covering radius, the minimization problem involved is hard to
solve. In general, by Theorem 7, any extension in M(X, Y, µ)
induces an upper-bound on the essential covering radius. In
this section we shall present two different approaches for
constructing extensions for general constrained systems, thus
providing upper bounds on the essential covering radius. The
first approach, using Markov chains, provides an upper bound
which is efficiently computable as the solution of a linear
program. An alternative method for constructing extensions
is by sliding-block codes. In that case, we prove that if X is
primitive, the essential covering radius can be approximated
by increasing the block size in such functions.

A. Markov Chains

We consider the scenario where X and Y are constrained
systems generated by labeled graphs GX = (VX , EX , LX) and
GY = (VY, EY, LY) respectively.

For an edge e ∈ EX or e ∈ EY we denote by σ(e) and τ(v)
the source and target of the edge respectively. For simplicity,
we generally assume there are no parallel edges with the same
label. We focus on the case where the measure µ ∈ ME (Y)
is generated by some Markov chain on the graph GY. This
framework includes the special case where Y = ΣZ and µ =
µu is the uniform Bernoulli measure.

Definition 8 Let G = (V, E) be a finite directed graph. A
stationary Markov chain on G is a pair (π, Q), where π is
a probability measure on V and Q is a function from V to
the space of probability measures on E that sends v ∈ V to a
probability measure Q(·|v) on E such that for every v ∈ V,

∑
e∈E

σ(e)=v

Q(e|v) = 1,

and so that for every v ∈ V we have:

π(v) = ∑
e∈E

τ(e)=v

π(σ(e))Q(e|σ(e)).

Note that for any Markov chain on (π, Q) on G = (V, E),
Q(e|v) > 0 implies that σ(e) = v so we can conveniently
write Q(e) as an abbreviation for Q(e|σ(e)). In the case where
G is a simple graph (i.e., without parallel edges), for any edge
e = (u, v) ∈ E we use the notation Q(v|u) for Q(e). Also,
when G is a simple graph, Q may be identified with a |V| ×
|V| stochastic matrix (often called the transition matrix), for
which π is a left eigenvector with eigenvalue 1.

There is a one-to-one correspondence between Markov
chains on G = (V, E) and probability measures on E that
satisfy the condition

∑
e∈E

σ(e)=v

P(e) = ∑
e∈E

τ(e)=v

P(e).

Indeed, such a probability measure P corresponds to a station-
ary Markov chain (π, Q), where

π(v) ≜ ∑
e∈E

σ(e)=v

P(e) = ∑
e∈E

τ(e)=v

P(e),

and

Q(e|σ(v)) ≜ P(e)
π(σv)

.

By abuse of notation, we denote P = (π, Q). We assume
the Markov chain does not contain degenerate vertices, i.e.,
π(v) > 0 for all v ∈ V. Any stationary Markov chain P
induces an invariant measure P̂ on the space of bi-infinite paths
on G by

P̂([(e0, e1, . . . , en−1)]) = P(e0)
n−1

∏
i=1

Q(ei).

for any cylinder set [(e0, . . . , en−1)] corresponding to a finite
path (e0, . . . , en−1). We call P̂ the stationary Markov process
on G, induced by P.

If G = GY generates the constrained system Y by the
labeling function LY, then P = (π, Q) induces an invariant
probability measure on Y, which is the pushforward measure
of P̂ via the labeling function, i.e., for a cylinder set [y],

µP([y]) = ∑
e path in G

L(e)=y

π(σ(e0))
|y|−1

∏
i=0

Q(ei).

We note that Y is a hidden Markov process with respect to µP,
and refer to the measure µP as above as the hidden Markov
measure induced by P via the labeling function L.

Assume that X, Y ⊆ ΣZ are irreducible constrained
systems given by labeled graphs GX and GY respectively,
and assume that µ = µPY ∈ ME (Y) is a measure on
Y, induced by PY, a stationary Markov Chain on GY. We
consider the strong product graph of GX and GY given by
GX×Y = (VX×Y, EX×Y, (LX , LY)) where VX×Y ≜ VX ×
VY, EX×Y ≜ EX × EY with σ(ex, ey) = (σ(ex), σ(ey)),
τ(ex, ey) = (τ(ex), τ(ey)) and labeling function LX×Y given
by:

LX×Y(ex, ey) = (LX(ex), LY(ey)).

We note that a stationary Markov chain P on GX×Y naturally
defines a stationary Markov process P̂ on GX×Y, which
induces the hidden Markov measure νP on X × Y by the
labeling function LX×Y.

We now give an upper bound on R0(X, Y, µ), formulated
as an optimization problem over stationary Markov chains on
the product graph GX×Y.

Theorem 9 Let X, Y ⊆ ΣZ be shift spaces defined by the
labeled graphs GX and GY respectively, and let µ be the
hidden Markov measure on Y induced by a the stationary
Markov chain on PY on GY. Then R0(X, Y, µ) is bounded
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above by the solution to the following linear-programming
problem, denoted by MB(GX , GY, PY):

minimize
P ∈ REX×Y

∑
e∈EX×Y

LX(e) ̸=LY(e)

P(e)

subject to
P(e) ⩾ 0, ∀e ∈ EX×Y,

∑
e∈EX×Y

P(e) = 1,

∑
e′∈EX×Y

e′y=e

P(e′) = PY(e), ∀e ∈ EY,

∑
e∈EX×Y
σ(e)=v

P(e) = ∑
e∈EX×Y
τ(e)=v

P(e), ∀v ∈ VX×Y,

∑
e′∈EX×Y

e′y=ey

σ(e′x)=σ(ex)

P(e′) = QY(ey) ∑
e′∈EX×Y

σ(e′y)=σ(ey)

σ(e′x)=σ(ex)

P(e′) ∀e ∈ EX×Y.

The main tool in the proof of Theorem 9 is the following:

Proposition 10 Any P ∈ REX×Y that satisfies the linear
constraints given in the statement of Theorem 9 corresponds
to a Markov chain on GX×Y that induces an extension in
M(X, Y, µPY ) via the pushforward map given by labeling
function LX×Y.

The proof of Theorem 9 now follows immediately: For
any Markov chain P on GX×Y satisfying the constraints of
the presented optimization problem let νP denote the induced
measure on X × Y. By Proposition 10, νP ∈ M(X, Y, µPY ).
Using Theorem 7 we have

R0(X, Y, µPY ) ⩽ ∑
e∈EX×Y

LX(e) ̸=LY(e)

P(e).

Example 1 Consider Y = [2]Z and X = X0,k, the (0, k)-RLL
system (no k + 1 run of consecutive zeros constraint), gener-
ated by the labeled graphs GX and GY shown in Figure 1. Let
µu be the uniform Bernoulli measure on Y, which is generated
by the stationary Markov chain PY, the uniform measure on
EY. The product graph, GX×Y (shown in Figure 2), is therefore
a “doubled” version of the graph GX .

We consider the Markov measure P, defined by the edge
probabilities given in Figure 2. For an appropriate choice of α,
P is indeed a stationary Markov chain satisfying the conditions
of Theorem 9. First, in order to get a probability measure on
edges we require

1 = ∑
e∈GX×Y

P(e) = 2α(2k + 2k−1 · · ·+ 1) = 2α(2k+1 − 1),

which implies that α = (2(2k+1 − 1))−1. We observe that for
the j-th state in VX×Y,

∑
σ(e)=j

P(e) = ∑
τ(e)=j

P(e) = α · 2k−j,

0 1 2 k − 1 k0 0 0 0
1 1 1 1

0

0 1

GX0,k GY

Fig. 1. Labeled graphs generating the shift spaces X = X0,k (the (0, k)-RLL
shift), and Y = [2]Z.

0 1 2 k − 1 k
00, 2kα 00, 2k−1α 00, 2k−2α 00, 4α 00, 2α

10, 0 10, 0 10, 0 10, α

00, 2kα

01, 0 01, 0 01, 0 01, 0 01, 0
11, 2k−1α 11, 2k−2α 11, 2α 11, α

GX0,k×Y

01, 0

Fig. 2. The product graph GX×Y for the graphs GX and GY from Figure 1.
Each edge is given a two-bit label, xy, corresponding to the label x from GX
and the label y from GY . A stationary Markov chain achieving the bound
MB(GX , GY , PY) is shown by writing P(e) after the label on each edge.
Edges with P(e) = 0 are marked in red, and positive probabilities P(e) > 0
are written in blue.

which implies that P is indeed stationary. We also observe that
for any edge with LY(e) = 0 there is a corresponding edge e′

with LY(e′) = 1 such that P(e) = P(e′). This shows that the
marginal of P on GY is indeed PY = µu. We further observe
that for any edge e ∈ EX×Y, if σ(ex) = j ∈ VX we have

∑
e′∈EX×Y

e′y=ey

σ(e′x)=j

P(e′) = α2k−j−1 =
1
2

α2k−j = QY(ey) ∑
e′∈EX×Y

σ(e′y)=σ(ey)

σ(e′x)=j

P(e′).

We now get,

R0(X0,k, [2]Z, µu) ⩽ ∑
e∈GX×Y

LX(e) ̸=LY(e)

P(e) = α =
1

2(2k+1 − 1)
.

In [6] it was shown that R0(X0,k, [2]Z, µu) = 1
2(2k+1−1)

,
which implies that P attains the minimal value for the linear-
programming problem given in the statement of Theorem 9,
and in particular in this case, the upper bound from Theorem 9
is tight.

Example 2 Let X = Xd,∞ be the (d, ∞)-RLL system, defined
by the constraint of having a run of at least d zeroes between
any two consecutive ones. Equivalently, Xd,∞ is defined by
GX presented in Figure 3. Let Y = [2]Z and µu be as in
Example 1. The product graph GX×Y is shown in Figure 4.
We consider the Markov measure P, defined by the edge
probabilities given in Figure 4. For α = (2(d + 2))−1 we
have

1 = ∑
e∈GX×Y

P(e) = 2α(d + 2),
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0 1 d − 1 d0 0 0 0

1
0

GXd,∞

Fig. 3. A labeled graph generating the constrained system X = Xd,∞ (the
(d, ∞)-RLL shift).

0 1 d − 1 d
00, α 00, α 00, α 00, α

10, 0

00, 2α

01, α 01, α 01, α 01, α

11, 2α

01, 0

GXd,∞×Y

Fig. 4. The product graph GX×Y for the graphs GXd,∞ and GY from
Figure 3 and Figure 1 respectively. Each edge is given a two-bit label, xy,
corresponding to the label x from GXd,∞ and the label y from GY . A stationary
Markov chain achieving the bound MB(GX , GY , PY) is shown by writing P(e)
after the label on each edge. Edges with P(e) = 0 are marked in red, and
positive probabilities P(e) > 0 are written in blue.

and so P is indeed a stationary Markov chain satisfying the
conditions of Theorem 9. We now compute the upper-bound:

R0(Xd,∞, [2]Z, µu) ⩽ ∑
e∈GX×Y

LX(e) ̸=LY(e)

P(e) = α · d =
d

2(d + 2)
. (2)

For a lower bound, R0(Xd,∞, [2]Z, µu) ⩾ 1
2 − 1

d+1 , with
proof in the appendix. Combining the lower and upper bounds
we get,

1
2
− 1

d + 1
⩽ R0(Xd,∞, [2]Z, µu) ⩽

1
2
− 1

d + 2
.

We note that when d = 1, the system X1,∞ is isomorphic to
X0,1, by complementing all the bits. Thus

R0(X1,∞, [2]Z, µu) = R0(X0,1, [2]Z, µu) =
1
6

,

and in particular, the bound (2) is tight.

B. Sliding Block Codes

We now present an alternative approach for constructing
extensions by using sliding-block codes. For X, Y ⊆ ΣZ

and µ ∈ ME (Y), given a measurable function g : Y →
X which commutes with the shift transformation, the map
(g, Id) : Y → X × Y defines an extension νg in M(X, Y, µ)

by the pushforward of µ via (g, Id). That is νg(AX × AY) ≜
µ
(

AY ∩ g−1(AX)
)
. We call such a function a stationary

coding function from Y to X. By Theorem 7, for any stationary
coding function g we have R0(X, Y, µ) ⩽ Pνg [X0 ̸= Y0].

Sliding-block codes are an important family of stationary
coding functions. These are of particular interest to us since
they provide a rich family of functions, easily described by
a local rule. The properties and constructions of sliding-
block codes have been extensively studied in the literature
(for example, see [1]–[3]). The goal of this section is to
explicitly describe the bound obtained from a sliding-block
code function and to give sufficient conditions under which the

essential covering radius can be approximated using extensions
constructed by sliding-block codes.

Definition 11 Let X, Y ⊆ ΣZ be shift spaces. A function f̂ :
Y → X is called a sliding-block code if there exist N ∈ N

and a function f : B2N+1(Y) → Σ such that for all y ∈ Y
and all i ∈ Z, f̂ (y)i = f (yi+N

i−N). In that case, f̂ is said to be
a sliding-block code of block length N.

Let f̂ : Y → X be a sliding-block code function defined by
a local function f : B2N+1(Y) → Σ, and let µ ∈ ME (Y) be
an ergodic measure. We denote the extension obtained from f̂
by ν f . The quantity Pν f [X0 ̸= Y0] is now easily computable:

Pν f [X0 ̸= Y0] = Pµ

[
f (YN

−N) ̸= Y0

]
= ∑

y∈B2N+1(Y)
f (y) ̸=yN

µ([y]).

The main result of the section is the following:

Theorem 12 Let X, Y ⊆ ΣZ be constrained systems such
that X is primitive and µ ∈ ME (Y) is an aperiodic ergodic
measure. Then for any ε > 0 there exists a sufficiently large
N and a sliding-block code f̂ of length N such that

Pν f [X0 ̸= Y0]− ε ⩽ R0(X, Y, µ) ⩽ Pν f [X0 ̸= Y0].

Example 3 Let X0,k ⊆ [2]Z denote the (0, k)-RLL shift as in
Example 1. Let y ∈ [2]n be a finite binary word. We define
c(y) to be the length of longest zero suffix of y, i.e.,

c(y) ≜ max
{

i
∣∣∣ y = yn−i−1

0 0i

}
.

We fix N ∈ N and consider the map f (N) : [2]Z → X0,k

f (N)(y)m =

{
1 c

(
ym−1

m−(N(k+1)−1)

)
≡ k (mod k + 1),

ym otherwise.

Clearly, Im( f ) ⊆ X0,k since no run of k + 1 zeroes may
appear in f (N)(y). We note that the map ( f (N), Id) : [2]Z →
X0,k × [2]Z is a sliding-block code. Let µu be the uniform
measure over [2]Z. We note that

Pν
f (N)

[X0 ̸= Y0]

= Pµu

[
c
(

Y−1
−(N(k+1)−1)

)
≡ k (mod k + 1) and Y0 = 0

]
=

N−1

∑
i=0

Pµu

[
c
(

Y−1
−(N(k+1)−1)

)
= i(k + 1) + k and Y0 = 0

]
= Pµu

[
Y0
−(N(k+1)−1) = 0

]
+

N−1

∑
i=1

Pµu

[
Y0
−i(k+1) = 10

]
=

1
2N(k+1)

+
1
2

N−1

∑
i=1

1
2i(k+1)

.

Taking N → ∞ we indeed approach the known essential
covering radius,

lim
N→∞

Pν
f (N)

[X0 ̸= Y0] =
1

2(2k+1 − 1)
= R0(X0,k, [2]Z, µu).
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