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On the Capacity of the Precision-Resolution System
Moshe Schwartz, Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract—Arguably, the most prominent constrained system in
storage applications is the ��� ��-run-length limited (RLL) system,
where every binary sequence obeys the constraint that every two
adjacent 1’s are separated by at least � consecutive �’s and at most
� consecutive �’s, namely, runs of �’s are length limited. The mo-
tivation for the RLL constraint arises mainly from the physical
limitations of the read and write technologies in magnetic and op-
tical storage systems. We revisit the rationale for the RLL system,
reevaluate its relationship to the constraints of the physical media
and propose a new framework that we call the Precision-Resolu-
tion (PR) system. Specifically, in the PR system there is a separation
between the encoder constraints (which relate to the precision of
writing information into the physical media) and the decoder con-
straints (which relate to its resolution, namely, the ability to distin-
guish between two different signals received by reading the phys-
ical media). We compute the capacity of a general PR system and
compare it to the traditional RLL system.

Index Terms—Run-length limited (RLL), constrained coding,
capacity of constrained channels.

I. INTRODUCTION

T HE -run-length limited (RLL) system is perhaps
the most commonly used constraint, appearing in various

contexts and applications, including (but not restricted to)
magnetic and optical storage, holographic storage, and wireless
and fiber-optic communication. It is however easy to forget that
RLL coding is but one possible solution to a set of restrictions
imposed by the medium, by current sensing and processing
technology, or by our own choice. To better understand any
extension, we should first describe these restrictions.

In the context of a (simplistically described) magnetic storage
application, for example, one wants to write a stream of bits.
The bit stream induces a waveform in which ’s represent a
transition, and ’s represent no change. The duration of each
bit is a constant (see Fig. 1). This waveform is then used to
polarize the surface of the medium. The disk rotates under the
writing head at a constant angular speed , and so a constant bit
duration translates into a constant angle which each bit
occupies on the surface of the disk.
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Fig. 1. (a) The information bit stream. (b) It induces a transmitted (or stored)
waveform, which is later received (or read), resulting in a waveform shown in
row (c). The duration of each bit in the waveform is � .

Due to the nature of recording devices, when reading back the
stream, we receive a waveform with peaks which correspond to
the ’s in the original bit stream. The first restriction imposed
by such a system is a function of the sensors used for the reading
which may cause adjacent peaks to merge if these are positioned
too close to each other. In the RLL constraint, this restriction is
addressed by requiring that in the bit stream that we write, every
two adjacent ’s are separated by at least consecutive ’s,
resulting in peaks which are at least apart in the read-
back waveform (sometimes referred to as the minimum feature
size).

On the other hand, the decoding mechanism attempts to ac-
quire the correct number of ’s in a run by measuring the time
between two adjacent peaks, and dividing it by (the dura-
tion of a single bit). However, many factors that occur even if
the same device is used to write and read the information (e.g.,
changes in temperature between the time of writing and the time
of reading, which cause the oscillator driving the system clock
to slightly change its frequency), can cause the readback wave-
form to be stretched or condensed. This effect is known as a
clock drift.

If the clock drift is bounded by , then a written run
of length (composed of ’s followed by a single ) of
total duration , may end up being measured as a run
of duration , with

. It is now evident, that with a clock drift of ,
any integer run length in the interval can result in
the actual reading. If is small enough, that interval contains
only as an integer, thus enabling us to recover the correct
run length. However, if is too large, the interval may contain
more than one integer and the decoding procedure may choose
the wrong integer, thus causing the occurrence of spurious or
missing ’s in the decoded bit stream.

To avoid such a problem, under the assumption that the de-
coder does not try to correct its timing mechanism, the RLL-
constraint chooses to limit the maximum length of any run of

’s to the largest integer for which ,
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Fig. 2. The precision-resolution framework.

since for any larger spurious or missing ’s may result in the
decoding. We note that since the ’s are used only to punctuate
the stream, and we measure the time duration between peaks,
the duration of the run includes the duration of the consecutive

’s and the single following . Thus, for example, any value
of results in found, for example, in the
(2,10)-RLL of CD-ROMs and DVDs12.

Hence, in order to get a correct decoder’s resolution, we
need to make sure the corresponding constraints are sat-
isfied. However, current RLL systems include an implicit re-
striction: the requirement that the set of valid intervals form a
sequence of consecutive integers. Having similar motivation,
Funk [2] devised an improvement to the RLL scheme called
RLL-MS, by replacing this requirement with the requirement
that the set of valid intervals form an arithmetic progression. The
interval-modulation scheme introduced by Mukhtar and Bruck
[3], [4] generalized RLL to take advantage of higher precision
clocks, however, it mainly addressed the encoder/decoder con-
struction.

Parting ways with the restriction that the time between ad-
jacent peaks be an integer and parameterizing this precision
constraint leads us to define a sequence of ever more precise
systems. These systems are able to measure small discrete time
intervals, and in the theoretical limit, reach a system with infi-
nite-precision measurement. The key benefit in our new frame-
work is the separation (see Fig. 2) between the encoder con-
straints (which relate to the precision of writing information into
the physical media) and the decoder constraints (which relate to
the ability to distinguish between two different signals received
by reading the physical media).

We therefore introduce the -PR (precision-resolu-
tion) framework. In this framework (see Fig. 2), an encoder
receives a stream of binary symbols, transforms them into a
stream of real numbers which are sent over a noiseless channel
to a decoder, which then converts them back to the original
binary stream. However, both sides suffer from further con-
straints:
Encoder Constraint—The encoder has constrained precision.
Each transmitted symbol is some where

any integer, and a fixed integer. We call
the precision of the encoder. We denote infinite precision by

, i.e., the framework in which the encoder can send any
.

Decoder Constraints—The decoder suffers from resolution
constraints. We may define several different sets of constraints
which correspond to different applications. In this paper we

1It is important to note that other factors, such as ease of implementation,
determine the � value of ��� ��-RLL used in applications, and that � � �� in
CD-ROMs and DVDs is not derived solely from the description above.

2While measuring the time between peaks is still used in optical communica-
tion, many storage applications have replaced it with the more elaborate PRML
scheme which includes an equalizer and a Viterbi decoder (see [1]).

consider a set which is motivated mainly (but not only) by
storage applications.

• The decoder cannot correctly recover any , where
, is called the minimum resolution.

• If was transmitted, then the received obeys
, where , , is

another parameter of the framework. For convenience, we
define and call it the resolution factor.

In his seminal work, Shannon [5] defined the capacity of a
constrained system as

where , denotes the set of strings of length in
. Further advances in the subject include the work of Adler,

Coppersmith, and Hassner [6], who applied symbolic dynamics
[7] to the analysis and construction of sliding-block encoders for
constrained systems. More extensions may be found in works
such as Heegard, Marcus, and Siegel [8], Marcus, Siegel, and
Wolf [9], and a review in Marcus, Roth, and Siegel [10]. For
a comprehensive description of applications to storage systems
see Immink [11].

Since the definition of the RLL constraint in [12] and [13],
several variants to the RLL constraint were suggested. How-
ever, the basic premise that we may use ever growing runs of

’s until we reach a run length for which the clock drift may
produce a spurious or missing , was never changed. This par-
adigm was shifted in the work of Mukhtar and Bruck [3], [4]
which described an extension to the RLL constraint and gave
a variable-bit-rate to variable-bit-rate encoder/decoder scheme
for it. Similar results to this work (though without the preci-
sion constraint) were independently and concurrently discov-
ered by Yeung et al. in [15]. In Section II, we describe this exten-
sion in the precision-resolution framework, discuss the integral-
precision constraint, -PR, and calculate its capacity. In
Section III we consider the sequence of constraints -PR,
where and show how it provides an improve-
ment to the capacity. We then compute the capacity of the infi-
nite-precision constraint, -PR, and show that it is ac-
tually the limit as of the capacity of -PR. As a
result, we can compare, for example, the capacity of (2,10)-RLL
used in CD-ROMs and DVDs and is approximately 0.5418,
with the capacity of the corresponding -PR which
is approximately 0.7725, thus giving the hope for an increase
in capacity. We discuss generalizations to the PR scheme with
higher alphabets as well as different resolution constraints in
Section IV, and show that under a reasonable set of assump-
tions, our greedy interval packing is optimal. We summarize our
results in Section V.

II. THE -PR CONSTRAINT

The -RLL constrained system is, equivalently, the set of
all possible strings which are formed by concatenating strings
from the set
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Fig. 3. With � � � and � � ��� (i.e., � � ���) we see the disjoint �-neighborhoods of (a) the symbols of the resulting (1,2)-RLL. (b) The first four symbols of
(1,2,1.5)-PR.

Because of this form of representation, it was shown in [5] that
the capacity of the -RLL constraint is , where

is the unique positive root of the equation

We may also think of the strings in as a set of symbols
which differ only in their duration. For -RLL this set is

For the decoder of a -RLL stream there is no ambiguity.
Any time duration read , is some ,
where is the written duration and is the
clock drift. But since was chosen such that

, for any two distinct elements there is
no intersection in their -neighborhoods:
and .

Essentially, the -RLL constraint starts with the minimal
time interval allowed by the decoder, , and continues to
add successive lengths as long as their -neigh-
borhoods are disjoint. It stops at the first length whose
-neighborhood intersects that of .

An obvious question asked by Mukhtar and Bruck [3], is why
restrict ourselves to successive time durations? We may skip

but still be able to use or some other longer length. In
[3] it is assumed that some digital clock is governing the system,
thus restricting all time durations measured to be integral mul-
tiples of the clock period. This brings us to define the integral
precision-resolution constrained system.

Definition 1: Let , be the minimum resolution,
and let be the resolution factor, where

. Then the -PR constraint is the set of all
streams with symbols from the set

where we define

Example 2: For and , we have

See Fig. 3 for an illustration of the disjoint -neighborhoods.

Obviously, the -PR constraint obeys the -PR
framework since all symbols are integers, the smallest one is ,
and

ensures that the -neighborhoods of elements in are dis-
joint. For a practical implementation we may want to limit the
size of elements in and so we define

Furthermore, if we define

then is exactly the set used in -RLL.

Theorem 3: Let denote the constraint with intervals from
. Then for every such that

Proof: As was pointed out before,
where is the unique positive solution to , and

Similarly we define and , where the latter is easily
seen to be monotone decreasing and continuous in . Since

we immediately get that . Further-
more

and so .

We, therefore, conclude that adding more symbols to the con-
straint, strictly increases the capacity. If we consider the infinite
set , we get the following theorem.

Theorem 4: Let denote the -PR constrained
system. Then
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Fig. 4. The capacity of ��� � � ��-RLL versus the capacity of ����� ��-PR.

where is the unique solution in to and

Proof: We omit the proof that since
this is essentially the same as the proof of Theorem 12. From
that proof we also get that is continuous and monotone
decreasing in . We now note the obvious fact that all the
exponents in are positive integers, and since , not
all positive integers appear as exponents. Thus, and
so .

It should be noted that Theorem 4 (as well as its large-al-
phabet counterpart, see Section IV-A) is a special case of [14,
Theorem 7.5]. However, we choose to prove a different gener-
alization which is given in Theorem 12.

We see in Fig. 4, for , a comparison of the resulting
-RLL constraint with its extension, the -PR

constraint. To plot this graph, an approximation was needed
since no simple closed form is known for . Specifically,
we added only the first five monomials beyond those of the cor-
responding RLL constraint.

III. THE GENERAL -PR CONSTRAINT

It is intuitively clear that the rounding up of the symbols of
the -PR constraint incurs a penalty in capacity, espe-
cially for small values of . So while the -neighborhoods of
and are disjoint, the unused gap between them might be
fairly large.

All of this is caused by the fact that we restricted ourselves
to symbols which are integers. But suppose we are given a
system which is times more precise3, i.e., it is able to

3In practical terms, being � times more precise means the encoder has a clock
with � times the original frequency, which allows it to align the peaks to mul-
tiples of ���. This, however, is independent of the resolution parameters at the
decoder side. Thus, for example, if the minimum resolution is � � �, the en-
coder must keep adjacent peaks at least 1 units apart even though it is capable
of placing them closer, at ��� units apart.

transmit symbols which are multiples of . So now, instead
of rounding up the symbols of our constrained system to the
nearest integer, we can round them up to the nearest multiple
of .

Definition 5: Let be the precision, , be
the minimum resolution, and let be the resolution
factor, where . Then the -PR con-
straint is the set of all streams with symbols from the set

Example 6: For and , we have

See Fig. 5 for an illustration of the disjoint -neighborhoods
which shows the shrinking of the gap between adjacent neigh-
borhoods as the precision grows.

The following theorem shows that we never lose capacity
when using a constraint which is times more precise.

Theorem 7: Let . Then

which holds in equality iff for all .
Proof: First, since the symbols of -PR are exactly

the symbols of -PR, only scaled down by a factor of
, there is a 1-1 correspondence between strings of length4 in

-PR, and strings of length in -PR. Thus

Let us now define

so that and , where
are the unique positive solutions to and
, respectively.

We note that for all . This is because
, so for any , we get and

thus . Thus, , and
since is continuous and monotone decreasing in ,
this means that

Finally, since , equality holds in the
above iff for all .

We note that the requirement that be an integer is necessary
for Theorem 7. This is because for , and ,
we do not know which of and is greater. Thus, for

4The length of a string is the sum of the lengths of its symbols, where the
length of a symbol is simply its value.
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Fig. 5. With � � � and � � ��� (i.e., � � ���) we see the disjoint �-neighborhoods of (a) the symbols of the resulting (1,2)-RLL. (b) The first four symbols of
(1,2,1.5)-PR. (c) The first four symbols of (2,2,1.5)-PR.

Fig. 6. The capacity of ��� �� ��-PR, for � � �� �� �� 	.

example, there are values of for which we get
. In Fig. 6, we see for .

Returning to the RLL constraint, being times more pre-
cise usually translates into having a digital clock which runs

times faster. While we gain from faster clocks when using
-PR, the case is often worse in -RLL. This is be-

cause, if the encoder chooses to use its improved precision,
when using a clock which runs times faster, we have to use

-RLL since is not affected by the speed of the
clock, but the minimum time between adjacent peaks becomes

clock ticks. However, we have
when , which for most practical values of ,
and , is the case.

Example 8: Assume we have , and so .
In the case of an encoder having precision , a single clock
tick equals one time unit, and the RLL constraint allows inter-
vals of clock ticks between adjacent peaks, i.e., the
(0,4)-RLL constraint. The capacity of (0,4)-RLL is

.
Suppose now, that we change just the precision to

without changing the resolution parameters at the decoder
side. Thus, two clock ticks of the encoder equal a single time
unit. To keep the minimum interval between peaks at
time units (forced by the decoder parameters), the allowed

intervals are clock ticks between adjacent peaks,
i.e., the (1,4)-RLL constraint. Note that the maximal interval,
even though it is specified in terms of ticks which are twice
as short, does not change since it is affected solely by . That
is, transmitting an interval of 5 ticks (2.5 time units) and an
interval of 6 ticks (3 time units) may result in the same reading,
causing an ambiguous decoding. The capacity of (1,4)-RLL is

but since the clock ticks are twice as
fast the overall capacity of the system is twice as much, i.e.,

. Thus, having twice the precision at
the encoder side allows times as
many bits to be written on the medium.

Continuing in the same manner, we get that for
the capacity of the system is , and

, respectively. However, when we get
to , the allowed intervals are just and the resulting
constraint is (4,4)-RLL with capacity 0.

If we look at Fig. 6 there appears to be an upper bound on
the capacity as we continue to increase the precision. This is
indeed the case as will shall prove shortly. First, we define the
appropriate constrained system with infinite-precision.

Definition 9: Let , be the minimum resolution,
and let be the resolution factor, where

. Then the -PR constraint is the set of all
streams with symbols from the set

Example 10: For and , we have

See Fig. 7 for an illustration of the disjoint -neighborhoods
which shows the total elimination of the gaps between adjacent
neighborhoods with infinite precision.

Since an -PR system is no longer made up of dis-
crete bits, we need the analog of length strings. We define the

-header, , of such a stream, as the ordered set of sym-
bols appearing between the beginning of the stream and time

. If we observe the -header, we may see several symbols en-
coded in it one after the other. The last complete symbol may
not necessarily reach time exactly. The remaining part of the
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Fig. 7. With � � � and � � ��� (i.e., � � ���) we see the disjoint �-neighborhoods of (a) the symbols of the resulting (1,2)-RLL. (b) The first four symbols of
(1,2,1.5)-PR. (c) The first four symbols of (2,2,1.5)-PR. (d) The first four symbols of ��� �� ����-PR.

time interval is the beginning of another encoded symbol whose
end we do not see, and which we call the tail.

Example 11: For the allowed symbols are of
duration and so on. The
following 3-headers may be seen: (1,1,1), (1.5,1.5),

, , and . The-
sign denotes the tail.

We can now proceed with calculating the capacity of the
-PR constraint. For simplicity, we handle the

case first, and then prove the general case.

Theorem 12: Let denote the -PR constrained
system . Then

where is the unique solution in to the equation
and

Proof: The first thing we do is prove that actually exists
and is unique. For any , the sequence of partial sums

is strictly increasing and bounded from
above by the geometric sum
and thus converges. Now let and then

and since we have already noted that the sequence
converges, by the Weierstrass -test, converges

uniformly in and is therefore continuous. Thus is
continuous for any and is easily seen to be strictly
decreasing. Finally, since

there exists a unique as required.

Fig. 8. Two examples with 4.25-headers: (a) Merging ������������ to
�������� to ���. (b) Stuffing ������� to ��������� to ������� ����.

Let us denote by the set of all -headers of . Obvi-
ously,

For technical simplicity let us define to be the set of all
-headers of with tail strictly smaller than 1. It is easy to see

that

We contend that for . This is
because any -header of contains at most complete
symbols, and since its tail is strictly shorter than 1, we can create
at most distinct -headers in by repeatedly merging
the tail with the last complete symbol. To complete the argu-
ment, we can get any -header of that way because we
can take any -header with tail of length 1 or more, and repeat-
edly stuff complete symbols of length 1 while reducing the tail
by 1, to get a -header from . See Fig. 8 for an example
of merging and stuffing.

We now prove by induction5 that . For the in-
duction base we point out that obviously
for all by definition. Furthermore, since

5Though the domain of �� ���� is , the induction will take place on .
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for all . For the induction hy-
pothesis, let us assume that for all ,

. We then prove the claim also holds for .
Let , then

where we are able to use the induction hypothesis since
and so . It follows that

We now want to prove that . We contend
that for all . We do this again by induc-
tion. For the induction base take any and then

For the induction hypothesis we assume that
for all . We prove the claim also holds for

. Taking it follows that

Thus we get

which completes the proof.

To translate the capacity of -PR to the capacity of
-PR with any , we have the following theorem.

Theorem 13: Let denote the -PR constrained
system, . Then

Proof: Just observe the simple 1-1 correspondence be-
tween -headers of and -headers of achieved
through simple scaling by a factor of .

The capacity of -PR is an upper bound on the ca-
pacity of any -PR, , and is actually the limit as

. This is shown in the next two theorems.

Theorem 14: For any , let
denote the -PR constraint, and denote the

-PR constraint. Then

Proof: Since , take any string of length
from , and replace every symbol of duration

with a symbol of duration and by extending the tail, getting
an -header from . Thus which
proves the claim.

Theorem 15: With notation as before

Proof: Let us define

and denote by the unique solutions in to
and , respectively. Thus, we get

and .
Since also passes the Weierstrass -test

conditions for any , it follows that

and so , thus completing the proof.

The capacity of the -PR constraint is shown in Fig. 9.
Simple root-finding techniques were used together with limited
precision to approximate the roots of .

IV. GENERALIZATION AND OPTIMALITY

A. Larger Alphabets

In some applications, another degree of freedom is possible
in the form of a larger alphabet. In applications such as magnetic
recording devices and optical storage, the recording is done
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Fig. 9. The capacity of ��� �� ��-PR.

using intervals of two “colors,” where each two adjacent inter-
vals have different colors and the interval is defined by the color
transitions at its beginning and end. By taking the derivative of
this stream of intervals we get the traditional representation as a
stream of binary symbols where the ’s denote the transitions,
and the amount of ’s between them count the length of the in-
terval.

Some new applications allow intervals to be colored by more
than two colors. Though we will not use this representation,
again we may take the derivative and represent the encoded
stream as a string of symbols over where is the number
of colors. Each non-zero position represents a transition by the
difference in color values in , while runs of ’s determine the
length of the encoded interval.

The precision resolution framework for alphabets of size ,
which we denote -PR, is defined as before, only now
the symbols transmitted over the channel come from the al-
phabet . The omission of from comes to
ensure that two adjacent intervals do not have the same color, for
example by defining that the element from encodes the
difference in colors between the current symbol and the previous
one. Though the actual number of streams should be multiplied
by to account for the choice of color for the first interval (all
other colors are then determined by the difference in colors as
said before), we will ignore this factor for the sake of simplicity
since it does not affect the capacity calculation. Thus, from now
on, by abuse of terminology, if is a trans-
mitted symbol then we call the color of the symbol.

Since all the theorems generalize in a similar fashion, we will
prove only the generalization of Theorem 12.

Theorem 16: Let denote the -PR constrained
system, . Then

where is the unique solution in to and

Proof: We start by noting that is exactly the same as
in Theorem 12, and so the same arguments may be used to show
that indeed there exists a unique as claimed.

Let us denote by the set of all -headers of . Ob-
viously

For technical simplicity let us define to be the set of all
-headers of with tail strictly smaller than 1. It is easy to

see that

We contend that for . This is
because any -header of contains at most complete
symbols, and since its tail is strictly shorter than 1, we can create
at most distinct -headers in by repeatedly merging
the tail with the last complete symbol and setting the tail’s color
to that of the merged symbol. To complete the argument, we
can get any -header of that way because we can take
any -header with tail of length 1 or more, and repeatedly stuff
complete symbols of length 1 and same color as the tail, while
reducing the tail by 1, to get a -header from .

We now prove by induction that .
For the induction base we point out that obviously

for all by definition. Further-
more, since for
all . For the induction hypothesis, let us assume that

for all , . We then
prove the claim also holds for . Let ,
then

where we are able to use the induction hypothesis since
and so . It follows that

We now want to prove that . We con-
tend that for all . We do this again
by induction. For the induction base take any and then
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For the induction hypothesis we assume that
for all . We prove the claim also

holds for . Taking it follows that

Thus, we get

which completes the proof.

The capacity of the -PR constraint for
is shown in Fig. 10. Simple root-finding techniques were used
together with limited precision to approximate the roots of

.

B. General Receiver Errors and Optimality

Up until now we have considered just one type of error at the
receiver, a multiplicative error caused by clock drift. However,
in many cases the situation is more complex and other types
of errors may be involved and even combined together, such as
additive jitter error with multiplicative clock-drift error.

In a more general setting, we associate two resolution-restric-
tion functions, , with the receiver. When a symbol

is transmitted, the receiver may read any of the values in
the interval . For example, a clock-drift error is de-
fined by and , a jitter error is
defined by and , while their com-
bination may be defined by and

.

Fig. 10. The capacity of ��� �� �� -PR for � � �� �� �� �.

We note that underlying the previous sections is a simple
algorithm, which given a precision , minimum resolution ,
and resolution-restriction functions and , chooses a
symbol set greedily. More precisely, we start with an empty
symbol set. Each time we add the minimal symbol such
that it is correctly aligned according to , is above the minimal
resolution , and has an empty intersection with

for any of the previously selected symbols. We
call this algorithm the precision-resolution symbol-selection al-
gorithm.

Theorem 17: Given precision , minimum resolution ,
and resolution-restriction function and , let be the
symbol set selected by the precision-resolution symbol-se-
lection algorithm, and let be some other symbol set which
respects , and . Let and be the resulting
constrained systems from and , respectively. If is
monotone nondecreasing, then .

Proof: We denote and ,
where we sort the symbols in increasing order, that is, if
then and . Let be the first index for which

, i.e., for all . By the definition
of the precision-resolution symbol-selection algorithm, neces-
sarily .

Let us now define , that is, we take
and replace with . We contend that also respects

, and . Since , then we certainly have
no problem with the precision and the minimum resolu-
tion . Also, has empty intersection with

for all . So our only concern is
that intersects . But since

we have where the first
inequality holds because is monotone nondecreasing, and
the second holds because respects and .

Repeating this process we arrive at the conclusion that
for all . Thus, whenever we inspect the set of -headers,

and so .

The precision-resolution system described in the previous
sections may lead the unwary reader to assume the receiver
requires readings which are at least as precise as the precision
at the encoder, or conversely, that there is nothing to be gained
by having an encoder more precise than the precision of the
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readings at the receiver side. At this point we can demonstrate
this is not true with the following simple example.

Example 18: Suppose the receiver has minimal resolution
, it suffers from a multiplicative error in its measure-

ments with , and all its readings are rounded up to the
nearest integer. That is, a transmitted interval may be read as
any integer in . This would correspond
to resolution-restriction functions and

. The is introduced just to be con-
sistent with the fact that the readings are in the open interval

.
An encoder with precision , the same precision as the

readings on the receiver side, has a symbol set consisting of
. This is because a transmitted 1 may

be received as any reading between 0.9 and 1.1, and after the
rounding up, it is either 1 or 2. We thus contain it in the open
interval . Similarly, for example, the
reading of a transmitted 3 is contained in (2.5,4.5), and that of a
transmitted 12 in (10.5,14.5). The allowed intervals are chosen
greedily according to the precision-resolution symbol-selection
algorithm.

On the other hand, let us consider an encoder with a higher
precision of . By using the algorithm, such an encoder
has a symbol set which ob-
viously results in a higher capacity.

V. RESULTS SUMMARY

We started by exploring the -PR constraint which is
a natural extension to -RLL. The extension allows more
run-lengths to be written than -RLL admits, subject to the
restriction that the decoder, which suffers from a bounded clock
drift, can get no ambiguous reading.

We further generalized our setting by defining the
-PR framework, and the -PR constraint which

realizes the framework. We then showed that as , the
capacity of -PR approaches that of -PR from
below.

We concluded by showing the underlying greedy algorithm
used to choose the symbols given the parameters of the system.
This algorithm may be used in a wide range of parameters
which under a weak assumption, ensures that the precision-res-
olution constrained system achieves the optimal capacity. Since
the RLL constraint is mainly used today in conjunction with
PRML, it is tempting to merge the PR constraint with PRML.
Future work may consider the interplay between the two by
considering PRML parameters, e.g., sampling rate, as a set of
resolution constraints, perhaps achieving another increase in
capacity in some applications.

Though the RLL constraint also fits the framework’s require-
ments, the -PR constraint seems more natural, and it
achieves a higher capacity which does not vanish for as
in the case of RLL. This is especially appealing for engineering
reasons: having only an RLL solution, any improvement in pre-
cision, e.g., faster clocks, requires a lower clock-drift or else the
capacity may drop to zero. However, in the -PR con-
straint, the two parameters of precision and resolution factor, are
independent. Thus, they allow improvement of one without the
other, always resulting in improved capacity, and offer a tradeoff
if our goal is to reach a certain prescribed capacity.
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