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Abstract— We revisit the well-known problem of determining
the capacity of constrained systems. While the one-dimensional
case is well understood, the capacity of two-dimensional systems
is mostly unknown. When it is non-zero, except for the(1, ∞)-
RLL system on the hexagonal lattice, there are no closed-form
analytical solutions known. Furthermore, for the related problem
of counting the exact number of constrained arrays of any given
size, only exponential-time algorithms are known.

We present a novel approach to finding the exact capacity
of two-dimensional constrained systems, as well as efficiently
counting the exact number of constrained arrays of any given
size. To that end, we borrow graph-theoretic tools originally
developed for the field of statistical mechanics, tools for efficiently
simulating quantum circuits, as well as tools from the theory of
the spectral distribution of Toeplitz matrices.

I. I NTRODUCTION

While most storage devices record information on a two-
dimensional surface, they emulate a one-dimensional environ-
ment by spacing tracks of recorded data. The distance between
adjacent tracks in common devices is an order of magnitude
larger than the distance between adjacent symbols along the
track. The next big leap in storage density may be achieved by
reducing the distance between tracks. This in turn, requires a
two-dimensional constrained-coding scheme to be employed.

A two-dimensional constrained systemSn,m is simply a set
of n × m arrays over some specified alphabet. The common
example of such a system is the(d, k)-RLL constraint in which
each row and each column of the array has runs of zeroes
whose length is at leastd and at mostk. Other two-dimensional
constraints forbid certain patterns in the arrays, such as the no-
isolated-bit constraint in which every bit agrees with at least
one of its four neighbors in the two-dimensional array.

An important measure associated with a constrained system
is its capacity. Introduced by Shannon [14], the capacity of a
constrained systemS is defined as

cap(S)
def
= lim

n,m→∞

log2 |Sn,m|
nm

.

While the one-dimensional case is well understood, there is
little known about the capacity of two-dimensional systems.

In the case of two-dimensional(d, k)-RLL systems, Ito et
al. [8] characterized the values of(d, k) for which the capacity
is zero. General bounds on the capacity of(d, k)-RLL were
given by Kato and Zeger [11], constructive lower bounds
for (d, ∞)-RLL by Halevy et al. [7], and non-constructive
asymptotically-tight bounds for(0, k)-RLL by Schwartz and
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Vardy [13]. For the specific case of(1, ∞)-RLL, Calkin and
Wilf [3] gave a numerical estimation method using transfer
matrices. Only for the(1, ∞)-RLL constraint on the hexagonal
lattice, Baxter [1] gave an exactbut not rigorous1 analytical
solution using the corner transfer matrix method.

Other two-dimensional constraints do not fare any better.
Halevy et al. [7] considered bit stuffing encoders for the
two-dimensional no-isolated-bit constraint to constructively
estimate its capacity. Non-constructively, Forchhammer and
Laursen [6], estimated this capacity using random fields.

The method we present is general enough to encom-
pass a wide variety of constraints (both local and global)
though its expressive power is yet undetermined. We use
only mathematically-rigoroustools to obtain exact capacity
solutions and polynomial-time algorithms. The method is
based on a series of reductions:1) A constrained system is first
reduced to a network of relations in a way which enables us to
connect the number of satisfying assignments to the network
with the number of constrained arrays.2) This network of
relations is transformed to a weighted graph using holographic
reductions in such a way that the number of satisfying assign-
ments to the network equals the weighted perfect matching
of the graph. This is a many-to-many reduction in which the
individual perfect matchings do not correspond in any one-
to-one way to the original satisfying assignments.3) Finally,
the weighted perfect matching of the graph is expressed as
a Pfaffian of a certain skew-symmetric matrix by using the
FKT (Fisher-Kasteleyn-Temperley) method. The capacity of
the original constrained system is the limit of the Pfaffian,
while the Pfaffian itself provides a polynomial-time algorithm
for counting the number of constrained arrays.

The reductions and algorithms are given very briefly due to
the severe page limit, while the polynomial-time algorithm is
not described at all. For the complete results and proofs the
reader is encouraged to read [12]. In Section II we introduce
holographic reductions and the FKT method. We apply these
tools in Section III to an example constrained system. We
conclude in Section IV with a description of further results.

II. BACKGROUND

A. Networks of Relations

We start by introducing networks of relations. For a discussion
of the subject see [4] and references therein. Given some

1As Baxter notes in [2] page 409: “It is not mathematically rigorous, in
that certain analyticity properties . . . are assumed, and the results . . . (which
depend on assuming that various large-lattice limits can be interchanged) are
used. However, I believe that these assumptions . . . are in fact correct.”
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ground setΩ, a relation onn variablesis a subsetR ⊂ Ωn. A
network of relationsis a graphG = (V, E) where we associate
with each vertexv∈V a relation Rv on deg(v) variables
being the ordered set of incident edges onv. We can now
assign every edge a value fromΩ and check whether all the
relations are satisfied. We say that an assignment is asatisfying
assignmentif for every v∈V, the relationRv is satisfied.

Example 1.Let us take as an example the network of relations
shown in Figure1. We use the ground setΩ = {0, 1} and
defineR= to be theall-equal relationon three variables,R 6= to
be thenot-all-equal relationon three variables, andφ+ to be
the accept-allrelation on one variable:

x1 x2 x3 R= R 6=
0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

x1 φ+

0 1
1 1

R=

R 6=

φ+

φ+

φ+

φ+

e1

e2

e3

e4

e5

Figure 1. The network of relations of Example 1

We can easily see that there are exactly6 distinct satisfying
assignments to this network which we list below:

(e1, . . . , e5)∈ {(0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 0, 1, 1),

(1, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0)}.

If we wanted to be completely accurate, we should have
included a numbering of the incident edges to each vertex of
Figure 1. However, since all the relations in this example are
symmetric, this is unnecessary. 2

B. Holographic Reductions

Holographic reductions were introduced by Valiant in [18] to
show certain counting problems may be solved in polynomial
time, and in [17] to simulate quantum circuits efficiently.

Though the notion of networks of relations does not appear
as such in his work, Valiant shows a many-to-many reduc-
tion from such networks to weighted graphs. This reduction
preserves the total number of solutions, i.e., the number of
satisfying assignments to the original network of relations
equals the weighted perfect matching of the resulting graph.
The reduction itself is realized by replacing each of the vertices
of the original network with a small gadget.

Let G = (V, E) be a graph. Aperfect matchingis a subset
of edgesM ⊆ E such that every vertexv∈V is incident to
exactly one of the edges inM. The set of all perfect matchings
will be denotedPM(G). We can now assign complex weights
to the edgesw : E → C, and define theweighted perfect
matchingof G to be

PerfMatch(G)
def
= ∑

M ∈ PM(G)
∏

e∈ M

w(e).

Our aim is to replace vertices in the network of relations,
with gadgets which somehow capture the original relations.
The gadgets are calledmatchgatesand the resulting graph is
called amatchgrid. At this point, just like in [18], we require
the graphG to be planar as well as all the matchgates we
use, resulting in a planar matchgrid graph. This is perhaps the
most restrictive requirement we face during the process. We
are, however, able to use non-planar graphs, though at a cost
of increased computational complexity. We omit the details of
the holographic reduction and the intuition behind it.

Example 2.We complete the matchgrid for the network of rela-
tions of Example1. The resulting matchgrid is shown in Figure
2 (where the arrows on the edges are to be disregarded at the
moment). Each gray circle represents the place of the original
vertex in the network of relations which is now occupied with a
matchgate subgraph gadget. The skeptical reader is encouraged
to verify that the weighted perfect matching of this graph is
indeed6, as is the total number of satisfying assignments.2

C. The FKT Method

The FKT method gives a simple expression for the weighted
perfect matching of certain graphs which is also computable
efficiently. It was developed independently and concurrently
by Fisher and Temperley [15], [5], and by Kasteleyn [9].

Let G be a graph with weights on the edges, and let
A = (ai, j) be its n × n adjacency matrix whereai, j is the
weight of the edge between verticesi and j. Since we are
interested in graphs with perfect matchings we assumen is
even. Anorientation of the an undirected graphG is simply
an assignment of a direction to each of the edges of the graph.
The solution given by Kasteleyn requires a special orientation
called aPfaffian orientation(for more details see [9]). Given a
weighted graphG, and a Pfaffian orientation of its edges, we
build a modified skew-symmetric adjacency matrixA = (ai, j)
as follows:

ai, j =











0 no edge betweeni and j

w(ei, j) if i → j

−w(ei, j) if j → i
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Figure 2. The complete matchgrid for the network of relations from Example
1 with a Pfaffian orientation of the edges

where i → j denotes the edge between verticesi and j is
oriented fromi to j. Note thatA is not the adjacency matrix
of the graphG in the usual sense. Using this construction
Kasteleyn [9] showed that

PerfMatch(G) = ± Pf(A) = ±
√

det(A)

where,Pf(A) is the Pfaffian ofA and det(A) is the deter-
minant of A. Since in most cases we know the sign of the
outcome, the± may be easily fixed.

It now remains a matter of finding out which graphs allow a
Pfaffian orientation. Such graphs are calledPfaffian orientable.
In his later work, Kasteleyn [10] showed that all planar
graphs are Pfaffian orientable, which is the reason we required
matchgrids to be planar in the previous section. For planar
graphs, it was shown in [10], that if we orient the edges such
that every clockwise walk on a face of the graph has an odd
number of edges agreeing, then that orientation is a Pfaffian
orientation. As a result, a simple polynomial time algorithm
which finds such an orientation is also shown. A Pfaffian
orientation for Example 1 is shown in Figure 2.

III. T HE CAPACITY

Most constrained systems are easily defined by a finite set
of forbidden patterns. For our example we choose a constraint
we call thePath-Cover Constraint (PC Constraint), and which
we motivate by first examining its one-dimensional version. If
we are given a graphG = (V, E), a path-cover for the graph
is a set of simple paths (open or closed) of positive length,
which are vertex disjoint, and which cover all the vertices. An
alternative way of stating this constraint is that given a graph,
we assign either a0 or a 1 to each of the edges, such that

when removing the edges with a0, all the vertices remain
with degree either1 or 2.

In the one-dimensional case the graphG is simply the
one-dimensional lattice with verticesV = {v0, v1, . . . , vn}
and edgesE = {(vi , vi+1) | 0 6 i 6 n − 1}. It is easily
seen that a valid PC assignment of values to edges is any
assignment which does not contain two adjacent0’s. Thus, the
one-dimensional PC constraint is the famous one-dimensional
(0, 1)-RLL constraint (and with bit-flipping, the(1, ∞)-RLL
constraint). The capacity in this case is known to belog2[(1 +√

5)/2] = 0.69424 . . . .
Turning to two-dimensions, we choose a the two-

dimensional triangular grid as the graphG: we tile the plane
with regular triangles, place a vertex at the center of each
triangle, and draw an edge between vertices whose triangles
share a face. Again, we assign either a0 or a 1 to the edges
of the graph such that after removing the edges assigned a0,
all the remaining vertices are of degree either1 or 2.

There is a multitude of possible reductions of the con-
strainedn× n array on the plane, to a network of relations. We
show a simple reduction for which the constrained arrays are
in an “almost” one-to-one correspondence with the satisfying
assignments to the network.

We think of the triangular grid as drawn on a plane. We
replace each vertex of the grid with the relationR 6= on three
variables. This relation makes sure that the three adjacent cells
do not contain the same bit, i.e., the forbidden pattern of PC. It
is easy to be convinced that, if we ignore the perimeter of the
array, every constrained array induces exactly one satisfying
assignment and vice versa. The resulting network of relations
is shown in Figure 3.

We do however have to take care of the perimeter of the
array as well. To do so, we connect dangling edges to extra
vertices of the accept-all relationφ+. Each such vertex has the
potential of multiplying the number of satisfying assignments
by a factor of2. But since we have onlyO(n) such vertices,
this does not change the capacity as calculated by counting
the total number of satisfying assignments. The extra accept-
all vertices are also shown in Figure 3.

It is easily seen that the network of relations we built is bi-
partite by noting that upright triangles are connected only to
inverted triangles, and vice versa. Conveniently for us, for the
main bulk of the network we have just one type of relation,
but we do have to specify some as recognizers and some as
generators. We arbitrarily choose to build a generatorR 6= in
inverted triangles, and a recognizerR 6= in upright triangles.
For the perimeter of the network we need to implementφ+

both as a generator and as a recognizer.
Finding a Pfaffian orientation for the graph is an easy

task. The orientation is not necessarily unique. The extremely
regular nature of the graph suggests the existence of a simple
orientation. If we closely examine the network of relations in
Figure 3, we see that, apart from the perimeter of the array,
it is made up of a singlebasic blockand its translations.
The simplest basic block is just a recognizerR 6= vertex and
a generatorR 6= vertex. This basic block may be oriented
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Figure 3. The top image shows part of a network of relations for the PC
constraint. Each filled circle represents theR 6= relation. The gray triangles
show the original cells of the triangular grid. The bottom image shows the
top left corner of the array with the filled squares representing theφ+ relation.

as shown in Figure 4. It is also easy to verify Kasteleyn’s
orientation rule for planar graphs: every clockwise walk on an
inner face has an odd number of edges agreeing. This may be
verified both for the inner faces of the block, and the inner
faces created by the joining of a few blocks.
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Figure 4. A Pfaffian orientation of the basic block. The dotted edges denote
the edges between translations of the basic block. The numbers in squares
index the vertices.

Finally, we also have to orient the edges which correspond
to theφ+ matchgates which lie on the perimeter of the array.
Those matchgates do not contain any inner face themselves,
and do not form an inner face with the rest of the graph. Thus,
they may be oriented arbitrarily.

In light of the previous sections, the capacity of the con-
strained systemS we are now examining is given by

cap(S) = lim
n→∞

log2 |Pf(A)|
3n2

= lim
n→∞

log2

√

det(A)

3n2

where A is the skew-symmetric adjacency matrix of the
matchgrid corresponding to then × n constrained array. The
3 in the denominator comes from the fact that a basic block
contains three bit storage positions (three edges from the
original network to be assigned a value).

A derivation of an expression for the exact capacity largely
depends on the ease of manipulating the matrixA. We first
simplify it by noting that the matchgates forφ+ contain
just one edge which must be taken in any perfect matching,
which also forces the edge connecting the matchgate to its
single neighboring matchgate to be dropped. Since the weight
of the edge is a constant, and since we have onlyO(n)
such matchgates along the perimeter, we may ignore them
altogether without changing the resulting capacity calculation.
So from now on, by abuse of notation, letA denote the skew-
symmetric adjacency matrix with theφ+ matchgates and their
connecting edges removed.

The components for a compact representation ofA are the
skew-symmetric matrix for the basic block (where the vertices
are indexed as in Figure 4),

B =

























0 −1 1 − 1
4 −1 0 0 0

1 0 −1 − 1
4 0 0 0 0

−1 1 0 − 1
4 0 0 0 0

1
4

1
4

1
4 0 0 0 0 0

1 0 0 0 0 −1 1 2
0 0 0 0 1 0 −1 2
0 0 0 0 −1 1 0 2
0 0 0 0 −2 −2 −2 0

























,

and the matrix∆i, j (of the same dimensions asB) which is
all zeroes except for position(i, j) which is 1. Furthermore,
we needIn the n × n identity matrix, and then × n matrix U
which is all zeroes except for positions(i, i + 1) which are1.

We have ann × n array of basic blocks which we order in
the natural way. This part of the graph is represented by the
skew-symmetric adjacency matrixIn ⊗ In ⊗ B. We still have
to represent the edges between basic blocks in the same row,
In ⊗U ⊗∆6,2 − In ⊗UT ⊗∆T

6,2, and the edges between basic
blocks in different rows,U ⊗ In ⊗ ∆7,3 − UT ⊗ In ⊗ ∆T

7,3.
Thus, we get an expression for the skew-symmetric adjacency
matrix A,

A = In ⊗ In ⊗ B + In ⊗ U ⊗ ∆6,2 − In ⊗ UT ⊗ ∆T
6,2

+ U ⊗ In ⊗ ∆7,3 − UT ⊗ In ⊗ ∆T
7,3. (1)

For the last step we rely on the theory of spectral distribution
of Toeplitz matrices (see Tilli [16]). For natural numbers
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p, k > 1, let an integrablep-variate functionf : [−π , π ]p →
Ck×k and a multi-indexn = (n1, . . . , np), ni > 1 be given.
The p-level Toeplitz matrixTn( f ) is defined as

Tn( f )
def
=

n1−1

∑
j1=−n1+1

. . .
np−1

∑
jp=−np+1

J
( j1)
n1

⊗ · · · ⊗ J
( jp)
np ⊗ a j1 ,..., jp

( f )

where J
(l)
m denotes the matrix of orderm whose i, j entry

equals1 if j − i = l and equals zero otherwise, and where

a j1 ,..., jp
( f )

def
=

1

(2π)p

∫

[−π ,π ]p
f (x)e−i( j1x1+···+ jpxp)dx

is a matrix inCk×k and i =
√
−1.

Theorem 3. If f : [−π , π ]p → Ck×k is an integrable Hermi-
tian matrix-valued function, then for any functionF, uniformly
continuous and bounded overR it holds

lim
n→∞

1

n1 . . . np

kn1 ...np

∑
j=1

F[λ j(Tn( f ))] =

=
1

(2π)p

∫

[−π ,π ]p

k

∑
j=1

F[λ j( f (x))]dx

whereλ j(M) denotes thej-th eigenvalue ofM.

To apply this theorem to our needs we notice the following:
First, for an n × n matrix M we have log2 |det(M)| =
∑n

i=1 log2 |λi(M)|. Second, we notice thatA from (1) is
a 2-level Toeplitz matrix, but it is skew-symmetric and not
Hermitian as required. This is easily fixed by noting thatiA
is Hermitian, and since the order ofA is a multiple of4, then
det(A) = det(iA). Thus, A = Tn( f ) where we define

f (θ1,θ2) = i[B + eiθ1∆6,2 − e−iθ1∆T
6,2

+ eiθ2∆7,3 − e−iθ2∆T
7,3].

We can prove that the eigenvalues ofiA are bounded away
from 0 (proof omitted). Then we can setF from Theorem 3
to behave likelog2(|x|) on the closed interval containing the
eigenvalues and still be bounded and uniformly continuous.
Now we are done, and the capacity of the constraint is exactly
calculated as

cap(S) = lim
n→∞

log2

√

det(A)

3n2

= lim
n→∞

1

6n2
log2 |det(Tn( f ))|

=
1

24π2

∫ π

−π

∫ π

−π
log2 |det( f (φ1,φ2))| dφ1dφ2

=
1

24π2

∫ π

−π

∫ π

−π
log2 |21 − 4 cosφ1 − 4 cosφ2

− 4 cos(φ1 −φ2)|dφ1dφ2

= 0.72399217 . . .

IV. CONCLUSION

We presented a general method for calculating the exact
capacity of two-dimensional constrained systems. Through a
series of reductions, such systems are transformed to networks
of relations, then to a limit of a Pfaffian, and by the theory of
Toeplitz determinants, to a double integral. This method may
be also adapted to provide, to our knowledge, the first poly-
nomial time algorithm for counting the number constrained
arrays of a given dimension. For more results the reader is
referred to [12].

Many open questions remain regarding the parameters of
the method which were not introduced in detail. The main
question is that of the expressive power of this method and
the systems which may be amenable to this kind of treatment.
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