
On the Capacity of Precision-Resolution
Constrained Systems

Moshe Schwartz
California Institute of Technology

1200 E California Blvd., Mail Code 136-93
Pasadena, CA 91125, U.S.A.
moosh@paradise.caltech.edu

Jehoshua Bruck
California Institute of Technology

1200 E California Blvd., Mail Code 136-93
Pasadena, CA 91125, U.S.A.
bruck@paradise.caltech.edu

Abstract— Arguably, the most famous constrained system is
the (d, k)-RLL (Run-Length Limited), in which a stream of bits
obeys the constraint that every two 1’s are separated by at least d
0’s, and there are no more than k consecutive 0’s anywhere in the
stream. The motivation for this scheme comes from the fact that
certain sensor characteristics restrict the minimum time between
adjacent 1’s or else the two will be merged in the receiver, while a
clock drift between transmitter and receiver may cause spurious
0’s or missing 0’s at the receiver if too many appear consecutively.

The interval-modulation scheme introduced by Mukhtar and
Bruck extends the RLL constraint and implicitly suggests a
way of taking advantage of higher-precision clocks. Their work
however, deals only with an encoder/decoder construction.

In this work we introduce a more general framework which
we call the precision-resolution (PR) constrained system. In
PR systems, the encoder has precision constraints, while the
decoder has resolution constraints. We examine the capacity of
PR systems and show the gain in the presence of a high-precision
encoder (thus, we place the PR system with integral encoder,
(p=1,α,θ)-PR, which turns out to be a simple extension of RLL,
and the PR system with infinite-precision encoder, (∞,α,θ)-PR,
on two ends of a continuum). We derive an exact expression for
their capacity in terms of the precision p, the minimal resolvable
measurement at the decoder α, and the decoder resolution factor
θ. In an analogy to the RLL terminology these are the clock
precision, the minimal time between peaks, and the clock drift.
Surprisingly, even with an infinite-precision encoder, the capacity
is finite.

I. INTRODUCTION

The (d, k)-RLL is perhaps the most commonly used con-
strained system, appearing in various contexts and applica-
tions, including (but not restricted to) magnetic and optical
storage, holographic storage, and wireless and fiber-optic
communication. It is however easy to forget that RLL coding
is but one possible solution to a set of restrictions imposed by
the medium, by current technology, or by our own choice. To
better understand any extension to it, we should first describe
these restrictions.

In the context of storage applications, for example, one
wants to write a stream of bits. Due to the nature of the
recording devices, when reading back the stream, we receive
a series of analog peaks which correspond to the 1’s in the

This work was supported in part by the Caltech Lee Center for Advanced
Networking and by NSF grant ANI-0322475.

original bit stream. The first restriction imposed by such a
system is a function of the sensors used for the reading which
may cause adjacent peaks to merge if these are positioned too
close to each other. In the RLL constraint, this restriction is
upheld by requiring that in the bit stream we write, every two
adjacent 1’s are separated by at least d � 0 consecutive 0’s.

On the other hand, the decoding mechanism attempts to
acquire the correct number of 0’s in a run by measuring the
time between two peaks, and dividing it by the duration of
a single 0. Since no two clocks are exactly the same, the
difference in their frequencies causes a drift. If this drift is
bounded by 0 < δ < 1, then a written run of 0’s of duration
t∈ R, may actually end up being decoded as a run of duration
(1−δ)t < t′ < (1 +δ)t. Obviously, the longer the run of 0’s,
the more spurious or missing 0’s may occur in the decoding.
To avoid such a problem, the RLL-constraint chooses to limit
the maximum length of any run of 0’s to k, where k ∈N is
the largest integer for which (1 + δ)k � (1 − δ)(k + 1).
We note that since the 1’s are used only to punctuate the
stream, and we measure the time duration between peaks, the
duration of the run includes the duration of the consecutive
0’s and the single following 1. Thus, for example, any value
of δ∈ (1

23 , 1
21] results in k = 10 found in the (2, 10)-RLL of

CD-ROMs and DVDs.
In order to get a correct resolution at the decoder we need

the two restrictions mentioned above. But another arbitrary
implicit restriction is part of the RLL constraint, and that is
the requirement that the set of valid intervals form a sequence
of consecutive integers. Having similar motivation, Funk [2]
devised an improvement to the RLL scheme called RLL-MS,
by replacing this requirement with another equally arbitrary
requirement that the set of valid intervals form an arithmetic
progression. We remove this requirement altogether, while
also parting ways with the restriction that the time between
adjacent peaks be an integer. Exposing and parameterizing this
precision constraint, will bring us to define a sequence of ever
more precise systems. These are able to measure small discrete
time intervals, and in the limit, reach a system with infinite-
precision measurement.

We therefore introduce the (p,α,θ)-PR (precision-
resolution) framework. In this framework (see Figure 1), an
encoder receives a stream of binary bits, transforms them

ISIT 2006, Seattle, USA, July 9 - 14, 2006

14621­4244­0504­1/06/$20.00 ©2006 IEEE

{0, 1}{0, 1} REncoder Decoder
Precision Constraint Resolution Constraint

Fig. 1. The precision-resolution framework

into a stream of real numbers which are sent over a noiseless
channel to a decoder, which then converts them back to the
original binary stream. However, both sides suffer from further
constraints:
Encoder Constraint — The encoder has constrained preci-
sion. Each transmitted symbol t∈Q is some t = n/p where
n, p∈N. We call p the precision of the encoder. We denote
infinite precision by p = ∞, i.e., the framework in which the
encoder can send any t∈R.
Decoder Constraints — The decoder suffers from resolution
constraints. We may define several different sets of constraints
which correspond to different applications. In this paper we
consider a set which is motivated mainly (but not only) by
storage applications.

• The decoder cannot correctly recover any t < α, where
α ∈R, α > 0, is called the minimum resolution.

• If t∈R was transmitted, then the received t′ ∈R obeys
(1 − δ)t < t′ < (1 + δ)t, where δ∈R, 0 < δ < 1,
is another parameter of the framework. For convenience,
we define θ = 1+δ

1−δ
and call it the resolution factor.

We note that the RLL constraint is but one solution to a
precision-resolution framework. In the following sections we
will present the precision-resolution constraint which has a
higher capacity than its RLL and RLL-MS counterparts.

In his seminal work, Shannon [10] defined the capacity of
a constrained system S as

cap(S)
def
= lim

n→∞

log2 |S(n)|

n
,

where S(n), n∈N, denotes the set of strings of length n
in S. Further advances in the subject include the work of
Adler, Coppersmith, and Hassner [1], who applied symbolic
dynamics [5] to the analysis and construction of sliding-block
encoders for constrained systems. More extensions may be
found in works such as Heegard, Marcus, and Siegel [3],
Marcus, Siegel, and Wolf [6], and a review in Marcus, Roth,
and Siegel [7].

Since the definition of the RLL constraint in [4], [11],
several variants to the RLL constraint were suggested. How-
ever, the basic premise that we may use ever growing runs
of 0’s until we reach a run length for which the clock
drift may produce a spurious 0, was never changed. This
paradigm was shifted in the work of Mukhtar and Bruck [8],
[9] which described an extension to the RLL constraint and
gave a variable-bit-rate to variable-bit-rate encoder/decoder
scheme for it. In Section II, we describe this extension in the
precision-resolution framework, discuss the integral-precision
constraint, (1,α,θ)-PR, and calculate its capacity. In Section
III we consider the sequence of constraints (p,α,θ)-PR, where
p = 1, 2, . . . , and show how it gives a significant improvement
to the capacity while the RLL constraint fails. We then find

the capacity of the infinite-precision constraint, (∞,α,θ)-PR,
and show that it is actually the limit as p → ∞ of the capacity
of (p,α,θ)-PR. As a result, we can compare, for example, the
capacity of (2, 10)-RLL used in CD-ROMs and DVDs and is
approximately 0.5418, with the capacity of the corresponding
(∞, 3, 1.1)-PR which is approximately 0.7725, thus giving
the hope for an increase in capacity of more than 40% in this
case. We summarize our results in Section IV.

II. THE (1,α,θ)-PR CONSTRAINT

The (d, k)-RLL constrained system is, equivalently, the set
of all possible strings which are formed by concatenating
strings from the set

Sd,k
def
=

{
0d1, 0d+11, 0d+21, . . . , 0k1

}
.

Because of this form of representation, it was shown in [10]
that the capacity of the (d, k)-RLL constraint is log2 rd,k,
where rd,k ∈R is the unique positive root of the equation

x−(d+1) + x−(d+2) + x−(d+3) + · · ·+ x−(k+1) = 1.

We may also think of the strings in Sd,k as a set of symbols
which differ only in their duration. For (d, k)-RLL this set is

Îd,k
def
= {d + 1, d + 2, . . . , k + 1} .

For the decoder of a (d, k)-RLL stream there is no ambiguity.
Any time duration read t′, is some (1 − δ)t < t′ < (1 + δ)t,
where t∈ Îd,k is the written duration and 0 < δ < 1 is the
clock drift. But since k was chosen such that (1 + δ)k � (1−
δ)(k + 1), for any two distinct elements t1, t2 ∈ Îd,k there is no
intersection in their δ-neighborhoods: ((1 − δ)t1, (1 + δ)t1)
and ((1 − δ)t2, (1 + δ)t2).

Essentially, the (d, k)-RLL constraint starts with the mini-
mal time interval allowed by the decoder, d + 1, and continues
to add successive lengths d + 2, d + 3, . . . as long as their δ-
neighborhoods are disjoint. It stops at the first length k + 1
whose δ-neighborhood intersects that of k + 2.

An obvious question asked by Mukhtar and Bruck [8], is
why restrict ourselves to successive time durations? We may
skip k + 2 but still be able to use k + 3 or some other longer
length. In [8] it is assumed that some digital clock is governing
the system, thus restricting all time durations measured to be
integral multiples of the clock period. This brings us to define
the integral precision-resolution constrained system.

Definition 1. Let α ∈R, α > 0, be the minimum resolution,
and let θ = 1+δ

1−δ
> 1 be the resolution factor, where δ∈R,

0 < δ < 1. Then the (1,α,θ)-PR constraint is the set of all
streams with symbols from the set

Îα,θ
def
=

{
�α,θ�i | i = 0, 1, 2, . . .

}
⊂ N

where we define

�α,θ�i def
= �. . . ���α�

i︷ ︸︸ ︷
θ�θ� . . .θ�.

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1463

Example 1. For α = 2 and θ = 1.5, we have

Îα,θ = {2, 3, 5, 8, 12, 18, 27, . . . } .

Obviously, the (1,α,θ)-PR constraint obeys the (1,α,θ)-
PR framework since all symbols are integers, the smallest one
is α, and

�α,θ�i+1 =
⌈
θ �α,θ�i

⌉
� θ �α,θ�i

ensures that the δ-neighborhoods of elements in Îα,θ are
disjoint. For a practical implementation we may want to limit
the size of elements in Îα,θ and so we define

Îm
α,θ

def
=

{
τ ∈ Îα,θ | τ � m

}
.

Furthermore, if we define

kθ = max {k ∈Z | θ(k − 1) � k} ,

then Îkθ

α,θ is exactly the set used in (�α� − 1, kθ − 1)-RLL.

Theorem 1. Let Ŝm
α,θ denote the constraint with intervals from

Îm
α,θ. Then for every m < m′ such that

∣∣∣Îm
α,θ

∣∣∣ <
∣∣∣Îm′

α,θ

∣∣∣,
cap(Ŝm

α,θ) < cap(Ŝm′

α,θ) < 1.

We therefore conclude that adding more symbols to the
constraint, strictly increases the capacity. If we consider the
infinite set Îα,θ, we get the following theorem.

Theorem 2. Let Ŝα,θ denote the (1,α,θ)-PR constrained sys-
tem. Then

cap(Ŝα,θ) = log2 r̂α,θ < 1

where r̂α,θ is the unique solution in (1, ∞) to the equation
f̂α,θ(x) = 1 and

f̂α,θ(x)
def
= ∑

i�0
x−�α,θ�i

.

We see in Figure 2, for 1 < θ � 2, a comparison of the
resulting (0, kθ − 1)-RLL constraint with its extension, the
(1, 1,θ)-PR constraint. To plot this graph, an approximation
was needed since no simple closed form is known for f̂α,θ(x).
Specifically, we added only the first five monomials beyond
those of the corresponding RLL constraint.

III. THE GENERAL (p,α,θ)-PR CONSTRAINT

It is intuitively clear that the rounding up of the symbols
of the (1,α,θ)-PR constraint, incurs a penalty in capacity,
especially for small values of θ. So while the δ-neighborhoods
of �α� and ��α�θ� are disjoint, the unused gap between them
might be fairly large.

All of this is caused by the fact that we restricted ourselves
to symbols which are integers. But suppose we are given a
system which is p∈N times more precise1, i.e., it is able to

1In practical terms, being p times more precise means the encoder has a
clock with p times the original frequency, which allows it to align the peaks
to multiples of 1/p. This does not mean that the encoder writes more densely
since the decoder’s minimum resolution does not depend on the precision p.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

θ

ca
pa

ci
ty

(0, kθ − 1)-RLL
(1, 1,θ)-PR

Fig. 2. The capacity of (0, kθ − 1)-RLL vs. the capacity of (1, 1,θ)-PR

transmit symbols which are multiples of 1/p. So now, instead
of rounding up the symbols of our constrained system to the
nearest integer, we can round them up to the nearest multiple
of 1/p.

Definition 2. Let p∈N be the precision, α ∈R, α > 0, be the
minimum resolution, and let θ = 1+δ

1−δ
> 1 be the resolution

factor, where δ∈R, 0 < δ < 1. Then the (p,α,θ)-PR
constraint is the set of all streams with symbols from the set

Îp,α,θ
def
=

{
�pα,θ�i /p

∣∣∣ i = 0, 1, 2, . . .
}

.

Example 2. For p = 2, α = 2 and θ = 1.5, we have

Îp,α,θ = {2, 3, 4.5, 7, 10.5, 16, 24, . . . } .

The following theorem shows that we never lose capacity
when using a constraint which is p times more precise.

Theorem 3. Let p∈N, α,θ∈R, α > 0, θ > 1. Then

cap(Ŝ1,α,θ) � cap(Ŝp,α,θ) = p · cap(Ŝ1,pα,θ)

which holds in equality iff p �α,θ�i = �pα,θ�i for all i � 0.

We note that the requirement that p be an integer is
necessary for Theorem 3. For example, there are values of
θ for which we get cap(Ŝ2,1,θ) > cap(Ŝ3,1,θ). In Figure 3,
we see cap(Ŝp,1,θ) for p∈ {1, 2, 4, 8}.

Returning to the RLL constraint, being p times more precise
usually translates into having a digital clock which runs p
times faster. While we gain from faster clocks when using
(p,α,θ)-PR, the case is often worse in (d, k)-RLL. This is
because when using a clock which runs p times faster, we
have to use (p(d + 1) − 1, k)-RLL since k is not affected
by the speed of the clock, but the minimum time between
adjacent peaks becomes p(d + 1) clock ticks. However, we
have p · cap(Sp(d+1)−1,k) = 0 when p(d + 1)− 1 � k, which
for most practical values of p, d, and k, is the case.

If we look at Figure 3 there appears to be an upper bound
on the capacity as we continue to increase the precision. This

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1464

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

θ

ca
pa

ci
ty

p = 1
p = 2
p = 4
p = 8

Fig. 3. The capacity of (p, 1,θ)-PR, for p = 1, 2, 4, 8.

is indeed the case as will shall prove shortly. First, we define
the appropriate constrained system with infinite-precision.

Definition 3. Let α ∈R, α > 0, be the minimum resolution,
and let θ = 1+δ

1−δ
> 1 be the resolution factor, where δ∈R,

0 < δ < 1. Then the (∞,α,θ)-PR constraint is the set of all
streams with symbols from the set

Iα,θ
def
=

{
αθi | i = 0, 1, 2, . . .

}
⊂ R.

Example 3. For α = 2 and θ = 1.5, we have

Iα,θ = {2, 3, 4.5, 6.75, 10.125, 15.1875, 22.78125, . . . } .

Since an (∞,α,θ)-PR system is no longer made up of
discrete bits, we need the analog of length n strings. We define
the τ-header, τ ∈R, of such a stream, as the ordered set of
symbols appearing between the beginning of the stream and
time τ . If we observe the τ-header, we may see several sym-
bols encoded in it one after the other. The last complete symbol
may not necessarily reach time τ exactly. The remaining part
of the time interval is the beginning of another encoded symbol
whose end we do not see, and which we call the tail.

Example 4. For α = 1, θ = 1.5 the allowed symbols are
of duration 1 = αθ0, 1.5 = αθ1, 2.25 = αθ2, . . . , and so
on. The following 3-headers may be seen: (1, 1, 1), (1.5, 1.5),
(1, 1.5,−), (1.5, 1,−), (1, 1,−), (2.25,−), (1.5,−), (1,−),
and (−). The − sign denotes the tail.

We can now proceed with calculating the capacity of the
(∞,α,θ)-PR constraint. For simplicity, we handle the α = 1
case first, and then prove the general case.

Theorem 4. Let Sθ denote the (∞, 1,θ)-PR constrained sys-
tem, θ > 1. Then

cap(Sθ) = log2 rθ

where rθ is the unique solution in (1, ∞) to the equation
fθ(x) = 1 and

fθ(x)
def
= ∑

i�0
x−θi

.

Proof: We omit the proof that rθ actually exists and is
unique. Let us denote by Sθ(τ) the set of all τ-headers of
Sθ. Obviously,

|Sθ(τ)| =

{
1 + ∑∞

i=0

∣∣Sθ(τ −θi)
∣∣ τ � 0

0 τ < 0

For technical simplicity let us define Sθ(τ) to be the set of
all τ-headers of Sθ with tail strictly smaller than 1. It is easy
to see that

∣∣Sθ(τ)
∣∣ =

⎧⎪⎨
⎪⎩

∑∞

i=0

∣∣Sθ(τ −θi)
∣∣ τ � 1

1 0 � τ < 1
0 τ < 0

We contend that |Sθ(τ)| � �τ�
∣∣Sθ(τ)

∣∣ for τ � 1. This is
because any τ-header of Sθ(τ) contains at most �τ� complete
symbols, and since its tail is strictly shorter than 1, we can
create at most �τ� distinct τ-headers in Sθ(τ) by repeatedly
merging the tail with the last complete symbol. We can get
any τ-header of Sθ(τ) that way because we can take any
τ-header with tail of length 1 or more, and repeatedly add
complete symbols of length 1 while reducing the tail by 1, to
get a τ-header from Sθ(τ).

We now prove by inductionthat
∣∣Sθ(τ)

∣∣ � rτ
θ . For the

induction base we point out that obviously
∣∣Sθ(τ)

∣∣ = 0 � rτ
θ

for all τ ∈ (−∞, 0) by definition. Furthermore, since rθ > 1,∣∣Sθ(τ)
∣∣ = 1 � rτ

θ for all τ ∈ [0, 1). For the induction hypoth-
esis, let us assume that

∣∣Sθ(τ)
∣∣ � rτ

θ for all τ ∈ (−∞, n),
n∈N. We then prove the claim also holds for τ ∈ [n, n + 1).
Let τ ∈ [n, n + 1), then

∣∣Sθ(τ)
∣∣ =

∞

∑
i=0

∣∣∣Sθ(τ −θi)
∣∣∣ �

∞

∑
i=0

rτ−θi

θ = rτ
θ

∞

∑
i=0

r−θi

θ = rτ
θ

where we are able to use the induction hypothesis since θi � 1
and so τ −θi ∈ (−∞, n). It follows that

cap(Sθ) =� lim
τ→∞

log2
(
�τ�

∣∣Sθ(τ)
∣∣)

τ
� log2 rθ .

We now want to prove that cap(Sθ) � log2 rθ. We define

the positive real constant γ = min
{

1 − r1−θ
θ

, r−1
θ

}
and

contend that |Sθ(τ)| � γrτ
θ for all τ � 0. We do this again by

induction. For the induction base take any τ ∈ [0, 1) and then
|Sθ(τ)| = 1 � r−1

θ
rτ
θ � γrτ

θ . For the induction hypothesis we
assume that |Sθ(τ)| � γrτ

θ for all τ ∈ [0, n), n∈N. We prove
the claim also holds for τ ∈ [n, n + 1). Taking τ ∈ [n, n + 1)

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1465

it follows that,

|Sθ(τ)| = 1 +
∞

∑
i=0

∣∣∣Sθ(τ −θi)
∣∣∣ = 1 +

�logθ τ�

∑
i=0

∣∣∣Sθ(τ −θi)
∣∣∣

� 1 +
�logθ τ�

∑
i=0

γrτ−θi

θ

= 1 +
∞

∑
i=0

γrτ−θi

θ −
∞

∑
i=�logθ τ�+1

γrτ−θi

θ

= γrτ
θ + 1 −

∞

∑
i=�logθ τ�+1

γrτ−θi

θ

� γrτ
θ + 1 −

∞

∑
i=0

γr−θi

θ � γrτ
θ + 1 −

∞

∑
i=0

γr−i(θ−1)
θ

= γrτ
θ + 1 −γ

1
1 − r1−θ

θ

� γrτ
θ .

Thus we get

cap(Sθ) = lim
τ→∞

log2 |Sθ(τ)|

τ
� log2 rθ .

which completes the proof.

To translate the capacity of (∞, 1,θ)-PR to the capacity of
(∞,α,θ)-PR with any α > 0, we have the following theorem.

Theorem 5. Let Sα,θ denote the (∞,α,θ)-PR constrained sys-
tem, α > 0, θ > 1. Then cap(Sα,θ) = 1

α
· cap(S1,θ).

The capacity of (∞,α,θ)-PR is an upper bound on the
capacity of any (p,α,θ)-PR, p∈N, and is actually the limit
as p → ∞. This is shown in the next two theorems.

Theorem 6. For any p∈N, α,θ∈R, α > 0, θ > 1, let
Ŝp,α,θ denote the (p,α,θ)-PR constraint, and Sα,θ denote the
(∞,α,θ)-PR constraint. Then

cap(Ŝp,α,θ) � cap(Sα,θ).

Theorem 7. With notation as before,

lim
p→∞

cap(Ŝp,α,θ) = cap(Sα,θ).

The capacity of the (∞, 1,θ)-PR constraint is shown in
Figure 4. Simple root-finding techniques were used together
with limited precision to approximate the roots of fθ(x) = 1.

IV. RESULTS SUMMARY

We started by exploring the (1,α,θ)-PR constraint which is
a natural extension to (d, k)-RLL. The extension allows more
run-lengths to be written than (d, k)-RLL admits, subject to
the restriction that the decoder, which suffers from a bounded
clock drift, can get no ambiguous reading. In light of this, the
RLL restriction to successive run-lengths seems arbitrary.

We further generalized our setting by defining the (p,α,θ)-
PR framework, and the (p,α,θ)-PR constraint which realizes
the framework. We then showed that as p → ∞, the capacity
of (p,α,θ)-PR approaches that of (∞,α,θ)-PR from below.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

θ

ca
pa

ci
ty

Fig. 4. The capacity of (∞, 1,θ)-PR

Though the RLL constraint also fits the framework’s re-
quirements, the (p,α,θ)-PR constraint seems more natural,
and it achieves a higher capacity which does not vanish for
p > 1 as in the case of RLL. This is especially appealing
for engineering reasons: having only an RLL solution, any
improvement in precision, e.g., faster clocks, requires a lower
clock-drift or else the capacity may drop to zero. However,
in the (p,α,θ)-PR constraint, the parameters of precision and
resolution are independent. Thus, they allow improvement of
one without the other, and offer an optimizable trade-off. In
addition, future work may merge PRML into the precision-
resolution framework by considering PRML parameters, e.g.,
sampling rate, as a set of resolution constraints, perhaps
achieving another increase in capacity.

REFERENCES

[1] R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes – an application of symbolic dynamics to information
theory,” IEEE Trans. on Inform. Theory, vol. 29, pp. 5–22, 1983.

[2] P. Funk, “Run-length-limited codes with multiple spacing,” IEEE Trans.
on Magnetics, vol. MAG-18, no. 2, pp. 772–775, Mar. 1982.

[3] C. D. Heegard, B. H. Marcus, and P. H. Siegel, “Variable length
state splitting with applications to average runlength-constrained (ARC)
codes,” IEEE Trans. on Inform. Theory, vol. 37, pp. 759–777, 1991.

[4] W. H. Kautz, “Fibonacci codes for synchronization control,” IEEE Trans.
on Inform. Theory, vol. IT-11, pp. 284–292, Apr. 1965.

[5] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 1985.

[6] B. H. Marcus, P. H. Siegel, and J. K. Wolf, “Finite-state modulation
codes for data storage,” IEEE J. Select. Areas Commun., vol. 10, pp.
5–37, Jan. 1992.

[7] B. H. Marcus, R. M. Roth, and P. H. Siegel, Constrained systems and
coding for recording channels. V. S. Pless and W. C. Huffman (Editors),
Elsevier, Amsterdam, 1998.

[8] S. Mukhtar and J. Bruck, “Interval modulation coding,” Paradise Labora-
tory, California Institute of Technology, Tech. Rep. ETR040, Oct. 2001.
[Online]. Available: http://www.paradise.caltech.edu/papers/etr040.pdf

[9] ——, “Interval modulation coding,” in Proceedings of the 2002 IEEE
International Symposium on Information Theory, ISIT2002, Lausanne,
Switzerland, June 2002, p. 327.

[10] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, July 1948.

[11] D. T. Tang and L. R. Bahl, “Block codes for a class of constrained
noiseless channels,” Inform. and Control, vol. 17, pp. 436–461, Dec.
1970.

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1466

