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1. Introduction

Perhaps the first to pioneer the study of permutation theory from a coding perspective were Chad-
wick and Kurz [7], and Deza and Frankl [11]. The object under study in their work, called a code or
a permutation array, is a set of permutations for which any two distinct members are at distance at
least d apart. Codes over permutations have attracted recent interest due to power line communica-
tion [8,16,20,28] and storage schemes for flash memories [5,17,19,27]. Moreover, in [4,27] permutation
groups were considered as error-correcting codes.

Since a distance measure is involved in the definition of a code, a proper choice of metric is
important. There are many well-known metrics over the symmetric group Sn (see [10]), of which the
Hamming metric is by far the most studied. However, the infinity metric induced by the infinity norm
has received recent interest due to its applications [19,27], and will serve as the metric of choice in
this work. We also assume throughout, that the symmetric group Sn is acting on {1,2, . . . ,n} (though
this is usually a matter of convenience, it is important for the definition of the �∞-distance). The
�∞-distance between two permutations f , g ∈ Sn is defined as

d( f , g) = max
1�i�n

∣∣ f (i) − g(i)
∣∣.
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In analogy to the definition of a code, a subset A ⊆ Sn is an anticode with maximal distance d, if
any two of its members are at distance at most d apart. In the context of coding theory, the first use of
anticodes was in [14,26] (see also [21] for an overview). The anticodes were in fact multisets (allowing
repeated words), and were used to construct codes that attain the Griesmer bound with equality. As a
purely combinatorial question, anticodes (though not under this name) appear in earlier works, such
as the celebrated Erdős–Ko–Rado Theorem on t-intersecting families [12]. Many other variations on
the ambient space and distance measure have created a wealth of anticodes, see for example [2,13,
15,22,25].

The following theorem, which is sometimes referred to as the set–antiset theorem, motivates us to
explore anticodes of maximum size. This theorem was also proved before over different spaces and
distance measures (see [1,9,11,27]), the most general case of which is perhaps Delsarte’s treatment
of association schemes [9] with the well-known special case of the clique–coclique bound for vertex-
transitive graphs.

Theorem 1. (See [27, Theorem 13].) Let C, A ⊆ Sn be a code and an anticode under the �∞-metric, with
minimal distance d and maximal distance d − 1, respectively. Then

|C | · |A| � |Sn| = n!.

It should be noted that balls are just a special case of anticodes, since a ball of radius r is an
anticode with maximal distance 2r. The size of balls in Sn under the �∞-metric has been studied in
[18,24].

It is well known (see [10]) that the �∞-metric over Sn is right invariant, i.e., for any f , g,h ∈ Sn ,
d( f , g) = d( f h, gh). Hence, w.l.o.g., one can assume that any code or anticode contains the identity
permutation simply by taking a translation, and we shall assume so throughout the paper.

Any anticode A ⊆ Sn of maximum distance d − 1 defines a (0,1)-matrix A∗ = (ai, j) of order n,
for which ai, j = 1 iff there exists f ∈ A such that f (i) = j. We note that A∗ has the property that
if ai, j = 1 then |i − j| � d − 1. Moreover, the (0,1)-matrix A∗ = (ai, j) defines an anticode B with
maximum distance d − 1 by B = { f ∈ Sn: ai, f (i) = 1 for all i ∈ [n]}. Note that A ⊆ B and that the size
of B is the permanent of the matrix A∗ , which is defined by

per
(

A∗)= ∑
f ∈Sn

n∏
i=1

ai, f (i) = |B|.

Let Γ d
n denote the set of (0,1)-matrices of order n with exactly d non-zero entries in each row

which form a contiguous block. Let A∗ be a (0,1)-matrix defined by an anticode A, then by the
previous observation, the set of non-zero entries in A∗ is a subset of the non-zero entries of some
matrix in Γ d

n . Thus, every anticode A with maximum permanent is equivalent to a matrix A∗ ∈ Γ d
n .

The goal of this paper is to study the structure of matrices that attain the maximum permanent,
i.e., the set of matrices

Md
n = {A ∈ Γ d

n : per(A) � per(B) for all B ∈ Γ d
n

}
,

and to calculate the value of the maximum permanent.
Similar questions regarding the value of the maximum permanent and the matrices that attain it,

have been studied for other sets of matrices. Perhaps the most related is the study of constant line-
sum (0,1)-matrices, in which the number of non-zero entries in each row and each column is equal.
This is still an open problem, first stated by Minc [23], and more recently studied by Wanless [29].

The problem was partly solved, both for constant line-sum (0,1)-matrices, and for the matrices
studied in this paper, Γ d

n , by Brégman [6], who showed that if A is a (0,1)-matrix of order n and row
sums d1,d2, . . . ,dn then

per(A) �
n∏

(di !)
1
di . (1)
i=1
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Moreover, equality holds iff d1 = d2 = · · · = dn = d and A is a direct sum of 1d×d matrices, where 1d×d
is the all-ones square matrix of order d. Our results focus on the case where d does not divide n. The
main results of this paper are:

• For d > n
2 let A ∈ Md

n , then up to row and column permutations, in the first � n
2 � rows, the non-

zero blocks are flushed to the left, and in the last � n
2 � rows, they are flushed to the right. For n

even this looks like

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1(n/2)×d 0(n/2)×(n−d)

0(n/2)×(n−d) 1(n/2)×d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where 1i× j (respectively, 0i× j ) denotes the all-ones (respectively, all-zeros) matrix of size i × j.
When n is odd, note that the position of the non-zero block in the middle row is unconstrained.
Thus, for any A ∈ Md

n ,

per(A) =
(

2d − n

� 2d−n
2 �
)(⌊

n

2

⌋)
!
(⌈

n

2

⌉)
!.

The corresponding optimal anticode of maximal distance d − 1 is{
f ∈ Sn: f (i) ∈

{ {1,2, . . . ,d} if 1 � i � n
2

{n − d + 1,n − d + 2, . . . ,n} otherwise

}
.

As before, when n is odd the unconstrained middle row of the matrix A allows the construction
of several optimal anticodes with expressions similar to the one above.

• For d < n
2 we give some results based on results of Wanless [29], adjusted to our case. We show

that any A ∈ Md
n has a certain structure, and for sufficiently large n, A satisfies some periodic

property.

The rest of the paper is organized as follows. In Section 2 we focus on the case of d > n
2 , classify

precisely all the optimal anticodes up to isomorphism, and calculate their size. We proceed in Sec-
tion 3 to the case of d < n

2 and present some asymptotic results regarding the structure of the optimal
anticodes. We conclude in Section 4 with a summary of the results and short concluding remarks.

2. Full classification for d > n
2

We consider the case of n = d + r, where 0 < r < d. Let A ∈ Γ d
d+r , A = (ai, j)i, j∈[n] , and for any

i ∈ [d + r], we define xi = min { j: ai, j = 1}, i.e., the left-most column of the non-zero block in row i.
Since the permanent is preserved under column and row permutations we can assume w.l.o.g. that
xi � x j for all i � j.

It can be seen that A is defined uniquely by the vector (x1, x2, . . . , xd+r), so by abuse of notation
we will sometimes write

A = (x1, x2, . . . , xd+r)

and also write

per(A) = per(x1, x2, . . . , xd+r) = per
({xi}

)
.

Also, for any i, j ∈ [d + r] we define per(Ai, j) to be the permanent of A after deleting row i and
column j.
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In addition, for each i ∈ [d + r], we define

i∗ = max {k: xk = xi}, i∗ = min {k: xk = xi}.
For all i ∈ [d + r] such that xi � r we define the following operator

per+i
({xk}

)= per(x1, . . . , xi∗−1, xi∗ + 1, xi∗+1, . . . , xd+r).

If xi < xi+1 � r we define

per++
i

({xk}
)= per+i

(
per+i

({xk}
))

.

Finally, in the same manner, for all i ∈ [d + r] such that 2 � xi ,

per−i
({xk}

)= per(x1, . . . , xi∗−1, xi∗ − 1, xi∗+1, . . . , xd+r).

If 2 � xi−1 < xi , we define

per−−
i

({xk}
)= per−i

(
per−i

({xk}
))

.

Lemma 2. For any 1 � m � n � r,

{i: ai,m = 1} ⊆ {i: ai,n = 1},
and for any d + 1 � m � n � d + r,

{i: ai,n = 1} ⊆ {i: ai,m = 1}.

Proof. Let 1 � m � n � r, and let i ∈ {i: ai,m = 1}. Since the length of the non-zero block is d, for any
m � k � d we have ai,k = 1, and in particular, for k = n we get ai,n = 1. Therefore, i ∈ {i: ai,n = 1},
and this proves the first part of the lemma. The second part of the lemma follows easily from the
symmetry of the problem, i.e., rotating A and using the first part of the proof. �
Corollary 3. If 1 � m � n � r, then for any i ∈ [d + r] we get

per(Ai,m) � per(Ai,n).

If d + 1 � m � n � d + r, then for any i ∈ [d + r] we get

per(Ai,m) � per(Ai,n).

Proof. For the first claim of the corollary, by Lemma 2 we have {k: ak,m = 1} ⊆ {k: ak,n = 1}. There-
fore, Ai,n has the same columns as Ai,m except for one column in Ai,m that has a superset of the 1’s
of the corresponding column in Ai,n . Then we conclude that per(Ai,m) � per(Ai,n). The second claim
of the corollary is again proved by rotating A and applying the first part of the proof. �
Lemma 4. Let i be such that xi � r. Then

per+i
({xk}

)= per
({xk}

)+ per(Ai∗,xi∗+d) − per(Ai∗,xi∗ ).

Let i be such that 2 � xi . Then

per−i
({xk}

)= per
({xk}

)+ per(Ai∗,xi∗−1) − per(Ai∗,xi∗+d−1).

Proof. The proof follows by developing the permanent along row i. �
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Lemma 5. Let i be such that 2 � xi � r. Then

per
({xk}

)
� max

{
per+i

({xk}
)
,per−i

({xk}
)}

.

Proof. Assume the contrary, i.e., per({xk}) > per+i ({xk}) and per({xk}) > per−i ({xk}). From Lemma 4 we
get the following inequalities:

per(Ai∗,xi∗+d) < per(Ai∗,x∗
i
),

per(Ai∗,xi∗−1) < per(Ai∗,xi∗+d−1).

By Corollary 3 we get that

per(Ai∗,xi∗ ) � per(Ai∗,xi∗−1),

per(Ai∗,xi∗+d−1) � per(Ai∗,xi∗+d).

Combining the four inequalities, it now follows that

per(Ai∗,xi∗−1) < per(Ai∗,xi∗+d−1) � per(Ai∗,xi∗+d)

= per(Ai∗,xi∗+d) (2)

< per(Ai∗,xi∗ ) � per(Ai∗,xi∗−1)

= per(Ai∗,xi∗−1) (3)

where equalities (2) and (3) follow from the fact that xi = xi∗ = xi∗ . Thus, we get a contradiction, and
the claim follows. �
Lemma 6. When i is such that xi < xi+1 � r and per(A) � per+i (A), then

per(A) � per+i (A) � per++
i (A).

When i is such that 2 � xi−1 < xi and per(A) � per−i (A), then

per(A) � per−i (A) � per−−
i (A).

Proof. We start by proving the first claim. Define the (0,1)-matrix B to be

B = (x1, . . . , xi−1, xi + 1, xi+1, . . . , xd+r),

and denote j = (i + 1)∗ = max{k: xk = xi+1}.

Case 1. Assume that xi+1 − xi = 1, then by the definition of the operators

per+i
({xk}

)= per(x1, . . . , xi−1, xi + 1, xi+1, . . . , xd+r) = per(B),

and also

per++
i

({xk}
)= per(x1, . . . , xi−1, xi + 1, xi+1, . . . , x(i+1)∗−1, x(i+1)∗ + 1, x(i+1)∗+1, . . . , xd+r)

= per+j (B).

By Lemma 4, in order to prove the claim, i.e., per(B) � per+j (B), it suffices to show that per(B j,x j ) �
per(B j,x j+d). Since per(A) � per+i (A), we conclude

per(Ai,xi ) � per(Ai,xi+d). (4)
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It is easy to see that

per(Ai,xi ) = per(B(i+1)∗,x(i+1)∗−1) = per(B j,x j−1),

per(Ai,xi+d) = per(B(i+1)∗,x(i+1)∗−1+d) = per(B j,x j−1+d).

Therefore, (4) turns to

per(B j,x j−1) � per(B j,x j−1+d). (5)

By Corollary 3,

per(B j,x j ) � per(B j,x j−1), (6)

per(B j,x j−1+d) � per(B j,x j+d). (7)

Combining inequalities (5), (6), and (7), we get

per(B j,x j ) � per(B j,x j−1) � per(B j,x j−1+d) � per(B j,x j+d),

which proves the claim.

Case 2. Assume that xi+1 − xi � 2. The proof in this case is nearly identical. By definition,

per+i (A) = per(x1, . . . , xi−1, xi + 1, xi+1, . . . , xd+r),

per++
i (A) = per(x1, . . . , xi−1, xi + 2, xi+1, . . . , xd+r).

Therefore, by Lemma 4, in order to prove the claim it suffices to show that

per(Ai,xi+1) � per(Ai,xi+d+1).

From the fact that per(A) � per+i (A), we conclude that

per(Ai,xi ) � per(Ai,xi+d). (8)

From Corollary 3,

per(Ai,xi+1) � per(Ai,xi ), (9)

per(Ai,xi+d) � per(Ai,xi+d+1). (10)

Combining inequalities (8), (9), and (10), we get

per(Ai,xi+1) � per(Ai,xi ) � per(Ai,xi+d) � per(Ai,xi+d+1),

and that completes the proof for the first claim.
The second claim of the lemma, again, easily follows from the symmetry of the problem by rotat-

ing A. �
We are now in a position to prove the two main claims of the section. We first calculate the value

of the maximum permanent.

Theorem 7. Let A ∈ Md
d+r , 0 < r � d. Then

per(A) =
(

d − r

�d−r
2 �
)(⌊

d + r

2

⌋)
!
(⌈

d + r

2

⌉)
!.

Furthermore, the matrix A = ({xi}) given by

xi =
{

1, 1 � i � �d+r
2 �,

r + 1, otherwise,
(11)

is a member of Md
d+r .
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Proof. Let A be a matrix that achieves the maximum permanent. If A is not of the required form
there is at least one row, i, that is not flushed to the right or left, i.e., 1 < xi < r + 1. By Lemma 5 we
know that either per(A) � per+i (A) or per(A) � per−i (A).

Assume that per(A) � per+i (A) (the proof for the other case is symmetric). Since per(A) is the
maximum achievable permanent, necessarily per(A) = per+i (A). It now follows by Lemma 6 that
per(A) � per++

i (A).
By repeatedly using Lemma 6 on the last block of 1’s that was moved we can continue to push

blocks one step at a time, all in the same direction. This procedure is terminated when we can no
longer push the block, i.e., when we have reached one of the matrix’s edges. Thus, we have reduced
by one the number of blocks that are not flushed to the right or left edges. We can therefore push all
the blocks that are not flushed to the edges until reaching some edge.

We conclude that the maximum permanent is also attained when all the blocks are flushed to
the edges. Let � d+r

2 � + x, x � 0, be the number of blocks that are flushed to the left edge, and thus,

� d+r
2 	 − x are flushed to the right. We note that if � d+r

2 	 − x < r then the permanent is 0, and so we

can safely assume � d+r
2 	− x � r. Let us also denote by 1odd the indicator function for d + r being odd.

Thus, the permanent of this configuration is

(⌊
d + r

2

⌋
+ x

)
!
(⌈

d + r

2

⌉
− x

)
!
(

d − r

�d+r
2 � + x − r

)

= (d − r)!
r∏

k=1

(⌊
d − r

2

⌋
+ x + k

)(⌈
d − r

2

⌉
− x + k

)

= (d − r)!
r∏

k=1

(
d − r − 1odd

2
+ x + k

)(
d − r + 1odd

2
− x + k

)

= (d − r)!
r∏

k=1

[(
d − r

2
+ k

)2

−
(

x − 1odd

2

)2]
.

Hence, for n = d + r even, the maximum is achieved when x = 0, and for n = d + r odd, the maximum
is achieved when x = 0,1. In either case, when all the blocks are flushed to the edges of the matrix,
the maximum is achieved only when � d+r

2 � of the blocks are flushed to one edge, and all the rest are
flushed to the other edge, and this completes the proof. �

Having proved the upper bound we want to know which matrix configurations achieve the bound
with equality.

Theorem 8. Let A ∈ Md
d+r , 0 � r � d. Then the only possible configurations of A = (x1, x2, . . . , xd+r), up to a

permutation of the rows and columns, are

xi =
{

1, 1 � i � �d+r
2 �,

r + 1, �d+r
2 	 < i � d + r.

(12)

Note that for n = d + r odd, the value of x� d+r
2 	 is unconstrained.

Proof. For the case of n = d + r even, assume to the contrary that there exists A ∈ Md
d+r with a

different configuration than the claimed. By Theorem 7, we know that we can push the non-zero
blocks of A along the rows without reducing the permanent to achieve a matrix A′ with configuration
as in (11). Let us denote the matrix before the last block push as A′′ . W.l.o.g., the configuration of
A′′ = ({x′′

i }) is given by
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x′′
i =

⎧⎪⎨
⎪⎩

1, 1 � i < d+r
2 ,

2, i = d+r
2 ,

r + 1, otherwise.

By our assumption, per(A) = per(A′) = per(A′′). However,

per
(

A′′)− per
(

A′)= per
(

A′′
d+r

2 ,d+1

)− per
(

A′′
d+r

2 ,1

)
=
(

d + r

2
− 1

)
!
(

d + r

2

)
!
[(

d − r
d−r

2 + 1

)
−
(

d − r
d−r

2

)]
< 0,

a contradiction. For the case of n = d + r odd, the proof follows the same logical steps but is more
tedious as it has to consider more cases, and is therefore given in Appendix A. �
3. Asymptotic results for d < n

2

We now turn to show some asymptotic results for the case of d < n
2 . We follow the notation of

Wanless [29]. With A ∈ Γ d
n , A = (ai, j), we associate a bipartite graph G(A) with two vertex sets,

V = {v1, v2, . . . , vn}, which represents the rows of A, and U = {u1, u2, . . . , un}, which represents the
columns of A. There is an edge (vi, u j) iff ai, j = 1. For every vertex w ∈ V ∪ U we denote by N(w) its
set of neighbors, and its degree by D(w) = |N(w)|. Finally, we denote by ⊕ the direct-sum operator,
and moreover, as in [29], we use r A as shorthand for A ⊕ A ⊕ · · · ⊕ A (where there are r copies
of A).

We are interested only in the structure of matrices in Md
n up to isomorphism because the per-

manent function is preserved under permutations of rows and columns. We say that {Ci}k
i=1 are the

components of A if A ∼= C1 ⊕ C2 ⊕ · · · ⊕ Ck and each Ci is fully indecomposable. Denote the order of
a component, Ci , or a matrix, A, by ord(Ci), and ord(A), respectively.

Our main results in this section are based heavily on the results of [29]. We first mention a tech-
nical result from [29] using the same notation. Define the following functions:

F (a,b) = (a!) b
a ,

D(k) = F (k,1)

F (k − 1,1)
,

C(k) = D(k)

D(k − 1)
,

B(k, v) = C(k)v((k − v)2 + 2v(k − v)D(k − 1) + v(v − 1)
(

D(k − 1)
)2)

.

Lemma 9. (See [29, Lemma 1].) For every integer k � 3 there exists εk > 0 such that B(k, v) < k2 − εk for
each integer v satisfying 0 < v < k.

We will use another technical lemma:

Lemma 10. (See [3, p. 50].) For every two integers a,b satisfying b � a + 2 > 3, the following inequality holds

(a!) 1
a (b!) 1

b <
(
(a + 1)!) 1

(a+1)
(
(b − 1)!) 1

(b−1) .

We now turn to our specific setting and prove the following lemma.

Lemma 11. Let B ∈ Γ d
n be such that it does not contain 1d×d as a sub-matrix. Let W be a set of 2d contiguous

column vertices, i.e., W = {ui, ui+1, . . . , ui+2d−1} ⊆ U for some i ∈ [n], then there is either some vertex
u j ∈ W such that D(u j) �= d or there are two row vertices vx, v y ∈ V such that
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1. 0 < |N(vx) ∩ N(v y)| < D(vx),
2. D(uk) = d for all uk ∈ N(vx) ∪ N(v y),
3. N(vx), N(v y) ⊆ W .

Proof. If there is some column vertex u j ∈ W such that D(u j) �= d then we are done. Otherwise,
D(u j) = d for each u j ∈ W . Now, we know the column vertex ui+d has degree d, and, by our assump-
tion throughout the paper that the identity permutation is in the anticode, vi+d ∈ N(ui+d). On the
other hand B does not contain 1d×d as a sub-matrix, and so there is a row vertex v j ∈ N(ui+d) such
that N(vi+d) ∩ N(v j) �= N(vi+d). Note that ui+d ∈ N(vi+d) ∩ N(v j), and since the neighbors of vi+d
and v j form a contiguous block of column vertices, we get that

N(vi+d), N(v j) ⊆ W .

Now set vx = vi+d , v y = v j , and the proof is complete. �
Corollary 12. For any integers d, T , and n, where T is even and T � n, the maximum of the function∏n

i=1 F (xi,1) subject to the constraints

1.
∑n

i=1 xi = nd,
2. xi � 1 are integers,
3. T � |{xi: xi �= d}|,

is obtained exactly when the variables xi are as equal as possible, i.e.,

∣∣{xi: xi = d}∣∣= n − T ,
∣∣{xi: xi = d + 1}∣∣= ∣∣{xi: xi = d − 1}∣∣= T

2
.

Therefore,

n∏
i=1

F (xi,1) � F (d,n − T )F

(
d − 1,

T

2

)
F

(
d + 1,

T

2

)
.

Proof. Recall that F (x,1) = (x!) 1
x . If there are two indices i and j such that xi � x j + 2, then by

Lemma 10, the value of
∏n

i=1 F (xi,1) would increase if we add 1 to x j and subtract 1 from xi , as long
as we do not violate constraint 3. �
Theorem 13. For each A ∈ Γ d

a there exists m(A) ∈ N such that per(A ⊕ t1d×d) > per(B) for every integer t
such that a + td > m(A) and every B ∈ Γ d

a+td which does not contain 1d×d as a sub-matrix.

Proof. The claim is empty for d = 1,2, since for d = 1 there is nothing to prove, and for d = 2 there
is no such B ∈ Γ d

a+td which does not contain 1d×d . Set n = a + td, then by Lemma 11 we know that
for every l ∈ [� n

2d �] there is either a column vertex uil ∈ {u2d(l−1)+1, . . . , u2ld} such that D(uil ) �= d, or
there is a pair of row vertices, vxl and v yl , such that

1. 0 < |N(vxl ) ∩ N(v yl )| < D(vxl ),
2. D(uk) = d for all uk ∈ N(vxl ) ∪ N(v yl ),
3. N(vxl ) ∪ N(v yl ) ⊆ {u2d(l−1)+1, . . . , u2ld}.

Let M be the set of all l ∈ [� n
2d �] such that there exists a pair of row vertices, vxl and v yl , as above.

Set

T =
{ � n

2d � − |M|, � n
2d � − |M| is even,

� n � − |M| − 1, otherwise.
2d
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It is easy to see that T + |M| � � n
2d � − 1. Note that for any l,k ∈ M , l �= k,(

N(vxl ) ∪ N(v yl )
)∩ (N(vxk ) ∪ N(v yk )

)= ∅.

For each pair (vxl , v yl ), l ∈ M , let al = |N(vxl )∩ N(v yl )|. We bound the permanent of B from above by
using the following steps:

1. Expand per(B) along the row vertices {vxl , v yl }l∈M .

2. Upper bound the expansion of the columns
⋃

l∈M(N(vxl ) ∪ N(v yl )) by using Eq. (1).

3. Upper bound the expansion of the rest of the columns by using Eq. (1), Corollary 12, and the fact
that in these columns there are exactly d(n − |⋃l∈M(N(vxl ) ∪ N(v yl ))|) non-zero entries, with at
least T columns vertices with degree not equal to d.

Therefore, for steps 1 and 2, the upper bound is∏
l∈M

[
(d − al)

2 F (d − 1,2d − 2al − 2)F (d − 2,al)

+ 2al(d − al)F (d − 1,2d − 2al − 1)F (d − 2,al − 1)

+ al(al − 1)F (d − 1,2d − 2al)F (d − 2,al − 2)
]
. (13)

The upper bound for step 3 using Corollary 12 is

f

(
d,n − t −

∑
l∈m

(2d − al)

)(
(d + 1)! 1

d+1 (d − 1)! 1
d−1
) t

2

= f

(
d,n −

∑
l∈m

(2d − al)

)
((d + 1)! 1

d+1 (d − 1)! 1
d−1 )

t
2

d! t
d

< f

(
d,n −

∑
l∈m

(2d − al)

)
· δ t

2 , (14)

where the last inequality follows from Lemma 10 for some 0 < δ < 1. Combining (13) and (14) we
get

per(B) � F (d,n)δ
T
2
∏
l∈M

[
F (d − 1,2d − 2)

F (d,2d)

F (d,al)F (d − 2,al)

F (d − 1,2al)

]

·
[
(d − al)

2 + 2al(d − al)
F (d − 1,1)

F (d − 2,1)
+ al(al − 1)

F (d − 1,2)

F (d − 2,2)

]
,

which in our notation becomes

per(B) � F (d,n)δ
T
2
∏
l∈M

1

d2
B(d,al).

We know that T + |M| � � n
2d � − 1, thus, by Lemma 9 and by taking t , and hence n, large enough, we

can make per(B) be less than an arbitrary small fraction of F (d,n).
On the other hand, for n = a + td,

per(A ⊕ t1d×d) = (d!)t per(A) = F (d,n)
per(A)

F (d,a)
,

which is a constant fraction of F (d,n) for any t . Hence, there exists m(A) such that if a + td > m(A)

then per(B) < per(A ⊕ t1d×d) as required. �
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Though the set of matrices under study is different from the one studied by Wanless [29], the
claim regarding their permanent in Theorem 13 is exactly the same as the claim in Theorem 1 in [29].
Thus, Theorems 3, 5, and 7 in [29], which rely almost entirely on that claim, follow in our setting as
well with very slight adjustments. We bring them here for completeness. For adjusted proofs, the
reader is referred to Appendix B.

Theorem 14. For each integer d there exists bd such that for any n and any A ∈ Md
n, the largest component in

A that does not contain 1d×d as a sub-matrix, is of order at most bd.

Let b∗
d denote the smallest integer with the property of bd from Theorem 14.

Theorem 15. Let d � n be positive integers. Every A ∈ Md
n is of the form

A ∼= a1d×d ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Ch

where a � 0 and 0 � h � d − 1. Moreover G(Ci) is connected, Ci ∈ Md
ord(Ci)

, and if in addition Ci does not
contain 1d×d as a sub-matrix, then ord(Ci) � b∗

d .

Theorem 16. (See [29, Theorem 7].) For each positive integer d there exists μd such that Md
n is periodic for

n � μd in the sense that A ∈ Md
n if and only if A ⊕ 1d×d ∈ Md

n+d.

4. Summary and conclusions

Motivated by new applications of error-correcting codes over permutations under the �∞-norm, we
have studied anticodes of maximum size for the infinity metric. The results, together with the set–
antiset method, enable us to derive an improved upper bound on the size of optimal codes (see [27]).
For d > n

2 we classified all the optimal anticodes with maximal distance d − 1, and showed that their
size is(

2d − n

� 2d−n
2 �
)(⌊

n

2

⌋)
!
(⌈

n

2

⌉)
!.

For d < n
2 , based on the results of [29], we gave asymptotic results on the structure of optimal

anticodes. We showed that for sufficiently large n, all but at most d − 1 components of any optimal
anticode are 1d×d . Moreover, some periodic property of the optimal anticodes was shown.

It is tempting to combine all the results to the following conjecture.

Conjecture 1. Denote r = n mod d. Then for any n, the structure of the optimal anticode of maximal distance
d − 1 is the set of permutations M = {σ ∈ Sn: ai,σ (i) = 1, 1 � i � n}, where

p A = (ai, j) =

⎛
⎜⎜⎜⎜⎜⎝

1d×d
1d×d 0

. . .

0 1d×d
P

⎞
⎟⎟⎟⎟⎟⎠ ,

where along the diagonal we have �n
d � − 1 blocks of 1d×d, and P is of the form given in (12). It can then be

easily seen that

|M| = per(A) = (d!)� n
d �−1
(

d − r

�d−r
2 �
)(⌊

d + r

2

⌋)
!
(⌈

d + r

2

⌉)
!.
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Appendix A. Proof of Theorem 8 – continued

We give here the proof of Theorem 8 for the case of n = d + r odd.

Proof. Let us consider the case of n = d + r odd. First, we note that by developing the permanent
along the middle row, all matrices of configuration (12) have the same permanent regardless of the
value of x� d+r

2 	 , i.e., the starting column of the non-zero block in the middle row. Since one of these

configurations coincides with (11), all matrices of configuration (12) have maximum permanent.
Assume to the contrary that there exists A ∈ Md

d+r with a different configuration than the claimed.
By Theorem 7, we know that we can push the non-zero blocks of A along the rows without reducing
the permanent to achieve a matrix A′ with configuration as in (12). Let us denote the matrix before
the last block push as A′′ . W.l.o.g., the configuration of A′′ = ({x′′

i }) is given by

x′′
i =

⎧⎪⎨
⎪⎩

1, 1 � i < �d+r
2 �,

2, i = �d+r
2 �,

r + 1, �d+r
2 	 < i � d + r.

Note again that the value of x� d+r
2 	 is unconstrained.

By repeatedly using Theorem 7 we can push the non-zero block of row � d+r
2 	 while maintaining

the maximum permanent value, until reaching a matrix A∗ = ({x∗
i }) of one of the two following

configurations:

x∗
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 1 � i < �d+r
2 �,

2, i = �d+r
2 �,

2 or r + 1, i = �d+r
2 	,

r + 1, �d+r
2 	 < i � d + r.

Finally, let (A∗∗) = ({x∗∗
i }) be defined by

x∗∗
i =

{
1, i = �d+r

2 �,
x∗∗

i , otherwise.

We note that A∗∗ is of configuration (12), and thus, of maximum permanent. Therefore, by our as-
sumptions,

per(A) = per
(

A′)= per
(

A′′)= per
(

A∗)= per
(

A∗∗).
Case 1. Let x∗

� d+r
2 	 = 2. One can readily verify that

per
(

A∗
� d+r

2 �,1
)= (d + r + 1

2

)
!
(

d + r − 3

2

)
!
(

d − r

�d−r
2 �
)

,

per
(

A∗
� d+r

2 �,d+1

)= (d + r + 1

2

)
!
(

d + r − 3

2

)
!
(

d − r

�d−r
2 �
)

d + r − 3

d + r + 1
.

It follows that

per
(

A∗)− per
(

A∗∗)= per
(

A∗
� d+r

2 �,d+1

)− per
(

A∗
� d+r

2 �,1
)
< 0,

a contradiction.
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Case 2. Let x� d+r
2 	 = r + 1. Again, it is easily verifiable that

per
(

A∗
� d+r

2 �,1
)= (d + r + 1

2

)
!
(

d + r − 3

2

)
!
(

d − r

�d−r
2 �
)

,

per
(

A∗
� d+r

2 �,d+1

)= (d + r + 1

2

)
!
(

d + r − 3

2

)
!
(

d − r

�d−r
2 � − 1

)
.

Once again, it follows that

per
(

A∗)− per
(

A∗∗)= per
(

A∗
� d+r

2 �,d+1

)− per
(

A∗
� d+r

2 �,1
)
< 0,

a contradiction. �
Appendix B. Proofs of Theorems 14, 15, and 16

The following are very slight adjustments to the proofs given by Wanless in [29]. They are brought
here for completeness.

Proof of Theorem 14. For every integer d � i < 2d, choose some Ai ∈ Γ d
n . Define

bd = max
{
m(Ad),m(Ad+1), . . . ,m(A2d−1)

}
where m(Ai) was defined in Theorem 13.

Assume to the contrary that A ∈ Md
n contains a component C bigger than bd that does not contain

1d×d as a sub-matrix. By Theorem 13 we can increase per(A) by replacing C with Ai ⊕ t1d×d , where
d � i < 2d, i ≡ ord(C) mod d, and t = (ord(C) − i)/d. This contradiction proves the claim. �
Proof of Theorem 15. Assume A has d connected components C1, . . . , Cd . By Theorem 14, the order of
any component of A not having 1d×d as a sub-matrix, is upper bounded by b∗

d . Let us now look at the

partial sums si =∑i
j=1 ord(Ci). Obviously, either there is some j such that s j ≡ 0 (mod d), or there

are distinct i and j for which si ≡ s j (mod d). In any case, there are surely integers 1 � a � b � d for

which
∑b

i=a ord(Ci) = ld for some positive integer l.
The permanent is multiplicative components, and therefore, Ci ∈ Md

ord(Ci)
. Furthermore, by Brég-

man’s Theorem, Ca ⊕ · · · ⊕ Cb
∼= l1d×d . Thus, A has at most d − 1 connected components which are

not isomorphic to 1d×d . �
Proof of Theorem 16. For the first direction, assume A ⊕ 1d×d ∈ Md

n+d , then every component maxi-

mizes its permanent and so A ∈ Md
n . For the other direction, assume A ∈ Md

n and B ∈ Md
n+d . Further,

let us assume n > (d − 1)b∗
d . We now have one of two cases:

Case 1. Either B contains a connected component which is 1d×d , or all the connected compo-
nents of B do not contain 1d×d as a sub-matrix. Thus, by using Theorems 14 and 15 in the latter
case, we are assured that B ∼= 1d×d ⊕ B ′ for some B ′ ∈ Γ d

n . It now follows that per(B ′) � per(A)

and so per(B) = per(B ′ ⊕ 1d×d) � per(A ⊕ 1d×d) and then necessarily per(A ⊕ 1d×d) = per(B), i.e.,
A ⊕ 1d×d ∈ Md

n+d .

Case 2. There exists a connected component C of B which contains 1d×d as a sub-matrix. When
viewed as a matrix of configuration C = (x1, . . . , xord(C)), xi+1 � xi , let us examine the top left oc-
currence of 1d×d as a sub-matrix in C . By changing all the 1’s above and below the sub-matrix

1d×d to 0’s, we get a matrix C ′ ∈ Γ
�d

ord(C)
, where Γ

�d
n stands for the set of (0,1)-matrices with

exactly one contiguous non-zero block in each row of size at most d. It is readily verifiable that
per(C ′) = per(C).
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After the change, the matrix B becomes B ′ ∈ Γ
�d

n+d for which per(B) = per(B ′). In addition, B ′ =
1d×d ⊕ B ′′ , where B ′′ ∈ Γ

�d
n . We can, now, arbitrarily change 0’s to 1’s in B ′′ so as to get a matrix

B∗ ∈ Γ d
n . Obviously, per(B ′′) � per(B∗) � per(A), and so

per(B) = per
(

B ′)= per
(

B ′′ ⊕ 1d×d
)
� per

(
B∗ ⊕ 1d×d

)
� per(A ⊕ 1d×d).

Just like in the previous case, it now follows that A ⊕ 1d×d ∈ Md
n+d . �
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