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Abstract—We investigate error-correcting codes for a the
rank-modulation scheme with an application to flash memory
devices. In this scheme, a set of � cells stores information in the
permutation induced by the different charge levels of the indi-
vidual cells. The resulting scheme eliminates the need for discrete
cell levels, overcomes overshoot errors when programming cells (a
serious problem that reduces the writing speed), and mitigates the
problem of asymmetric errors. In this paper, we study the proper-
ties of error-correcting codes for charge-constrained errors in the
rank-modulation scheme. In this error model the number of errors
corresponds to the minimal number of adjacent transpositions re-
quired to change a given stored permutation to another erroneous
one—a distance measure known as Kendall’s � -distance. We show
bounds on the size of such codes, and use metric-embedding tech-
niques to give constructions which translate a wealth of knowledge
of codes in the Lee metric to codes over permutations in Kendall’s
� -metric. Specifically, the one-error-correcting codes we construct
are at least half the ball-packing upper bound.

Index Terms—Error-correcting codes, flash memory, Kendall’s
-metric, metric embeddings, permutations, rank modulation.

I. INTRODUCTION

F LASH memory is an electronic nonvolatile memory
(NVM) that uses floating-gate cells to store information

[7]. In the standard technology, every flash cell has discrete
states, , and, therefore, can store bits.
The flash memory changes the state of a cell by injecting or
removing charge into/from the cell. To increase a cell from a
lower state to a higher state, charge (e.g., electrons for nFETs)
is injected into the cell and is trapped there. This operation
is called cell programming. To decrease a cell’s state, charge
is removed from the cell, which is called cell erasing. Flash
memory is widely used in mobile, embedded, and mass-storage
systems because of its physical robustness, high density, and
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good performance [7]. To expand its storage capacity, research
on multilevel cells with large values of is actively underway.

For flash memories, writing is more time- and energy-con-
suming than reading [7]. The main factor is the iterative cell-pro-
gramming procedure designed to avoid over-programming [2]
(raising the cell’s charge level above its target level). In flash
memories, cells are organized into blocks, where each block has
a large number of cells [7]. Cells can be programmed
individually, but to decrease the state of a cell, the whole block
has to be erased to the lowest state and then re-programmed.
Since over-programming can only be corrected by the block era-
sure, in practice a conservative procedure is used for program-
ming a cell, where charge is injected into the cell over quite a
few rounds [2]. After every round, the charge level of the cell is
measured and the next-round injection is configured. The charge
level of the cell is made to gradually approach the target state
until it achieves the desired accuracy. The iterative-program-
ming approach is costly in time and energy.

A second challenge for flash memory is data reliability.
The stored data can be lost due to charge leakage, a long-term
factor that causes the data retention problem. The data can also
be affected by other mechanisms, including read disturbance,
write disturbance [7], etc. Many of the error mechanisms have
an asymmetric property: they make the numerous cells’ charge
levels drift in one direction. (For example, charge leakage
makes the cell levels drift down.) Such a drift of cell charge
levels causes errors in aging devices.

In a recent paper [16], a new scheme for storing data in flash
memories was proposed, the rank-modulation scheme. It aims at
eliminating the risk of cell over-programming, and reducing the
effect of asymmetric errors. Given a set of cells with distinct
charge levels, the rank of a cell indicates the relative position
of its own charge level, and the ranks of the cells induces a
permutation of . The rank modulation scheme uses
this permutation to store information. To write data into the
cells, we first program the cell with the lowest rank, then the cell
with the second lowest rank, and finally the cell with the highest
rank. While programming the cell with rank , the
only requirement is to make its charge level be above that of the
cell with rank .

The rank-modulation scheme eliminates the need to use the
absolute values of cell levels to store information. Instead, the
relative ranks are used. Since there is no risk of over-program-
ming and the cell charge levels can take continuous values, a
substantially less conservative cell programming method can be
used and the writing speed can be improved. In addition, asym-
metric errors become less serious, because when cell levels drift
in the same direction, their ranks are not affected as much as
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their absolute values. This way both the writing speed and the
data reliability can be improved.

Even though asymmetric drifts of cell levels are tolerated
better by rank modulation, errors can still happen because the
cell levels do not necessarily drift at the same rate. The spe-
cific error model we explore is one in which the number of er-
rors corresponds to the minimal number of adjacent transposi-
tions required to change a given stored permutation to another
erroneous one. This distance measure between permutations is
known as Kendall’s -distance [17]. This models errors arising
from an upper-bounded charge-level change in the cells, and
the codes we construct are therefore named charge-constrained
rank-modulation codes (CCRM codes).

In addition to [16], which studies Gray codes for the
rank-modulation scheme, other recent works connecting rank
modulation and flash memory include [23] which studies
limited-magnitude errors in the rank-modulation scheme, and
[25] which explores rank modulation in conjunction with
constrained systems.

While the application of rank modulation to flash memories
is new, rank modulation itself has a long history. Permutations
have been used as codewords as early as the works of Slepian
[22] (later extended in [3]), in which permutations were used
to digitize vectors from a time-discrete memoryless Gaussian
source, and Chadwick and Kurz [9], in which permutations were
used in the context of signal detection over channels with non-
Gaussian noise (especially impulse noise). Further early studies
include works such as [3]–[5], [8], [10], [13]. More recently,
permutations were used for communicating over powerlines (for
example, see [24]). Of specific relevance are [5], [8], [9], which
use Kendall’s -metric space.

In this paper, we study error-correcting codes for rank modu-
lation. We prove bounds on the size of CCRM codes. We further
employ metric-embedding techniques to translate -ary codes in
the Lee metric to CCRM codes in Kendall’s -metric. This es-
tablishes a general method for designing CCRM codes using an
abundance of well-known codes over the Lee metric. Specifi-
cally, we present a single-error-correcting code whose size is at
least half of the ball-packing upper bound.

The rest of the paper is organized as follows. In Section II,
we define the notation and introduce Kendall’s -metric. We
continue in Section III and present code constructions through
metric embeddings. In Section IV, we investigate bounds on
CCRM codes. We conclude in Section V with a summary of
the results and a description of some ad hoc constructions and
resulting bounds.

II. PRELIMINARIES

Let flash memory cells be denoted by . For
, let denote the charge level of cell . The ranks of

the cells’ charge levels induce a permutation of in
the following way: The induced permutation is
iff , i.e., the cell has the highest charge
level and the cell has the lowest.

The rank-modulation scheme (see [16]) uses the permutations
induced by the cells’ charge levels to store information. Let
denote the set of permutations over . Let

denote the alphabet of the symbol stored in
the cells. In the rank-modulation scheme, a decoding function,

, maps permutations to symbols from the user
alphabet.

Since every channel may be subject to noise, which corrupts
the transmitted data, designers of systems employing a rank-
modulation scheme for flash memories need to consider the pos-
sibility of a stored permutation being transformed by
any of a variety of possible channel disturbances (see [7]) to

such that . To model such a channel, often
a metric is chosen such that , i.e., the distance between
the original value and its noisy version, is upper bounded with a
high probability. An appropriate error-correcting code may then
be designed with respect to that metric. There is a wide choice
of possible metrics over (see the survey [12]).

In a plausible realization of the rank-modulation scheme,
given the precision constraints of the charge-placement mecha-
nism, a minimal amount of charge is required to be inserted or
removed to change a given induced permutation, and that will
result in an adjacent transposition. Given a permutation, an
adjacent transposition is the local exchange of two adjacent ele-
ments in the permutation:
is changed to . In this error
model, a noisy version of an original permutation is said to
contain errors if the minimal number of adjacent transposi-
tions required to transform the original permutation into the
noisy one is . For example, for , if errors change the
permutation from to , the number of errors
is , because at least two adjacent transpositions are needed
to change one into the other

A. Kendall’s -Metric

Throughout the paper we will use the vector notation for per-
mutations: denotes the permuta-
tion for all . Given some element

, assume . Deleting the element from
results in the vector which we de-
note as . Conversely, given some and
an index , we can insert the element in the
th position resulting in the vector

which we denote as .
For two permutations , define their distance,

, as the minimal number of adjacent transpositions
needed to change into . This distance measure is called
Kendall’s in statistics [17] or the bubble-sort distance, and
it induces a metric over . Where it is clear from the context
that we use Kendall’s -distance measure we will omit the
subscript .

The resulting metric is graphic: Let be an
undirected graph defined over the vertex set , where
we define . Then it is well known
that for any the length of the shortest path connecting

and in equals .1 The resulting graph, is called
the adjacency graph of the metric.

1Not all metrics over � are graphic, such as the � -metric.
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If and are called adjacent. Any two permu-
tations of are at distance at most from each other. Two
permutations of maximum distance are a reverse of each other.

The distance between two permutations can be computed by
the algorithm hinted at by the following theorem (which ap-
peared without proof in [17, Section 1.13]).

Theorem 1: Let and
be two permutations of length . Suppose

that for some . Then

Proof: Let be a sequence of adjacent transposi-
tions that change into . Let us partition into two subse-
quences and , such that contains those adjacent trans-
positions that involve , and contains those adjacent trans-
positions that do not involve . Let and denote
the number of adjacent transpositions in and , respec-
tively. Clearly, .

It is not hard to see that can also change into .
That is because any adjacent transposition in does not change
the relative positions of the elements in and in .
Meanwhile, any adjacent transposition in changes the rela-
tive positions of in the same way for and . There-
fore, . It can also be seen that ,
because every adjacent transposition moves forward in the
permutation by one position, and from to , the element
has to be moved at by at least positions. Thus,

.
We now show that .

Consider a sequence of adjacent
transpositions which is defined as follows: the first
transpositions change
into , while
the remaining steps change into

. It follows that ,
and therefore .

The process of moving the appropriate element of to its
position as the last element of may be now recursively re-
peated for transforming into . When is the identity
permutation, , the resulting algorithm is none other than the
bubble-sort algorithm.

The adjacency graph of permutations under Kendall’s
-metric, , described in the previous section, is not distance

regular in general and so the nice properties of such graphs (see
[6]) cannot be used. In particular, the powerful code-anticode
method of Delsarte [11], which was used in [1], [20], and [21]
does not apply here immediately. We will, however, provide
a sphere-packing-like bound (which is actually a ball-packing
bound) in a later section.

Definition 2: The sphere centered at and of radius
is the set

while the ball centered at and of radius is defined as
the set

Even though is not distance regular, fortunately, Kendall’s
-metric is right invariant [12], i.e., for any three permutations

, we have . Thus, the sizes of
spheres and balls in this metric depend on their radius only, and
not on the choice of center. We can therefore denote the size of
a sphere (respectively, a ball) of radius as (respectively,

).

Definition 3: The weight of a permutation is defined
as , where is the identity permutation.

By the previous observation, for any two permutations
, we have . We can also observe that

is the set of all permutations of weight in .
If we define an inversion as a pair such that

and , then it is well-known (see Knuth, [18])
that the weight of a permutation is simply the number of inver-
sions it contains, i.e.

We can extend this to get the expression

(1)

III. CODES FROM METRIC EMBEDDINGS

We first define the object of interest in this study: codes for the
rank-modulation scheme correcting charge-constrained errors.

Definition 4: A charge-constrained-error-correcting code
for the rank-modulation scheme of length , size , and min-
imal distance (an -CCRM code) is a subset
of size such that for all . We
will sometimes omit the parameter and refer to the code as
an -CCRM code.

We would like to embed , which encapsulates Kendall’s
-metric over , into a different graph in such a way that

codes in the target graph translate back into codes in . The
first target graph we describe is with the Hamming metric,
for which an embedding has already been described in [8]. We
briefly sketch this embedding as it is the basis for the new em-
bedding we propose. We then describe this new embedding into
the target graph of endowed with the -metric. One re-
sult of this embedding is a new family of -CCRM codes
capable of correcting one adjacent-transposition error, which
will be shown in a later section to be of size at least half the
ball-packing upper bound.

A. Embedding Into

The following embedding has been described by Chadwick
and Reed [8]. Let us consider the space endowed with the
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Fig. 1. � and its embedding into �. In the two arrays, the solid lines are the edges in both � and �, and the dotted lines are the edges only in �.
(a) Mapping � to � (b) Embedding � into � (c) Mapping � to � (d) Embedding � into �.

Hamming distance function: For all , the Ham-
ming distance between and is the number of positions in
which they disagree. By abuse of notation we shall also refer
to as the graph with vertices which are binary vectors of
length , and edges connecting vertices at Hamming distance
1.

We index the positions in every vector of by the set
of ordered pairs . Let us define the
mapping in the following way: For all ,
we set to be the binary vector whose position is 0
if and 1 otherwise. In other words, position

is set to 1 iff is an inversion of .

Example 5: Consider the permutation .
We then have

since contains the inversions , and .
It was shown in [8] that the mapping is injective. In addition,

for any two permutations we have

(2)

The fact that distances contract under the mapping allows us
to take code constructions over and translate them to codes
over .

Theorem 6: Let be a binary linear code. Then
there exists an -CCRM code of size .

Proof: Let be a code as above. We define the following
code over :

By (2), the minimal distance between codewords of is
at least . To prove the lower bound on the size we note
that has cosets which partition , each forming a
binary code. It follows that at least one of the cosets
intersects , the image of , in at least words.

We note that the design distance of the code is not
necessarily the actual distance of the resulting code .

Theorem 6 also suggests a decoding algorithm for the code
provided one exists for . The permutation re-

ceived from the channel is converted to the Hamming space by
applying . If was the transmitted permutation, and no
more than errors occurred (where is the design
distance), then

Since is injective we are also guaranteed that
iff no errors occurred, i.e., . We can now apply the de-
coding algorithm for , correctly decoding to , and then
translating the resulting vector back to get .

B. Embedding Into

We now turn to present our new metric embedding. Let us
define

We further endow this space with the -metric. Let
, their -dis-

tance is defined as

Again, by abuse of notation we shall also refer to as the
graph whose vertices are the elements of and edges connect
vertices at -distance 1.

We define the mapping in the following way:
We map every to the vector ,
such that equals the number of inversions in of the form

. Some examples of the embedding are
shown in Fig. 1. It can be seen that while each permutation has
exactly adjacent permutations in , a vertex in can
have a higher degree, i.e., some edges of do not exist in .

Lemma 7: The mapping is bijective.
Proof: Let be a vector in the image

of , i.e., . We will show there exists exactly one
permutation such that .
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We first note that counts the number of elements smaller
than which appear to the right of in . It follows that in
vector notation must appear in the th position from the right.
Next, we examine which counts the number of elements
smaller than which appear to its right. Thus, in the re-
maining as-yet unset positions in , the element
must appear in the th position from the right. Repeating the
process, there is exactly one resulting permutation for which

.
To complete the proof we note that and so
is bijective.

Lemma 8: For any two permutations , if
then .

Proof: We exploit the obvious connection between the two
mappings and : For any , let and

, then .
Now, let be two permutations such that

. By (2) and since is injective, we nec-
essarily have . Since and
are just summations of the elements of and ac-
cording to some partition of the positions, it follows that

.

Corollary 9: For any two permutations we have

Proof: Consider a path of length connecting
and in

By Lemma 8, the following is a path of length which
connects and in

This may not be the shortest path connecting and
and so .

Since codes over a grid graph endowed with the Lee metric
are much more common than codes over the -metric, we need
one final trivial mapping. Let be the set of vectors of length

over the alphabet and let and be two such vectors. The
Lee distance between them is defined as

By abuse of notation we again use to denote the graph whose
vertices are the elements of and two vertices are connected
by an edge iff their Lee distance is 1.

It is easily verifiable that is a subgraph of when
. We note that endowing with the Lee metric, com-

pared with endowing with the -metric, is expressed by
several additional edges, which at the worst case, contract dis-
tances even further. We can now state the main construction.

Theorem 10: Let be an Lee-metric error-cor-
recting over the alphabet . Then there exists an

-CCRM code of size .
Proof: Let be a code as above. We define the following

code:

Since , and by Corollary 9, we have that
the minimal distance of is at least . Furthermore, since

is bijective by Lemma 7, the size of the code is exactly
.

We now present an explicit construction for a family of
CCRM codes that can correct one adjacent-transposition error.
The code is based on a perfect code in the Lee-metric space by
Golomb and Welch [14].

Construction 1: Let be the perfect 1-error-correcting
code in the Lee metric of length over the alphabet
defined by (see [14])

The code forms a linear subspace over and since it is
perfect, its cosets (where is the index of in

) partition the space.
The code is constructed as in Theorem 10 from the coset

of that has the largest intersection with . The resulting
code is an -CCRM with size .

We observe that the code resulting from Construction 1 is at
least half the size of the upper bound of the ball-packing bound
(see Section IV, Theorem 12). This is because a ball of radius
1 in is of size , and so the upper bound on the size of any

-CCRM code is .
Checking which of the cosets of from Construction

1 has the largest intersection with may be a difficult task, as
it requires operations. We can reduce the number codes
to check, thus reducing the number of operations by a factor of

, at the cost of a lower size guarantee, as is shown in the next
construction.

Construction 2: Let be defined as in Construction 1 and
define also

Construct the code as in Theorem 10 from either or
(whichever has the larger intersection with ).

Theorem 11: The code from Construction 2 is an
-CCRM of size .

Proof: We first note that has minimal distance 3. We
further note that
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and so the code is simply a mirror image of along
the last dimension. Thus, also has minimal distance 3,
and therefore, by Theorem 10, the constructed code is an

-CCRM code.
To show the lower bound on the size of the code we note

the following: and are co-prime, and so, for every
choice of , the equations

have a unique solution for . Every solution in which
results in a vector ,

while every solution in which results in
a vector . Since the total number of
choices of is , we have

or at least of size .

IV. BOUNDS ON CODE PARAMETERS

In this section, we present some bounds on the parameters
of CCRM codes. Some of the bounds are direct, while others
employ a recursion.

A. Direct Bounds

Following the notation of [18], the number of permutations
over elements with inversions is denoted by , which
equals , the size of the sphere of radius (where the param-
eter is implicit). An expression for was given in [18]

where is a pentagonal number. Muir [19]
has also shown to be the coefficient of in .
By our definition, a ball is a union of spheres, i.e.,

, and since the spheres in the union are certainly dis-
joint we have

We have the following simple ball-packing bound (usually mis-
named as a sphere-packing bound).

Theorem 12: Let be an -CCRM code, then

Proof: The space with Kendall’s -distance is a metric
space. Since is an -CCRM code, balls of radius

centered at the codewords are disjoint, and the
claim follows.

A similar Gilbert-Varshamov-like bound is the following.

Theorem 13: Let , and , be positive integers such that

then there exists an -CCRM code.
Proof: Start with the space and arbitrarily choose a

codeword. Remove the codeword from the space along with the
ball of radius centered about it. Repeat the process with
the remaining space as long as it is non-empty. The resulting set
of codewords are easily seen to form an -CCRM code,
where is the number of iterations. In addition, we can see that
the number of guaranteed iterations is as given in the claim.

It is easily seen that for any fixed radius , we have
. Thus, for any fixed distance , the ball-packing

upper bound of Theorem 12 is while the
constructive Gilbert-Varshamov-like lower bound of Theorem
13 guarantees a code of size , and their ratio is

, indicating a possible polynomial gap.
We can compare the Gilbert-Varshamov-like existence guar-

antee, with the construction indicated by Theorem 10. The size
of an -dimensional ball of radius in the -metric is given by
(see [14])

Thus, if perfect (or even asymptotically perfect) Lee-metric
codes were to exist, then for any fixed , the ratio of the
ball-packing upper bound of Theorem 12 and the code resulting
from Theorem 10 becomes , a constant.

We also introduce a Singleton-like bound in the following
theorem.

Theorem 14: Let be an -CCRM code.
1) Let be the largest integer such that . If

, then .
2) If for some integer , then

.
Proof: Let us write the codewords of in an

array, each codeword forming a single row. We now examine
the first columns of the array, which contain the -prefixes of
the permutations. We note that there are at most
possible distinct prefixes.

For the proof of the first claim, since there must
exist two rows in the array with the same -prefix. Thus, the
distance between the two codewords is generated by the

-suffixes of the codewords, hence, .
For the proof of the second claim, if , then ei-

ther we have two -prefixes agreeing and as in
the previous claim, or every possible -prefix appears exactly
once in the first columns of the array. In that case, we can
find two -prefixes at distance 1 from each other and then

.

Codes attaining the bound of Theorem 14 with equality
are called maximum distance separable (MDS). A few
MDS codes are, for example: The whole space is
an MDS -CCRM code, and a permutation and
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its reverse form an MDS
-CCRM code.

The more interesting example of an MDS code is the ana-
logue of the binary-parity code. It is well known (for example,
see [15]) that every permutation can be described as a product
of transpositions (not necessarily adjacent ones), and that the
parity of the number of transpositions is invariant. Permutations

with an even (respectively, odd) number of transposi-
tions in their descriptions are called even permutations (respec-
tively, odd permutations) and their permutation sign is set to

(respectively, ). For any two permuta-
tions, , we have . We also
have , and therefore, for all

.
We now define the code as

i.e., the code is the alternating group of order .

Theorem 15: The code is an MDS -CCRM
code.

Proof: The size of the alternating group is known to be .
To show that the distance of the code is 2, assume to the contrary
that there exist such that is odd. Hence,
there exists a sequence of adjacent transpositions (for
some integer ), , such that

But then

a contradiction. Therefore, the distance between any two permu-
tations in is even, and it is easy to find two permutations
at distance exactly 2.

On a side note, it is interesting to observe that all binary MDS
codes in are mapped by to MDS codes in .

B. Recursive Bounds and Constructions

Let us denote by the largest integer such that there
exists an -CCRM code. The next theorem establishes
basic monotonicity.

Theorem 16: For all we have

Proof: The first claim is simple since given an
-CCRM code , we can construct in the fol-

lowing way:

Obviously is an -CCRM code. The second claim
is also trivial since by definition an -CCRM code
is also an -CCRM code.

Theorem 17. (Code Shortening): For all we have

Proof: Let be an -CCRM code of maximal size
. If we look at the last coordinates in the codewords

of , one of the elements from appears at least
times. Let us denote this element as . We

construct in the following way:

After a suitable relabeling of the elements to the alphabet
, the resulting permutations are from and the

distance between them is certainly at least . Thus, is an
-CCRM code whose size is obviously upper bounded by

, and the claim follows.

Theorem 18. (Code Puncturing): For all we have

Proof: Let be an -CCRM code of max-
imal size . Arbitrarily choose an element

and construct the code:

After a proper relabeling we can assume .
We first note that given , we may still get

. This happens if and agree on the relative or-
dering of all the elements except . Since ,
the position of in and differ by at least . Therefore,

.
Finally, we claim deleting element from all the permutations

results in the minimal distance dropping by no more than . This
is easily seen by noting that (1) implies a single element can
cause at most inversions.

Theorem 19. (Code Lengthening): For all we have

Proof: Let be an -CCRM code of size . We
construct the following code:

The size of is easily seen to be .
We now claim that is an -CCRM code. To prove

this claim we examine two cases. In the first case, for any
, and , but , it is obvious that

since to get from one to the other
we need to move the element by at least positions. In
the second case, if , we have by definition

and then also since the
relative positions of the elements do not change
when inserting the element and so the number of inver-
sions remains at least between the two new permutations.
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Theorem 20. (Code Extending): For all we have

Furthermore, if there exists an -CCRM code of size
with even codewords and odd codewords

then

Proof: The first claim is a weaker form of the second claim
by assuming that . We will therefore prove
just the second claim. Let be an -CCRM code of
size with even codewords which we denote

, and odd codewords which we denote .
We now construct the following code:

The size of is easily seen to agree with the claim. The same
line of reasoning as in the proof of Theorem 19 guarantees that
the minimal distance between codewords of is at least .
It now suffices to show that all the codewords of are even per-
mutations for then, like in the proof of Theorem 15, the distance
between codewords of is also even, forcing it to be at least

.
For all we must have .

Therefore, for all we have and
then also for all
since these are an even number of transpositions away from
the even permutation . Similarly, for all
we have since this is a single transposi-
tion away from an odd permutation . In addition,

for all , which completes
the proof.

We note that extending the MDS -CCRM code
results in the MDS -CCRM code .

Theorem 21: For all we have

Proof: Let be an -CCRM code of size
, and let (respectively, ) denote the set of

odd (respectively, even) codewords. Either or contain
at least half the codewords of . Assume w.l.o.g. that it is .
Since all the codewords in have the same parity the distance
between any two of them must be even, just like in the proof
of Theorem 15. Thus, is an -CCRM code of size at
least .

Again, we note that using the MDS -CCRM code
with Theorem 21 results in the MDS -CCRM code

.

V. CONCLUSION

In this paper, we explored error-correcting codes for
charge-constrained errors (CCRM codes) in the rank-modula-
tion scheme. We presented both bounds on the size of CCRM

codes and constructions mainly based on metric-embedding
techniques. The embedding enables us to use well-known -ary
codes with the Lee metric to produce CCRM codes. Specif-
ically, we presented a family of one-error-correcting codes
whose size is within half of the best upper bound.

As we presented, the motivation for using error-correcting
codes over permutations, specifically under Kendall’s -metric,
is to correct charge-constrained errors in flash memory devices
using rank modulation. An important research goal is to con-
duct a comprehensive comparison between flash memory de-
vices using conventional amplitude modulation with error-cor-
rection, and those with rank-modulation and the error-correcting
codes we suggest in this paper. This comparison, however, ap-
pears to be hard to conduct due to the lack of any experimental
data involving rank-modulated flash memory.

An interesting open research problem would be to find em-
beddings of into (endowed with the Hamming metric)
for . This is motivated by the abundance of non-binary
codes in the Hamming metric, as well as the interesting connec-
tion shown between binary MDS codes in the Hamming metric
and MDS codes over under the mapping . If such a map-
ping were to be found, the Reed-Solomon code may induce new
MDS codes in .

Another open research problem is devising efficient encoding
and decoding procedures for these codes. A simple encoding
procedure is likely to first encode the input into a Lee-metric
codeword, and then use the reverse mapping, , to get a per-
mutation. However, even for Lee-metric codes which can be de-
scribed by a lattice (such as the perfect code due to Golomb and
Welch [14]), the intersection with required by the mapping
seems to prevent a simple use of lattice encoders.

We conclude with the following results regarding ad-hoc
CCRM code constructions. It is easily seen that
with the code which is also constructed by
Construction 1. We can also prove that with, for
example, the code

which is not constructed through Construction 1. Furthermore,
using ad hoc constructions we can show that

It is interesting to note that these codes are at least half the ball-
packing upper bound of Theorem 12.
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