
Codes for Multi-Level Flash Memories:
Correcting Asymmetric Limited-Magnitude

Errors
Yuval Cassuto Moshe Schwartz Vasken Bohossian Jehoshua Bruck

California Institute of Technology
1200 E California Blvd., Mail Code 136-93

Pasadena, CA 91125, U.S.A.
{ycassuto,moosh,vincent,bruck}@paradise.caltech.edu

Abstract— Several physical effects that limit the reliability and
performance of Multilevel Flash memories induce errors that
have low magnitude and are dominantly asymmetric. This paper
studies block codes for asymmetric limited-magnitude errors
over q-ary channels. We propose code constructions for such
channels when the number of errors is bounded by t. The
construction uses known codes for symmetric errors over small
alphabets to protect large-alphabet symbols from asymmetric
limited-magnitude errors. The encoding and decoding of these
codes are performed over the small alphabet whose size depends
only on the maximum error magnitude and is independent of the
alphabet size of the outer code. An extension of the construction
is proposed to include systematic codes as a benefit to practical
implementation.

I. INTRODUCTION

Flash Memory is a Non-Volatile Memory (NVM) technol-
ogy that is both electrically programmable and electrically
erasable. This property, together with high storage densities
and high speed programming, has made Flash Memory the
dominant non-volatile memory technology and a prominent
enabler for many portable applications and technologies. The
Flash Memory market is estimated in the tens of billions of
dollars, and it has a huge growth potential, some of it at the
expense of volatile memories and magnetic storage media.

Hand in hand with opportunity, come the challenges of
designing reliable Flash memories with higher storage volumes
and lower costs per byte. At the current state of matters,
the most efficient way to scale the storage density of Flash
memories, is to use the Multi-Level Flash Cell concept to
increase the number of stored bits in a cell [5] (and references
therein). Contrary to ubiquitous single bit Flash memories,
where each cell is in one of two (Erased/Programmed) thresh-
old states, Multilevel Flash memories use a state space of 2b

threshold levels, to store b bits in a single cell. Since physi-
cal/engineering factors limit the overall window of threshold
levels, an obvious consequence of the Multilevel Flash concept
is both a requirement for fast accurate charge placement
mechanisms and compromised reliability margins (that lead
to errors in stored date) [4]. The physical processes that intro-
duce errors typically move cells to adjacent threshold levels,
commonly in one dominant direction. Next we elaborate on

This work was supported in part by the Caltech Lee Center for Advanced
Networking.

these phenomena to motivate the focus of this paper on codes
for limited-magnitude, asymmetric errors.

Being the paramount challenge of Multilevel Flash memory
implementation, fast accurate program schemes are a topic of
significant research and design efforts [8],[2],[6]. All these
and other works, share the attempt to iteratively program
a cell to an exact prescribed level, in a minimal number
of program cycles. It is well known that Flash memory
technology does not support charge removal from individual
cells. As a result, the program cycle sequence is designed to
“cautiously” approach the target value from below, to avoid
undesired global erases in cases of overshoots. Consequently,
these attempts still require many program cycles (order of
10 or more) and they work only up to a moderate number
of bits per cell. A key observation that motivated this work,
is that if program overshoots can be tolerated, then more
“aggressive” program cycles can be employed to yield sig-
nificantly faster memory write operations. The way to contain
the (controlled) inaccuracies resulting from these overshoots,
is by devising error-correcting codes, with specific properties
to combat errors that originate from the program process.
The most appropriate model to capture these errors is by
assuming channel errors that have limited magnitude and are
asymmetric. The limited-magnitude assumption stems from
the employment of programming schemes that can guarantee
some level of accuracy. The asymmetry of the errors is due to
the property that all errors are overshoots of the desired target
value.

Besides the need for accurate programming, the move
to Multilevel Flash cells also aggravates reliability concerns
in the design and operation of Flash memories. The same
reliability aspects (that were successfully handled in Single
Level Flash memories), may become more significant and
translate to errors in stored data. Many of these potential
errors also motivate the asymmetric limited-magnitude error
channel. Low data retention [3], caused by a slow loss of
charge from memory cells, is one such example. Another is
errors that originate from low memory endurance, by which
a drift of threshold levels in aging devices [3] may cause
program and read errors. Program and read disturbs [3], caused
by programming/reading proximate memory cells, also induce
low magnitude errors with a dominant direction of change.

In this paper we study block codes for asymmetric limited-

ISIT2007, Nice, France, June 24 – June 29, 2007

1-4244-1429-6/07/$25.00 c©2007 IEEE 1176

magnitude errors. The codes are parametrized by `, the max-
imum magnitude of an error, and t, the maximum number of
asymmetric limited-magnitude errors in a codeword of length
n. Asymmetric limited-magnitude error-correcting codes were
recently proposed in [1] for the case t = n. These codes turn
out to be a special case of the general construction method
detailed below.

The following example illustrates the coding problem and
introduces the main idea of the code construction. Suppose we
have a group of 5 cells, each in one of 8 possible threshold
levels, marked by the integers {0, 1, . . . , 7}. The design goal
is now chosen to be, protecting this group of cells against
t = 2 errors of magnitude ` = 1 in the upward direction.
As illustrated by the sample words below, if the stored levels
are restricted to have either all symbols with even parity
or all symbols with odd parity, the required protection is
achieved. For each of the two sample codewords in row
(a) of the figure below, the channel introduces two upward
errors of magnitude 1 (b). By majority, the locations of the
errors are detected (c), in bold, and the original symbols are
recovered by decrementing the erroneous symbols (d). The

PSfrag replacements

(a)

(b)

(c)

(d)

Sample 1 Sample 2

codewordcodeword

corruptedcorrupted

detecteddetected

correctedcorrected

011

1

1

1 1

22

2

2

2 2

3 3

3

3

3 3

4

4

4

44

5

5

5

5

6

6

6

6

01

1

2

2

3

34

example above is one instantiation of a general construction
method that provides codes for all possible code parameters.
The main strength of this method is that for any target
alphabet size (determined by the number of threshold levels),
asymmetric limited-magnitude error correctability is inherited
from symmetric error correctability of codes over alphabets of
size ` + 1 (in the case of the example above, it is the binary
repetition code.). Thus a rich selection of known symmetric-
error-correcting codes becomes handy to offer codes that are
optimized for the asymmetric limited-magnitude channel. As
a favorable by-product of the construction method, encoding
and decoding of the resulting codes are performed on symbol
sets whose sizes depend only on `, irrespective of the code
alphabet (which may be much larger than `). This is a major
advantage in both redundancy and complexity, compared to
other proposed codes for Multilevel Flash memories (e.g [7]),
whose encoding and decoding are performed over the large
code alphabet. Following the definition of the coding problem
and the presentation of the non-systematic code construction
in section II, we demonstrate its power by showing that it
provides code families that are perfect in the asymmetric
limited-magnitude sense. We note that the general idea of

the basic code construction, restricted to binary codes, has
appeared in Construction A of [9], for a different, though
related, application (sphere packings in Euclidean spaces). In
later sections, we refine and modify the basic code construc-
tion to attain useful properties for practical implementations.
Section IV discusses different possible mappings from infor-
mation symbols to code symbols. Section V provides general
constructions for systematic codes, that are advantageous in
high-speed memory architectures. Finally, extensions and fu-
ture research opportunities are discussed.

II. t ASYMMETRIC `-LIMITED-MAGNITUDE
ERROR-CORRECTING CODES

An alphabet Q of size q is defined as the set of integers
modulo q: {0, 1, 2, . . . , q − 1}. For a codeword x∈ Qn and a
channel output y∈ Qn, the definition of asymmetric limited-
magnitude errors now follows.
Definition 1. Given a codeword x = (x1, x2, . . . , xn)∈Qn

and a channel output y = (y1, y2, . . . , yn)∈Qn, we say that
t A`M (Asymmetric `-limited-Magnitude) errors occurred if
|{i : yi 6= xi}| = t, and for all i, yi > xi and yi − xi 6 `. A
generalization of the above definition is when we allow asym-
metric errors to wrap around (from q− 1 back to 0). We say that
t A`M errors with wrap-around occurred if |{i : yi 6= xi}| = t,
and for all i, (yi − xi) mod q 6 `.
For notational convenience, given x = (x1, x2, . . . , xn), the
vector (x1 mod q′, x2 mod q′, . . . , xn mod q′) will be de-
noted by x mod q′.

The discussion of codes for this channel model is com-
menced with the definition of a distance that captures the
correctability of t A`M errors.
Definition 2. For x = (x1, . . . , xn)∈Qn and y =
(y1, . . . , yn)∈Qn, define N(x, y) = |{i : xi > yi}| and
N(y, x) = |{i : xi < yi}|. The distance d` between the words
x, y is defined

d`(x, y) =

=

{

n + 1 if maxi(|xi − yi|) > `
max(N(x, y), N(y, x)) otherwise

The d` distance defined above allows to determine the number
of A`M errors, correctable by a code C. (proof omitted)
Proposition 3 A code C ⊂ Qn can correct t A`M errors if and
only if d`(x, y) > t + 1 for all distinct x, y in C.
To prove the correctability properties of the codes we soon
propose, we do not resort to Proposition 3 above. Rather,
a stronger way of proving correctability is used: providing
decoding algorithms that use properties of known codes to
guarantee successful decoding. We now provide the main
construction of the paper. To obtain a code over alphabet Q
that corrects t or less A`M errors, one can use codes over
smaller alphabets as follows. Let Σ be a code over the alphabet
Q′ of size q′. The code C over the alphabet Q of size q
(q > q′ > `) is defined as

C = {x = (x1, x2, . . . , xn)∈Qn : x mod q′ ∈Σ}. (1)

Error-correction properties of C are derived from those of
Σ in the following manner.

ISIT2007, Nice, France, June 24 – June 29, 2007

1177

Theorem 4. C corrects t A`M errors if Σ corrects t asymmetric
`-limited-magnitude errors with wrap-around. If q > q′ + `,1
the converse is true as well.

Proof: Let x = (x1, x2, . . . , xn)∈C be a codeword and
y = (y1, y2, . . . , yn)∈Qn be the channel output when t A`M
errors have occurred. Denote the corresponding Σ codeword
by χ = x mod q′, and also define ψ = y mod q′ and ε =
(ψ − χ) (mod q′). First we observe that since q′ > `, if
0 6 yi − xi 6 ` then yi − xi = (yi − xi) mod q′. Using the
simple modular identity

(yi − xi) mod q′ = (yi mod q′ − xi mod q′) mod q′

= (ψi − χi) mod q′ = εi,

we get that yi − xi = εi, and in particular, if 0 6 yi − xi 6 `,
then 0 6 εi 6 `. In other words, if the codeword x over
Q suffered an A`M error at location i, then the codeword χ
over Q′ suffered an A`M error with wrap-around at the same
location i, and with the same magnitude. Given at most t A`M
errors with wrap-around, a decoder for Σ can recover ε from
ψ. Thus, the equality yi − xi = εi allows the same decoder to
recover x from y. The converse is settled by observing that,
for q > q′ + `, a non-correctable error ε for Σ can be used to
generate a non-correctable y vector for C.

Remark: If q′ | q then C corrects t A`M errors with wrap-
around for Σ with the same properties as above.

The size of the code C is bounded from below and from
above by the following theorem. (proof omitted)
Theorem 5. The number of codewords in the code C is bounded
by the following inequalities.

⌊ q
q′

⌋n
· |Σ| 6 |C| 6

⌈ q
q′

⌉n
· |Σ|

In the special case when q′ = 2, the size of C can be obtained
exactly from the weight enumerator of Σ. (proof omitted)
Theorem 6. Let q′ = 2 and Σ be a code over Q′ = {0, 1}.
Then the size of the code C, as defined in (1), is given by

|C| =
n
∑

w=0
Aw

⌈ q
2
⌉n−w ⌊ q

2
⌋w

where Aw is the number of codewords of Σ with Hamming
weight w.
This theorem can be extended to q′ > 2, but in such cases
knowing the weight distribution of Σ does not suffice, and
more detailed enumeration of the code is needed for an exact
count.

While (1) provides a fairly general way of composing t
A`M error-correcting codes from similar codes over smaller
alphabets, it is the following special case of this composition
method, that proves most useful for obtaining strong and
efficient codes.

Let Σ be a code over the alphabet Q′, now of size ` + 1.
The code C over the alphabet Q of size q (q > ` + 1) is
defined as

C = {x = (x1, x2, . . . , xn)∈Qn : x mod (` + 1)∈Σ}. (2)

1a reasonable assumption since the best codes are obtained when q >> q ′

In this special case C has the following property.
Theorem 7. C corrects t A`M errors if and only if Σ corrects t
symmetric errors.

Proof: When q′ = ` + 1, an A`M error with wrap-around
is equivalent to a symmetric error. This is therefore, a special
case of Theorem 4.

The `-AEC codes suggested in [1], that correct all A`M er-
rors, can also be regarded as a special case of this construction
method. To show that, let 0 be the trivial length n code, over
the alphabet Q′ of size ` + 1, that contains only the all-zero
codeword. Define

C = {x∈Qn : x mod (` + 1)∈ 0}
= {x∈Qn : xi ≡ 0 mod (` + 1) for i = 1, 2, . . . , n} [1].

Since 0 can correct t = n symmetric errors, C can correct
t = n A`M errors.

III. PERFECT ASYMMETRIC LIMITED-MAGNITUDE CODES

To showcase the power of the code construction from
section II, we demonstrate how it can yield perfect codes in
the A`M error model. For that we first give (without proof)
a generalization of the q-ary symmetric “sphere packing”
bound to the case of asymmetric limited-magnitude errors. We
then show that asymmetric limited-magnitude error-correcting
codes that meet this bound can be obtained by known perfect
codes in the Hamming metric.
Theorem 8. If C is a t A`M error-correcting code with wrap-
around, of length n over an alphabet of size q, then

|C| ·
t

∑
i=0

(n
i

)

`i
6 qn

Perfect t A`M error-correcting codes are obtained through
the following proposition. (proof omitted)
Proposition 9 If there exists a perfect (in the Hamming metric)
code over an alphabet of size ` + 1, then there exists a perfect
A`M code with the same length, over an alphabet of any size q,
such that ` + 1 | q, that corrects the same number of errors.

IV. ENCODING AND DECODING OF A`M CODES

The method of code construction proposed in (1), specified
the code C as a subset of Qn. Moreover, the proof of
Theorem 4 implicitly contained a decoding algorithm for C,
given a decoder for the smaller-alphabet code. Nevertheless,
till this point, no encoding function from information symbols
to codewords was provided. Discussing this encoding function
is crucial when a practical coding scheme is required. When
q′ | q, a straightforward encoding function from information
symbols over Q′ to codewords of C over Q exists. We show
this function using the following example.
Example 1. Let ΣH be the binary2 Hamming code of length
n = 2m − 1, for some integer m. First we define the code CH
in the way of section II.

CH = {x = (x1, x2, . . . , xn)∈Qn : x mod 2∈ΣH}.

2Non-binary Hamming codes can be used as well when ` > 1.

ISIT2007, Nice, France, June 24 – June 29, 2007

1178

By the properties of ΣH , the code CH corrects one A1M error.
When the code alphabet size is q = 2b, for some integer b,
the perfect code CH admits a simple function from nb − m
information bits to codewords of CH over Q. A possible en-
coding scheme is illustrated in Figure 1 below. In Figure 1 (a),
nb − m information bits are input to the encoder. The encoder
then uses a binary Hamming encoder to encode n − m of the
information bits into a length n Hamming codeword (Figure 1
(b)). Finally, in Figure 1 (c), each q-ary symbol of the codeword
x∈CH is constructed from b bits using the usual binary-to-
integer conversion, the top row being the least-significant bits
of xi ∈Q. Decoding is carried out by using a Hamming decoder

PSfrag replacements

(a) (b)

(c)

nn

m

bb n(b − 1) infon(b − 1) info

n − m infon − m info m parity ∈ΣH

xi ∈Q = {0, 1, . . . , 2b − 1}
lsb

msb

Figure 1. Encoding Procedure for CH

to find the limited-magnitude error location and magnitude
(for binary Hamming codes the magnitude is always 1). This
value is then subtracted from the word y to obtain a decoded
codeword. To recover the information bits after decoding, the
Q symbols are converted back to bits in the usual way, and the
m parity bits are discarded.

In Example 1, a simple encoding function for C was given
in conjunction with a mapping from tuples of b bits to symbols
of Q. Alternative pairs of encoding functions and symbol
mappings can be found for the same code, that give better
bit error probability when the code fails to correct all errors.
One such example given below, is a hybrid between the usual
positional mapping and the Gray mapping.

1) The hybrid mapping: Given a Gray code of length b− 1,
if the length b− 1 bit string ab−1 · · · a1 has sequential number
α in this Gray code, then the b-tuple is mapped to the number
2α + a0. This mapping has the advantage that it can still
be used in conjunction with the simple least-significant bit
encoding, and in addition, it reduces the bit error probability
when errors with magnitude greater than ` occur.

V. SYSTEMATIC CODES

All their advantages notwithstanding, the codes discussed
thus far in the paper suffer the shortcoming of not admitting
a systematic representation over Q. As seen in Figure 1(b),
(b− 1)m of the information bits are encoded in the m symbols
that also carry parity bits. Symbols that carry both information
and parity bits are undesirable if the code is used in high speed
memory applications, in which fast reading and writing is a
requirement. A trivial and wasteful way to obtain systematic

codes from the construction above is by not using these
problematic (b − 1)m information bits. This section aims at
finding more clever constructions for systematic codes.
A. Systematic Codes for ` = 1 Limited-Magnitude Errors

When the error magnitude ` is bounded by 1, the code Σ in
the code construction (2) is a binary code. As we show next
for this case, a modification of any code C can be carried out,
that yields a (slightly shorter) systematic code with the same
correction capability. We start off with an example.
Example 2. In this example we propose a systematic variant
to the code CH , given in Example 1. The encoding function
given below generates a code that has the same correction
capabilities as CH, namely any single ` = 1 asymmetric error is
correctable, though the resulting code is different. Specifically,
the dimensions of the systematic code are different. For this
example we assume that the alphabet size of the code is 2m (m
– the number of parity bits in the binary code), compared to
2b for arbitrary b in CH. This assumption can be lifted with a
small increase in redundancy that depends on the actual code
parameters. For an [n, k = n − m] binary Hamming code ΣH,
the length of the systematic code is n − m + 1, compared to
n in the non-systematic case. The systematic code is encoded
as follows. In Figure 2 (a), km information bits are input to
the encoder. The encoder then uses a binary Hamming encoder
to encode the k information bits of the top row into a length
n = k + m Hamming codeword (Figure 2 (b)). The parity bits
of the Hamming codeword are now placed as a separate column.
The mapping of bits to Q symbols, shown in Figure 2 (c), is the
usual positional mapping for the k information symbols and the
Gray mapping for the parity symbol.

PSfrag replacements

(a) (b)

(c)

k

m mkm infokm info

m
pa

rit
y

m
pa

rit
y

m
in

fo

∈ΣH

xi ∈Q xi ∈Q
positional Gray

lsblsb

msbmsb

Figure 2. Encoding Procedure for a Systematic Code

To decode, a word of Qk+1 is converted back to bits using the
same mappings, and a binary Hamming decoder is invoked for
the n coded bits. By construction, a single ` = 1 asymmetric
error over Q, translates to a single bit error in the Hamming
codeword: in the k information symbols, an ` = 1 error flips a
single (coded) least-significant bit (and perhaps other bits in the
same column), and in the parity symbol, an ` = 1 error flips
exactly one parity bit in that column, thanks to the Gray code
used in the mapping.
The code proposed in Example 2, together with its en-
coding/decoding, can be generalized to any t A1M error-
correcting code as stated by the following proposition (proof
omitted).

ISIT2007, Nice, France, June 24 – June 29, 2007

1179

Proposition 10 Let Σ be a binary systematic code of length n
and m 6 b · r parity bits, for any two integers r and b > 1. If
Σ corrects t symmetric errors, then it can be used to construct a
systematic t A1M error-correcting code over an alphabet of size
q = 2b. This code has length n − m + r, of which r symbols
are parity symbols.
B. Systematic Codes for ` > 1 Limited-Magnitude Errors

If we try to extend the construction of the previous sub-
section to codes for asymmetric ` > 1 limited-magnitude
errors, we immediately face a stumbling block. Although
generalized Gray codes exist for non-binary alphabets, they
(like all other mappings) do not guarantee that a single A`M
error translates to a single symmetric error in the (` + 1)-ary
codeword. We next consider ways to overcome this difficulty
to reattain the generality of the systematic construction. The
first proposed solution is simple but wasteful, the second is
significantly more efficient for large `.

1) Making Parity Symbols Error-Free: If the parity Q
symbols are taken from a subset of Q with relative size
1/(` + 1), A`M errors in the parity symbols can be easily
corrected before invoking the decoder for Σ. This solves the
problem at the cost of one (` + 1)-ary symbol per q-ary parity
symbol.

2) Ensuring a Single Symmetric Error with a Small Added
Redundancy: When we examine more closely the properties
of the (` + 1)-ary reflected Gray code, we see that for any `
and b, an A`M error induces at most two symmetric errors in
the (` + 1)-ary code. Moreover, if an A`M error induces two
symmetric errors, then one of the two has to be in the right
most location of the Gray codeword. While these properties
themselves are not satisfactory for the construction, with a
small amount of added redundancy (that becomes negligible
with increasing `), one can guarantee that at most one (` + 1)-
ary symbol is changed by the A`M error. We first define
the well known N-ary reflected Gray code and prove its
aforementioned properties.
Definition 11. For an even N, let the N-ary reflected Gray code
of length b be defined recursively, as follows.

G(1, N) =

0
1
2
...

N − 1

, G(b, N) =

0 G(b − 1, N)
1 G(b − 1, N)R

2 G(b − 1, N)
...

...
N − 1 G(b − 1, N)R

where the symbols in bold represent column vectors with Nb−1

identical elements. The sub-matrix G(b − 1, N)R stands for
G(b − 1, N) in reversed order.
Theorem 12. Let two words of G(b, N) be
denoted x j1 = ab−1ab−2 · · · a2a1a0 and x j2 =
cb−1cb−2 · · · c2c1c0, respectively. If | j2 − j1| 6 N, then
D(ab−1ab−2 · · · a2a1, cb−1cb−2 · · · c2c1) 6 1. D(x, y) is the
Hamming distance between two words. Moreover, ai and ci on
the differing location i, differ by exactly 1 modulo N.

Proof: By construction, the ith symbol has ±1 transitions
in list numbers j = sN i, where s ≡ 1, . . . , N − 1 (mod N).
In particular, for i > 0, N | j and therefore transitions are at
least N apart in the upper n − 1 indices.

The theorem proves that given an A`M error, at most one
of the upper b − 1 (` + 1)-ary symbols suffers an error with
magnitude ±1 (i.e ci ≡ ai ± 1 (mod ` + 1)). Consequently,
if we use only Gray codewords whose b − 1 upper symbols
have even parity, then an asymmetric (` + 1)-limited-magnitude
error induces only a single symmetric error (in the zeroth
symbol) and thus the systematic construction for ` = 1 works
for a general odd3 `. This restriction on the contents of the
parity symbols of C, amounts to roughly one bit of additional
redundancy per q-ary parity symbol. For increasing `, this is a
negligible loss in storage efficiency, compared to a full (` + 1)-
ary redundant symbol that was required in the solution in V-
B.1 above. Ways to map (` + 1)-ary parity symbols into the
restricted alphabet of the q-ary parity symbols are omitted in
this presentation.

VI. CONCLUSIONS AND FUTURE RESEARCH

Many of the strengths of the code construction method were
not explored in the current paper. For example, similar ideas
can lead to codes that correct symmetric limited-magnitude
errors, or more generally, asymmetric double-sided limited-
magnitude errors that may arise in particular designs. Also,
when the reading resolution is greater than the code alphabet
size, improved decoding techniques can be readily applied us-
ing “limited-magnitude erasures” or other soft interpretations
of the read symbols. Better systematic codes may be obtained
by observing the relation between the limited magnitude errors
and the errors they impose on the low-alphabet code, and
then replacing the symmetric error correction properties we
required (which are too strong) with various Unequal Error
Protection properties.

REFERENCES

[1] R. Ahlswede, H. Aydinian, L. Khachatrian, and L. Tolhuizen, “On q-
ary codes correcting all unidirectional errors of a limited magnitude,”
Arxiv.org, http://arxiv.org/abs/cs/0607132, Tech. Rep. cs.IT/0607132,
2006.

[2] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades using
a predictive method,” in proc. of the IEEE International Symposium on
Circuits and Systems, 2005, pp. 2148–2151.

[3] P. Cappelletti and A. Modelli, “Flash memory reliability,” Flash Memo-
ries, P. Cappelletti, C. Golla, P. Olivo, E. Zanoni Eds. Kluwer, pp. 399–
441, 1999.

[4] B. Eitan, R. Kazerounian, and A. Roy, “Multilevel Flash cells and their
trade-offs,” IEDM Technical Digest, pp. 169–172, 1996.

[5] B. Eitan and A. Roy, “Binary and multilevel Flash cells,” Flash Memories,
P. Cappelletti, C. Golla, P. Olivo, E. Zanoni Eds. Kluwer, pp. 91–152,
1999.

[6] H. Nobukata et. al, “A 144-Mb, eight-level NAND Flash memory with
optimized pulsewidth programming,” IEEE J. Solid-State Circuits, vol. 35,
no. 5, pp. 682–690, 2000.

[7] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error
correcting techniques for new-generation Flash memories,” Proceedings
of the IEEE, vol. 91, no. 4, pp. 602–616, 2003.

[8] M. Grossi, M. Lanzoni, and B. Ricco, “Program schemes for multilevel
Flash memories,” Proceedings of the IEEE, vol. 91, no. 4, pp. 594–601,
2003.

[9] J. Leech and N. Sloane, “Sphere packing and error-correcting codes,”
Canadian J. Math., vol. 23, no. 4, pp. 718–745, 1971.

3The result extends to odd ` + 1, but the focus here is on more practical
even sized alphabets

ISIT2007, Nice, France, June 24 – June 29, 2007

1180

