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Abstract—We study the problem of repairing erasures in
locally repairable codes beyond the code locality under the rack-
aware model. We devise two repair schemes to reduce the repair
bandwidth for Tamo-Barg codes under the rack-aware model, by
setting each repair set as a rack. The first repair scheme provides
optimal repair bandwidth for one rack erasure. We then establish
a cut-set bound for locally repairable codes under the rack-aware
model. Using this bound we show that our second repair scheme
is optimal. Furthermore, we consider the partial-repair problem
for locally repairable codes under the rack-aware model, and
introduce both repair schemes and bounds for this scenario.

I. INTRODUCTION

W ITH the expanding volume of data in large-scale cloud
storage and distributed file systems, like Windows

Azure Storage and Google File System (GoogleFS), disk fail-
ures have become a norm rather than an exception. To protect
data from such failures, the simplest solution is to replicate
data packets across different disks. However, this approach
suffers from large storage overhead. Consequently, coding
techniques have been developed as an alternative solution.

Regenerating codes and locally repairable codes are two
different methods to improve the repair efficiency of failed
nodes. Over the past decade, many results have been obtained
in this area, e.g., see [7], [9], [17], [19], [22], [28]–[30], [32],
[33] for regenerating codes, and see [2], [3], [5], [6], [10],
[14], [16], [20], [25]–[27], [31] for optimal locally repairable
codes.

Another approach combines locally repairable codes and
regenerating codes, by allowing the codes in each set to form
regenerating codes, e.g., [11], [15], [18]. By doing so, the
repair bandwidth required can be reduced when the system
performs local erasure repairs.

However, this method has a drawback: the repair property
only works for the punctured codes in the repair sets. This
means that if there are erasures beyond the local repair capabil-
ity in one repair set, the repair scheme and the locality cannot
simultaneously reduce the repair bandwidth. To address this
issue, we propose a new combination strategy. Our approach
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involves repair schemes for locally repairable codes that can
handle erasures beyond local recoverability.

Specifically, in this paper, we propose repair schemes for the
well-known Tamo-Barg codes [27], which are optimal locally
repairable codes with respect to the Singleton-type bound [8],
[24]. We present two proposed schemes. Firstly, in a rack-
aware model where each repair set is one rack, we introduce
an optimal repair scheme for the case of one failed rack, i.e.,
one erased repair set. Secondly, for the scenario where there
are erasures within a repair set that cannot be recovered locally,
we introduce a repair scheme that reduces the repair bandwidth
required for recovering those failures. We prove the optimality
of our schemes by modifying the well-known cut-set bound [7]
to incorporate locality. Our proposed schemes generalize the
rack-aware model regenerating codes [12], [13].

Due to space limitations we omit all proofs, which are
available in a full version of this work [4].

II. PRELIMINARIES

We start by introducing basic notation and definitions. For
any n ∈ N we denote [n] , {1, 2, . . . , n}. For a prime power
q, let Fq denote the finite field of size q, F∗q , Fq \ {0}, and
let Fq[x] denote the set of polynomials in the indeterminate x
with coefficients from Fq . An [n, k]q linear code C over Fq is
a k-dimensional subspace of Fnq with a k×n generator matrix
G = (g1,g2, . . . ,gn), where gi is a column vector of length
k for all i ∈ [n]. More specifically, it is called an [n, k, d]q
linear code if its minimum Hamming distance is d.

A. Generalized Reed-Solomon codes

Let θ = (θ1, . . . , θn) ∈ Fnq contain distinct entries, where
we assume q > n. Then the well-known generalized Reed-
Solomon (GRS) code with parameters [n, k, n − k + 1]q can
be defined as

GRSk(θ,α) ,{(α1f(θ1), α2f(θ2), . . . , αnf(θn))

: f(x) ∈ Fq[x] with deg(f(x)) < k},

where α = (α1, α2, . . . , αn) ∈ (F∗q)n. It is well known that
the dual of an [n, k, n−k+1]q GRS code is an [n, n−k, k+1]q
GRS code (e.g., see [23]).

2140979-8-3503-8284-6/24/$31.00 ©2024 IEEE



B. Regenerating codes
An important problem in distributed storage systems is to

repair an erasure by downloading as little data as possible.
Dimakis et al. [7] introduced repair bandwidth, the amount of
data downloaded during a node repair, as a metric to measure
the procedure’s efficiency.

Definition 1: Let C be an [N,K]q array code with
sub-packetization L, that is, ci ∈ FLq for any codeword
(c1, c2, . . . , cN ) ∈ C. For an erasure pattern E ⊆ [N ] and
a D-subset R ⊆ [N ] \ E (whose entries are called helper
nodes), define B(C, E ,R) as the minimum repair bandwidth
for ci ∈ FLq stored in node i ∈ E , i.e., the smallest total number
of symbols of Fq helper nodes need to send in order to recover
ci (where each helper node j ∈ R may send symbols that
depend solely on cj ∈ FLq ).

In [7], the well-known cut-set bound was first derived for
the minimum download bandwidth.

Theorem 1 (Cut-set bound, [1], [7]): Let C be an [N,K]q
MDS array code with sub-packetization L. Let D be an integer
with K 6 D 6 N − 1. For any non-empty E ⊆ [N ] with
|E| 6 N −D and any D-subset R ⊆ [N ] \ E , we have

B(C, E ,R) >
DL

D −K + |E|
.

Definition 2: For K < D 6 N − τ , an [N,K]q
MDS array code is said to be an [N,K]q minimum stor-
age regenerating (MSR) code with repair degree D, if for
each I = {i1, i2, . . . , iτ} ⊂ [N ] there exists a D-subset
RI ⊆ [N ] \ I such that B(C, I,RI) meets the cut-set bound
described above with equality. Throughout this paper, such
codes are also said to have (τ,D) optimal repair property.

C. Locally repairable codes
Another important figure of merit is symbol locality [8],

[24].
Definition 3: Let C be an [n, k, d]q linear code. For j ∈

[n], the j-th code symbol, cj , of C, is said to have (r, δ)-locality
if there exists a subset Sj ⊆ [n] such that:
• j ∈ Sj and |Sj | 6 r + δ − 1; and
• the minimum Hamming distance of the punctured code
C|Sj is at least δ.

In that case, the set Sj is also called a repair set of cj . The
code C is said to have information (r, δ)-locality (denoted as
(r, δ)i-locality) if there exists S ⊆ [n] with rank({gi : i ∈
S}) = k such that for each i ∈ S, the i-th code symbol has
(r, δ)-locality. Similarly, C is said to have all symbol (r, δ)-
locality (denoted as (r, δ)a-locality) if all the code symbols
have (r, δ)-locality.

In [24] (and for the case δ = 2, originally [8]), the following
upper bound on the minimum Hamming distance of linear
codes with information (r, δ)-locality is derived.

Lemma 1 ([8], [24]): The minimum distance, d, of an
[n, k, d]q code with (r, δ)i-locality, is upper bounded by

d 6 n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1).

Definition 4: A code is said to be an optimal locally
repairable code (LRC) with (r, δ)i-locality (or (r, δ)a-locality)
if its minimum distance d attains the bound of Lemma 1 with
equality.

III. RACK-AWARE DISTRIBUTED STORAGE SYSTEM WITH
LOCALITY

In this section, we introduce some basic model setting for a
rack-aware distributed storage system with local parity checks.

We consider a system containing k original files, which are
encoded into n files stored on n nodes. The n = N ×L nodes
are divided into N racks, and each rack contains L nodes.
In each rack, the data of the nodes form a codeword with
length L and a minimum Hamming distance of at least δ.
In each rack, each node is capable of collecting information
from nodes in the same rack and process these data. Denote
this system as the (n, k;L, δ) rack-aware system with locality
or (n, k;L, δ)-RASL. If among those n nodes, k of them
store original information and are named as information nodes
then the system is said to be systematic. In this case, all the
remaining nodes are parity checks, including the local parity
checks and cross-rack parity checks.

As usual for rack-aware storage systems, we disregard the
inner rack bandwidth, that is, we assume that each node can
access the data on the nodes of the same rack. Since, in each
rack, the data of nodes form a codeword with a minimum
Hamming distance of at least δ, when the rack suffers τ 6 δ−1
erasures, the rack can recover the erasures locally. Thus, we
focus on racks that experience more than δ− 1 node erasures.
Specifically, we consider the following two models of erasures:
• Rack erasures: there are t racks erased in the systems;
• Partial erasures: there are t racks suffer more that δ − 1

nodes erasures.
An intriguing challenge for these systems involves minimizing
cross-rack bandwidth when facing erasures that exceed the
capabilities of the parity checks within each rack. This chal-
lenge serves as the motivation for the subsequent part of our
discussion. That is, we would like to determine the minimum
amount of data we need to download from help racks to repair
erasures and the explicit construction of codes with optimal
repair schemes.

Remark 1: The previously mentioned rack-aware system
with locality is a generalization of the rack-aware model
in [12]. This extension is primarily driven by the practical
observation that modern storage systems incorporate both
parity checks and controllers with data processing capabilities
within each rack.

Remark 2: The term “locality” is derived from the con-
dition that, for (n, k) locally repairable codes with (r, δ)a-
locality, if the repair sets S1, S2, · · · , SN constitute a partition
of [n] and each set has a uniform size, i.e., |Si| = r + δ − 1
for 1 6 i 6 N , then each repair set can be arranged
as a rack to construct the desired codes for a rack-aware
system. Consequently, when the repair sets form a partition,
the repair problems for the rack-aware system with locality are
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equivalent to the repair problems of locally repairable codes,
assuming that we disregard the bandwidth within the rack or
the repair set. Therefore, in the subsequent discussion, we will
use these notations interchangeably.

IV. TAMO-BARG CODES AND REDUNDANT RESIDUE CODES

In this section, we review the construction of locally re-
pairable codes using redundant residue codes and prove that
it can, in fact, explain Tamo-Barg codes.

Construction A ([27]): Let h(x) ∈ Fq[x] and denote
deg(h(x)) = w. For y ∈ Fq , define Roots(y) , {x ∈
Fq : h(x) = y} and ty , |Roots(y)|. Assume m1 6 k
and ri, for all i ∈ [m1], are positive integers such that∑m1

i=1 ri = k. We further assume that there exist two disjoint
subsets of Fq , {yi}m1

i=1 and {yi}m1+m2
i=m1+1, satisfying tyi > ri

for all i ∈ [m1], and m2 is a non-negative integer.
Denote m , m1 + m2, and Roots(yi) =

{βi,1, βi,2, . . . , βi,tyi} for all i ∈ [m]. Let
a = (a1,1, a1,2, . . . , a1,r1 , a2,1, . . . , am1,rm1

) ∈ Fkq be
the information vector. Define fa,i as the polynomial with
degree less than ri such that fa,i(βi,j) = ai,j for all i ∈ [m1]
and j ∈ [ri]. Let Fa(x) ∈ Fq[x] be a polynomial with degree
less than m1w satisfying

Fa(x) ≡ fa,i(x) (mod h(x)− yi) for all i ∈ [m1]. (1)

Then the code we construct is

C = {Ca =(Fa(β1,1), Fa(β1,2),

. . . , Fa(β1,ty1 ) . . . , Fa(βm,tym )) : a ∈ Fkq}.

According to (1), determining the locality of information
symbols in C is straightforward, as discussed in [27, Theorem
5.3]. In the following, we present a lemma that is useful for
determining the locality of global parity-check symbols.

Lemma 2: Consider the setting of Construction A, and
let 0 6 r 6 w be an integer. Suppose that there exist m1

distinct constants y1, y2, . . . , ym1
∈ Fq such that

Fa(x) mod (h(x)−yi) = fa,i(x) =

r−1∑
j=0

ei,jx
j for all i ∈ [m1].

Then for any y ∈ Fq ,

Fa(x) mod (h(x)− y) =

r−1∑
j=0

Ha,j(y)xj ,

where Ha,j(x) is a polynomial satisfying deg(Ha,j(x)) 6
m1 − 1 and

Ha,j(yi) = ei,j for all i ∈ [m1] and 0 6 j 6 r − 1.

Corollary 1: In the setting of Construction A, let Γ =⋃
i∈[m] Roots(yi) ⊆ Fq . If |Roots(yi)| > r for any i ∈ [m],

then the code constructed by Construction A is a locally
repairable code with all symbol (r, δ)-locality, where δ =
min{|Roots(yi)|+ 1− r : i ∈ [m]}.

In general, the code may not be optimal for the simple
reason that there may not be enough roots in Fq for some

h(x) − yi, where i ∈ [m], to serve as evaluation points.
Therefore, to attain optimality, we consider the case where
Fq contains the splitting field of h(x)− yi, for all i ∈ [m].

Definition 5: In the setting of Construction A, let Γ =⋃
i∈[m] Roots(yi) ⊆ Fq . If |Roots(yi)| = deg(h(x)) = w for

all i ∈ [m], then the polynomial h(x) is said to be a good
polynomial over Γ.

For more details about good polynomials the readers may
refer to [27] and [21].

Corollary 2 (Tamo-Barg codes,[27]): Consider the setting
of Construction A and let h(x) be a good polynomial over Γ =⋃
i∈[m] Roots(yi) ⊆ Fq . If ri = r < w and k = rm1, then the

resulting code is an optimal [n = mw,m1r, (m2+1)w−r+1]q
locally repairable code with all symbol (r, w− r+ 1)-locality
(where optimality is with respect to the bound in Lemma 1).

Corollary 2 follows directly from Lemma 2 and Corollary 1,
which also can be directly derived from [27, Construction 1].

V. REPAIRING TAMO-BARG CODES: RACK ERASURES

In this section, we consider the repair problem for Tamo-
Barg codes for the rack erasure case, where each repair sets
of Tamo-Barg codes are arranged as racks. We begin with an
array form of the Tamo-Barg code, where each repair set is
arranged as a column in the array.

Construction B: Let h(x) ∈ Fq[x] be a good polynomial
over Γ =

⋃
i∈[m] Roots(yi) ⊆ Fq with deg(h(x)) = r+δ−1,

and let a = (a1,1, a1,2, . . . , a1,r, a2,1, . . . am1,r) ∈ Fkq be the
information vector, where k = rm1. Define fa,i(x) as the
polynomial with degree less than r such that fa,i(βi,j) = ai,j
for all i ∈ [m1] and j ∈ [r], where we assume that
Roots(yi) = {βi,1, βi,2, . . . , βi,r+δ−1} for all i ∈ [m1]. Then
for any a ∈ Fkq we can find a polynomial Fa(x) ∈ Fq[x] with
degree less than m1(r + δ − 1) satisfying

Fa(x) ≡ fa,i(x) (mod h(x)− yi) for all i ∈ [m1].

Construct an array code as follows

A ,



Aa = (A1, . . . ,Am)

=


Fa(β1,1) . . . Fa(βm,1)
Fa(β1,2) . . . Fa(βm,2)

...
...

Fa(β1,r+δ−1) . . . Fa(βm,r+δ−1)

 : a ∈ Fkq


,

where we define m , m1 +m2.
Theorem 2: Consider the setting of Construction B. Let

q0 be a prime power, and Fq = Fq0(y1, y2, . . . , ym), Fqi =
Fq0(y1, . . . , yi−1, yi+1, . . . , ym). Define wi , [Fq : Fqi ] for
each i ∈ [m].

I. Define w∗i , r
gcd(wi,r)

. If w∗i 6 wi and m2 >
max{2, w∗i }, then we can recover Ai by downloading
(w∗
i+m1−1)r
w∗
i

symbols from any other w∗i +m1− 1 nodes
(columns).

II. Assume w∗i is a positive integer. If w∗i |wi and m2 >
max{2, w∗i }, then we can recover Ai by downloading
(w∗
i+m1−1)r
w∗
i

symbols from any other w∗i +m1− 1 nodes
(columns).
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To analyze the repair bandwidth performance for the scheme
introduced in Theorem 2, we need to modify the cut-set bound
to the case that each element in the array code can be locally
repaired.

Theorem 3: Let C be an optimal [N,K,N−K+1]q array
code with sub-packetization L. It provides (r, L − r + 1)a-
locality when viewed as a scalar code with length NL, where
0 < r 6 L − 1. In this setting, each column corresponds to
a repair set. Let D be an integer with K 6 D 6 N − 1. For
any i ∈ [N ] and any D-subset R ⊆ [N ] \ {i}, we have

B(C, {i},R) >
Dr

D −K + 1
.

Based on Theorems 2 and 3, we have the following corol-
lary:

Corollary 3: Let q0 be a prime power, and Fq =
Fq0(y1, y2, . . . , ym), Fqi = Fq0(y1, . . . , yi−1, yi+1, . . . , ym).
Define wi , [Fq : Fqi ] for all i ∈ [m]. Furthermore, let
m2 > max{2, r}, where m = m1 + m2 and k = m1r. If
0 < r 6 min{w1, w2, . . . , wm}, and gcd(r, wi) = 1 for
all i ∈ [m], then for any i ∈ [m] we can recover Ai by
downloading r+m1 − 1 symbols from any other r+m1 − 1
nodes, which is exactly the optimal bandwidth with respect to
the cut-set bound of Theorem 3.

VI. REPAIRING TAMO-BARG CODES: PARTIAL ERASURES

In this section, we further explore the partial repair problem
for the rack-aware system with locality, i.e., array codes
under the assumption that each column of the array is an
(r, δ)-repair set. Specifically, we consider the scenario where
some repair sets have failed, meaning that certain columns
contain more than δ − 1 erasures. We seek to determine the
minimum amount of data that needs to be downloaded from D
remaining columns, and how to construct a code that achieves
the minimum repair bandwidth for this model. To begin, we
provide some necessary definitions.

Definition 6: Let C be an optimal [N,K]q locally re-
pairable array code with sub-packetization L and (r, L− r +
1)a-locality in which each column corresponds to a repair set,
where 0 < r 6 L− 1. Let I = {i1, i2, . . . , iτ} ⊆ [N ] denote
the failed columns, and let Eit ⊆ [L] with |Eit | > δ for t ∈ [τ ]
denote the corresponding erasures in the it-th column. For a
D-subset R ⊆ [N ] \ I, define B(C, I, E ,R) as the minimum
repair bandwidth for {ci,j : i ∈ I, j ∈ Ei}, i.e., the smallest
number of symbols of Fq helper nodes need to send in order
to recover the erasure pattern E = {Eit : t ∈ [τ ]} (where
each helper node j ∈ R may send symbols that depend solely
on cj ∈ FLq ).

First, we consider the case where E = {Ei}, and Ei = E.

Theorem 4: Consider the setting of Construction B. Let
q0 be a prime power, and Fq = Fq0(y1, y2, . . . , ym), Fqi =
Fq0(y1, . . . , yi−1, yi+1, . . . , ym). Define wi , [Fq : Fqi ] for
each i ∈ [m]. For any given set E ⊆ [L] with δ 6 |E| 6 L,
consider the case that the elements in Ai|E are erasures.

I. Define w∗i , L−δ+1
gcd(wi,L−δ+1) . If w∗i 6 wi and m2 >

max{2, w∗i }, then we can recover Ai|E by downloading
(w∗
i+m1−1)(|E|−δ+1)

w∗
i

symbols from any other w∗i +m1−1

nodes (columns).
II. Assume w∗i is a positive integer. If w∗i |wi and m2 >

max{2, w∗i }, then we can recover Ai|E by downloading
(w∗
i+m1−1)(|E|−δ+1)

w∗
i

symbols from any other w∗i +m1−1

nodes (columns).
We now move on to address the challenge of repairing era-

sure patterns in scenarios where multiple repair sets (columns)
have failed, specifically when |Eit | > δ for t ∈ [τ ].

Theorem 5: Let C be the code generated by Construction
B, and E = {Ei1 , Ei2 , . . . , Eiτ } be an erasure pattern with
|Eit | > δ for all t ∈ [τ ]. For a subfield Fq1 ⊂ Fq , if
m2 > qτ

q1
then the erasure pattern can be recovered with repair

bandwidth M
q1

by contacting all the remaining nodes, where
M =

∑
t∈[τ ] |Eit | − τ(δ − 1).

When the finite field is sufficiently large, it is possible to
further decrease the partial repair bandwidth.

Lemma 3: Let Y = (y1, y2, . . . , ym) ∈ Fmq1 and C1 =
GRSm1(1,Y ) be an [m = m1+m2,m1,m2+1]q1 GRS code.
If C1 has (τ,D) optimal repair property with 1 6 τ 6 m2 and
m1 < D 6 m − τ , then for any E = {Ei1 , Ei2 , . . . , Eiτ }
with Eij ⊆ [L] and |Eij | = w > δ for j ∈ [τ ], the code C
generated by Construction B satisfies

B(C, I, E ,R) 6
τD`(w − δ + 1)

D − k + τ

for any |I| = τ and |R| = D with R ⊆ [m] \ I, where
` = r + δ − 1 is the sub-packetization of C1, i.e., q1 = ql.

A. A lower bound on the partial-repair bandwidth
A natural question arises regarding the partial-repair prob-

lem: what is the theoretical bound for the partial-repair band-
width? Let L denote the number of elements stored in each
node (column). Assume that there is a node, say the i-th node,
suffering from L − si erasures in the positions given in Ei.
Define β(L, si, D) as the number of elements the system needs
to download from each of the D helper nodes to recover the
L− si erased elements.

Inspired by the idea of the information-flow graph presented
in [7], we propose a solution to this problem by defining
a special kind of information-flow graph called a partial
information-flow graph. The basic idea is to allow each node
that experiences erasures to have a certain amount of surviving
information. When a node experiences partial erasure, the
system needs to recover the erased portion of information for
the goal node. Since the recovered node inherits the surviving
information from the original node, it is named as an inheritor.

Definition 7: A directed acyclic graph is said to be a
partial information-flow graph if it satisfies the following:
• A source node S, corresponding to the original data

which will be stored into N initial storage nodes.
• Initial storage nodes X(i), each of them consists of an

input node X
(i)
in and an output node X

(i)
out. X

(i)
in and
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X
(i)
out are connected by a directed edge (X

(i)
in , X

(i)
out) with

capacity equal to the number of elements stored at X(i),
i.e., r 6 L, where r is the number of original elements
stored at X(i)

in . S connects to each X
(i)
in by a directed

edge (S,X
(i)
in ) with capacity r.

• To model the dynamic behavior of storage systems such
as erasures and repair, the time factor is also considered.
At any given time, nodes are either active or inactive.
At the initial time step, the storage nodes X(i) are all
active and the source node S is inactive. Later on, at any
given time step, if a node suffers from a partial erasure,
say the node v = (vin, vout), then the node v is set to
be inactive and we create a direct inheritor (Iin, Iout),
which is connected with vout by an edge (vout, Iin) with
capacity s(v), where s(v) is the number of surviving
information symbols of the node v. The node I also needs
to download β(L, s(v), D) symbols from each of D other
active nodes, i.e., we add D directed edges (v

(j)
out, I

(i)
in )

with a capacity of β = β(L, s(v), D). Finally, we set the
node I as active.

• A data collector node DC, corresponding to a request to
construct the data. DC connects to K active nodes with
subscript “out” by directed edges with infinite capacity
to recover the original data.

Given positive integers N > K, D 6 N − 1, L > r,
si 6 L for all i ∈ [N ] and a real number β > 0, let
G(N,K, r,D, β; s = (s1, s2, . . . , sN )) denote a family of
partial information-flow graphs with all possible evolutions.
The parameter tuple (N,K, r,D, β; s) is said to be feasible
if there exists a locally repairable array code with repair
bandwidth β and sub-packetization L, with L − si erasures
in the i-th node.

Definition 8: A cut in the partial information flow graph
G between S and DC is a subset of edges W such that each
directed path from S to DC contains at least one edge in
W . Furthermore, the minimal cut is the cut with the smallest
edge capacity sum. We define the capacity of W as C(W ) =∑
e∈W C(e), where C(e) denotes the capacity of an edge e.

Theorem 6: For given positive integers N > K, D 6
N − 1, L > r, si 6 L for i ∈ [N ], the parameter
tuple (N,K,D,L, β; s) is feasible if and only if Kr 6
c(N,K,D, β; s) under a large enough finite field, where
c(N,K,D, β; s) satisfies

c(N,K,D, β; s) =

min{K,D}−1∑
i=0

min{(D − i)β + sji , r}

+

K−1∑
i=min{K,D}

min{sji , r},

where β > 0 is a real number, and sj0 6 sj1 6 . . . 6 sjN−1
.

As the next step, we study the relationship between
r and N,K, β,D,M by solving the inequality Kr 6
c(N,K,D, β; s) in Theorem 6.

Theorem 7: Let s = (s1, s2, · · · , sN ) and sj0 6 sj1 6
. . . 6 sjN−1

< sjN , +∞. For 1 6 t 6 K − 1, define

s∗jt ,

∑t−1
i=0 sji + (K − t)sjt

K
,

g(t) ,
t−1∑
i=0

sji + t(D −K)β +
t(t+ 1)β

2
,

and for 0 6 t 6 K − 1,

f(t) ,
1

K(D + 1−K) + t(t+1)
2 + t(K − t− 1)

. (2)

When sjτ−1
< r 6 sjτ for τ ∈ [N ], the parame-

ter tuple (N,K, r,D, β; s) is feasible if and only if r >
r∗(N,K,D, β, s) and the solution can be achieved via linear
codes, where

r∗(N,K,D, β; s)

=

{
M
K , β ∈ [f(0)K(r − sj0),∞),
M−g(t)
K−t , β ∈ (f(t)K(r − s∗jt), f(t− 1)K(r − s∗jt−1

)],

for t ∈ [τ∗ − 1] with τ∗ , min{τ,K}. If r 6 sj0 then the
parameter tuple (N,K, r,D, β; s) is feasible for any β > 0.

Remark 3: For the case L > sj0 > r, i.e., the case that
the number of erased symbols is less than L − r, we know
that β = 0 is sufficient to repair those erasures since we have
(r, L− s+ 1)-locality inside each node.

Remark 4: For the case sj0 = sj1 = · · · = sjN−1
= 0

and L = r, i.e., the ordinary case without locality, the bounds
in Theorems 6 and 7 are exactly the cut-set bound described
in [7] and [13] for the rack-aware model.

Considering the regular case, s1 = s2 = · · · = sN , we
have the following corollary that is implied directly from
Theorem 7.

Corollary 4: Let C be an [N,K] MDS array code with
sub-packetization L, and each column is a repair set with
(r, δ = L − r + 1)-locality. Let D be an integer K < D 6
N−1. For any i ∈ [N ], Ei ⊆ [L], and D-subsetR ⊆ [N ]\{i},
we have

B(C, {i}, {Ei},R) >

{
D(|Ei|−δ+1)
D−K+1 , if |Ei| > δ,

0, otherwise.

Thus, similarly to Corollary 3, we have the following
conclusion for partial repairing for Tamo-Barg codes, which
follows directly from Corollary 4 and Theorem 4.

Corollary 5: Consider the setting of Construction B.
Let q0 be a prime power, and Fq = Fq0(y1, y2, . . . , ym),
Fqi = Fq0(y1, . . . , yi−1, yi+1, . . . , ym). Define wi , [Fq : Fqi ]
for each i ∈ [m]. For any given erasure set E ⊆ [L]
with δ 6 |E| 6 L, we can recover Ai|E by downloading
(r+m1−1)(|E|−δ+1)

r symbols from any other r+m1−1 nodes,
which is exactly the optimal bandwidth with respect to the
cut-set bound according to Corollary 4.
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