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New Bounds on the Capacity of Multidimensional
Run-Length Constraints

Moshe Schwartz, Senior Member, IEEE, and Alexander Vardy, Fellow, IEEE

Abstract—We examine the well-known problem of determining
the capacity of multidimensional run-length-limited constrained
systems. By recasting the problem, which is essentially a combina-
torial counting problem, into a probabilistic setting, we are able to
derive new lower and upper bounds on the capacity of ��� ��-RLL
systems. These bounds are better than all previously-known ana-
lytical bounds for � �, and are tight asymptotically. Thus, we
settle the open question: what is the rate at which the capacity of
��� ��-RLL systems converges to 1 as � ��? We also provide the
first nontrivial upper bound on the capacity of general ��� ��-RLL
systems.

Index Terms—Constrained coding, multidimensional con-
straints, run-length limited coding, 2-D constrained coding.

I. INTRODUCTION

T HE one-dimensional -RLL constraint is the set of
all finite binary sequences in which every two adjacent

1’s are separated by at least zeroes, and no more than 0’s
appear consecutively. This constraint was first narrowly defined
by Kautz [13], and later generalized to its current -RLL
form by Tang and Bahl [29].

The study of constrained systems was initiated by Shannon
[24] who defined their capacity as

where denotes the number length- sequences with the
constraint, and the constraint is the union .
These constraints have a variety of applications, especially in
coding for storage devices (see [8], [16], [17] and references
therein).

The emergence of 2-D recording systems brought to light
the need for 2-D and even multidimensional constrained sys-
tems. A 2-D -RLL constrained system is the set of all (fi-
nite-sized) binary arrays in which every row and every column
obeys the 1-D -RLL constraint. The generalization to the

-dimensional case is obvious, and we denote such a system
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as . Though we consider in this paper mostly symmetrical
constraints, i.e., the same and along every dimension, the re-
sults generalize easily to asymmetrical RLL constraints as well.

In the 1-D case, it is well known that , for
, is the base-2 logarithm of the largest positive root of

the polynomial

However, unlike the 1-D case, very little is known about the
capacity of the 2-D case, defined for a general constraint as

where is the set of all arrays with the con-
straint. The definition easily generalizes to the -dimensional
case

Exact expressions for the capacity of nontrivial 2-D con-
straints (with nonzero capacity) are rare. For the -RLL
constraint on the hexagonal lattice, Baxter [2] gave an exact but
not rigorous analytical solution for the capacity using the corner
transfer matrix method. Schwartz and Bruck [23] described a
rigorous method for finding the capacity of general 2-D con-
straints. The expressive power of this method is, however, yet
unknown. An example of an exact rigorously-proved expression
for the capacity of a 2-D generalization of the 1-D (0, 1)-RLL
is shown in [23]. More recently, Louidor and Marcus [15]
calculated the exact capacity of two specific multidimensional
constraints: the 2-CC (Charge Constrained) system, and the
ODD constraint.

In [3], Calkin and Wilf gave a numerical estimation method
for the capacity of the 2-D (0, 1)-RLL constraint which gives

Their method ingeniously uses the fact that a certain matrix in-
duced by the constraint is symmetric. Unfortunately, this hap-
pens only for the case of (0, 1)-RLL (and by inverting all the
bits, the equivalent -RLL case). Using the same method
in the 3-D case, it was shown in [18] that

Several constructive methods were suggested which, by de-
vising an appropriate encoder and analyzing its rate, yield lower
bounds on the capacity of the constrained system. These works
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TABLE I
COMPARISON OF LOWER BOUNDS (LB) AND UPPER BOUNDS (UB) ON �� �, FOR � � ��. LOWER AND UPPER BOUNDS ARE ROUNDED DOWN AND

UP, RESPECTIVELY, TO SIX DECIMAL DIGITS

include [22], [25], [26] as well as the bit-stuffing method de-
scribed in [7], [27]. A few recursive constructions were also
given by Etzion in [5]. A generalization of 2-D -RLL
called checkerboard constraints, defined by a mandatory region
of 0’s around each of the 1’s, was explored in [19], [30].

General analytical bounds on the capacity were given in [12].
Amazingly, we still do not know the exact capacity of the multi-
dimensional RLL-constraint except when it is exactly zero [4],
[9]. We also know the limit of the capacity of multidimensional

-RLL constraints as the number of dimensions goes to
infinity [20].

The analytical bounds we improve upon in this work are those
of 2-D -RLL, . The bounds are the following:

Theorem 1 (Theorem 3, [12]): For every positive integer

Theorem 2 (in [28]): For all integers

Theorem 3 (Theorem 7, [12]): For every positive integer

Our new bounds are given in Theorem 6 and Theorem 16.
A numerical comparison with the previously-best analytical
bounds for is given in Table I. Our results also sur-
pass other published nonanalytical bounds for all except
the lower bound for (0, 2)-RLL given in [25]. Furthermore, our
lower and upper bounds agree asymptotically. This settles the
open question of the rate of convergence to 1 of as

by showing that for any fixed

where, throughout the paper, denotes a function tending to
0 when .

Our approach to the problem of bounding the capacity is to
recast the problem from a combinatorial counting problem to

a probability bounding problem. Suppose we randomly select
a sequence of length with uniform distribution. Let
denote the event that this sequence is in the constrained system

. Then the total number of length- sequences in can be
easily written as

It follows that

This translates in a straightforward manner to higher dimensions
as well. By calculating or bounding , we may get the
exact capacity or bounds on it, which is the basis for what is to
follow.

The work is organized as follows. In Section II we use
monotone families to construct lower bounds on and
an upper bound on . While this method may also
be used to lower bound , the resulting bound is ex-
tremely weak. We continue in Section III by deriving an upper
bound on using a large-deviation bound for sums of
nearly-independent random variables. We generalize our results
to the asymmetric case over a general alphabet in Section IV.
We conclude in Section V by discussing the asymptotics of our
new bounds and comparing them with the case of -RLL.

II. BOUNDS FROM MONOTONE FAMILIES

We use monotone increasing and decreasing families to find
new lower bounds on the capacity of -RLL, and a new
upper bound on the capacity of -RLL, . We start
with the definition of these families.

Definition 4: Let be some finite set. A family is
said to be monotone increasing if when and

, then . It is said to be monotone decreasing if when
and , then .

The following theorem is due to Kleitman [14]:

Theorem 5: Let be some finite set. Also, let be mono-
tone increasing families, and be monotone decreasing fam-
ilies, all over . Let be a random variable describing a uni-
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formly-distributed random choice of a subset of out of the
possible subsets. Then

(1)

(2)

(3)

We can now apply Kleitman’s theorem to -RLL con-
strained systems:

Theorem 6: For all integers

Proof: The constrained system we examine is , and
let us denote by the event that a randomly chosen

array is -RLL.
We now define two closely related constraints. Let denote

the set of finite 2-D arrays in which every row is -RLL,
and denote the set of finite 2-D arrays in which every column
is -RLL. Similarly we define the events and

. By definition

The crucial observation is that both and are monotone
increasing families. This is seen by defining

and considering an binary array as the subset of
corresponding to the positions of 1’s in the array. It follows that
an array in (or in ) corresponds to a subset of whose
supersets are also in (or in ) since, obviously, runs of 0’s
may only get shorter by adding 1’s to the array.

Hence, by Theorem 5

It follows that

Now, both and may be easily
expressed in terms of 1-D constrained systems. An bi-
nary array chosen randomly with uniform distribution is equiv-
alent to a set of i.i.d. random variables for each of the
array’s bits, each having a “1” with probability . Thus

Plugging this back into the expression for the capacity, we get

This is generalized to higher dimensions in the following
theorem.

Theorem 7: Let be integers, then

Proof: The proof is a simple generalization of the proof
of Theorem 6. Let , and let denote the list

. We define to be the event that a ran-
domly chosen array is -RLL.

We now define to be the set of all arrays
for which all projections onto the last coordinates created by
fixing the first coordinates form arrays
obeying the constraint. Similarly, is defined as the set of
all arrays for which all projections onto the first
coordinates created by fixing the last coordinates form

arrays obeying the constraint. The corresponding
events and are defined appropriately.

Again, both and are monotone increasing families, and
also

Thus

Furthermore

Like in Theorem 6, it now follows that

Corollary 8: For any integer
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Proof: Results by iterating Theorem 7 while choosing, for
example, and in each step.

As mentioned in [12], for the 1-D capacity of -RLL, we
have

(4)

Corollary 9: For any integer

Proof: Substitute (4) into Corollary 8.

We note that similar lower bounds to that of Theorem 7 may
be given for the -RLL constraint, since such arrays form
a monotone decreasing family. However, the resulting bounds
are very weak. We can, however, mix monotone increasing and
decreasing families to get the following result.

Theorem 10: Let be some integer, and also
integers, then

Proof: Let denote . It is easy to verify
that is monotone decreasing, while is monotone
increasing. Also, we note that , so by
Theorem 5

Hence, we get

III. NEW UPPER BOUNDS

In this section we present upper bounds on the capacity
of -RLL. Unlike the previous section, these bounds are
explicit. The method we use is similar to the one employed
by Godbole et al. in [6], which relies on a probability bound
by Roos [21]. The latter is an improvement of the well-known
bound by Janson [10]. Since the bound by Roos is overly-pa-
rametrized for our needs, we provide a simpler more specific
bound that still retains the essence of the improvement of [21]
over [10].

Let be a finite index set, and let be a set of in-
dependent Boolean random variables. We are given a family

of subsets of . For each , define an indicator
random variable , then set

Thus, counts the number of sets contained in the
random set . In particular, if the sets
correspond to “bad” events, then is the probability
that no such “bad” events occur.

Following [10], given an and a , let us write
if and . As in [10], let us also define

The is a measure of dependence between the random variables
. Janson’s inequality of [10], [11] uses to estimate

the relative error in approximating the distribution of by the
Poisson distribution with mean . In particular, this inequality
implies that

(5)

We strengthen the bound (5) by replacing with a more re-
fined measure of dependence. As in [10], let us define

for each . Thus, is the sum of all
those indicators that are dependent on . The following the-
orem is our strengthened version of Janson’s inequality.

Theorem 11: For each , define

Then

Proof: The beginning of the proof closely follows the orig-
inal argument of Janson [10]. For completeness, we include
this part of the argument below. For real , consider the
moment generating function . It is clear that

for all , and therefore

(6)

where the (second) equality follows from the fact that
. To produce an upper bound on the right-hand side of (6), write

(7)

Now express as , and then also observe
that does not depend on . The random variables

and are decreasing functions of ,
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and therefore, positively correlated by the FKG inequality [1,
p. 85]. Thus, we have

where the first transition is by the definition of conditional ex-
pectation, the second follows from the FKG inequality (the con-
dition fixes for , but and
are still decreasing in the remaining ); the third holds because

is independent of , and the last follows from the
fact that for all . Combining this with
(6) and (7) we get

(8)

At this point, the standard argument of [10] uses Jensen’s in-
equality twice to arrive at (5). We depart from this argument,
and instead simply evaluate (8) exactly, as follows:

(9)

where the inner summation starts from because
. The theorem now follows by taking

the limit as in (9).

Since we have avoided invoking Jensen’s inequality after (8),
Theorem 11 is always strictly stronger than (5) (note that the
exponential function used with the Jensen inequality
in [10] is strictly convex).

It appears that Theorem 11 is most useful when is the
same for all . In this case, we will write instead of

, and our bound reduces to

(10)

Our goal is to use Theorem 11 to show an upper bound on the
capacity of 2-D -RLL systems. If denotes the
set of 2-D -RLL arrays of size then by definition

However, it would be more convenient to work in a more
symmetric setting. Intuitively speaking, positions which are
close enough to the edge of the array are “less constrained”
than others lying fully within the array since they have smaller
neighborhoods. We overcome this difficulty by considering
cyclic -RLL arrays.

We say that a binary array is cyclic -RLL
if there do not exist and such that

or
, where the indices are taken

modulo and respectively. We denote the set of all such
arrays as . The next lemma shows that by re-

stricting ourselves to cyclic -RLL arrays, we do not change
the capacity.

Lemma 12: For all positive integers

Proof: Trivially, , so

For the other direction, we note that any array from
, with an additional row and column of all 1’s, be-

comes an cyclic -RLL array. So
and

We are now ready to describe the upper bound on the capacity.
We start by considering a random binary array, chosen
with uniform distribution, which is equivalent to saying that we
have an array of i.i.d. 0-1 random variables

, with .
For the remainder of this section, we invert the bits of the

array, or equivalently, we say that an array is -RLL if it
does not contain consecutive 1’s along any row or column.
Furthermore, by Lemma 12, we consider only cyclic -RLL
arrays. Suppose we define the following subsets of coordinates
of the arrays:

where all the coordinates are taken with the appropriate modulo.
We further define the following indicator random variables:

for all

If for some , we have a forbidden event of
consecutive 1’s along a row or a column (see Fig. 1 for an

example).
Finally, we count the number of forbidden events in the

random array by defining . It is now clear that
the probability that this random array is -RLL is simply
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Fig. 1. Depiction of two subsets from� for � � �. A horizontal subset, � �
� , induces � � � � � . A vertical subset, � � � , induces
� � � � � .

Fig. 2. Shown in different shades of gray are the following subsets
for � � � � � � ���� ��� ������� � � �������� ��������
� � �������� �������� � � �������� �������������� �������, and
� � �������� �������������� �������.

It is easy to be convinced that this setting agrees with the
requirements of Theorem 11, including the symmetry require-
ments of which allow us to use (10). All we have to do now
to upper bound , is to calculate and .

Let us start by calculating . We note that is the sum of
indicator random variables, so by linearity of expectation

since each of the indicator random variables has probability ex-
actly of being 1.

Calculating is more tedious. Since does not depend on
the choice of , we arbitrarily choose the horizontal set of co-
ordinates

We now have to calculate . We note that
we can partition the set into the following
disjoint subsets:

where

for all

See Fig. 2 for an example.
We define , and in a similar fashion,

and for all . Since the indicators for
elements from different subsets are independent given

because their intersection contains only coordinates from , it
follows that and , are independent
given .

We now give two lemmas to help us determine the distribution
function of .

Lemma 13: Let denote the number of binary strings
of length with their last positions 1’s, and which
contain exactly runs of 1’s. Then

Proof: The only bits we can set to our liking are the first
bits. The case of is trivial since it requires all the bits to
be set to 1’s. For the other cases it is easy to be convinced that
setting the first bits to any value, followed by a single
0 and then bits set to 1’s, is the only way to create a string with
exactly runs as required.

Since the distributions of and given are
the same, they may be now expressed as

(11)

Lemma 14: Let denote the number of binary strings of
length with their middle position a 1, and which contain
exactly runs of 1’s. Then,

Proof: We begin by noting that since only
the all-ones string has runs of of 1’s of length each.
For the basic observation is that a string of length

cannot have two nonoverlapping runs of 1’s of length
each. Hence, in order to get runs of length 1’s, we

need exactly one run of 1’s of length which has, either one
0 at each side, or is at the beginning or end of the string and has
one 0 at its other side. Thus

for all . We also note that all such strings must have a
1 in their middle position.

Finally, is given by subtracting from the total number
of strings, all the previously counted strings, and the strings
having a 0 in their middle position. Thus

Using this lemma, we can now say that

(12)
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Lemma 15: For the -RLL setting described above

Proof: By definition

As already mentioned before, given , we have that
, and are independent. Thus, the distribution function

of given is

Plugging (11) and (12) into the last expression and then using
the definition of we get the desired result.

We are now in a position to state the main upper bound.

Theorem 16: Let be some integer, then

where is given by Lemma 15.
Proof: We apply Theorem 11 for an array of size

and get that

where is given by Lemma 15. Then

We can make the bound of Theorem 16 weaker for small
values of , but more analytically appealing for an asymptotic
analysis. This is achieved by noting that is almost 1
for large values of .

Theorem 17: For the 2-D -RLL constraint

Proof: We lower bound from Lemma 15 by

and use Theorem 11.

We can generalize these results to higher dimensions.

Theorem 18: Let and be some fixed integers,
then for the -dimensional -RLL constraint

where is given by

where the inner summation is over all choices of , and
such that , and also

Proof: The proof is very similar to the proof of the 2-D
case so we just give a brief sketch of it. We start by defining
the sets of coordinates , where contains
adjacent positions along the th dimension. We then define

. For all we define the appropriate indicator
random variable and let .

For an array

Again, is independent of the choice of . For our
convenience we choose

which lies along the th dimension. We partition the events
to the ones lying in parallel to (along the th dimen-

sion), and those lying perpendicular to (thus, intersecting in
a single position). The expressions for and remain
the same and we get
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where the inner summation is as claimed. Using and like
we did in Theorem 16 gives us

Finally, a similar asymptotic analysis gives

which results in

Corollary 19: For any integer

Proof: Simply combine Corollary 9 with Theorem 18.

The last corollary shows that we have finally closed the gap
between the lower and upper asymptotic bounds.

IV. GENERALIZATIONS

In this section we generalize the results of the previous section
to the asymmetric case and to a general -ary alphabet. To avoid
unnecessary repetition, we state the results with brief sketches
of the proofs. The results can be further generalized to the mul-
tidimensional asymmetric case, which we avoid here to keep the
notation simple.

The -ary 2-D -RLL constrained system is the
set of all (finite-sized) arrays over an alphabet of size , such
that no row contains more than consecutive zeroes, and no
column contains more than consecutive zeroes. We denote
this system as .

We first note that in the -ary case, by the definition of the
capacity, say for a 1-D constraint

Thus, in the following, we make sure we change the 1 in the ex-
pression for the capacity to . The lower bound of Theorem
6 is easily generalized.

Theorem 20: For all integers

Proof: In the proof of Theorem 6 we make sure that is
-RLL in the rows, and is -RLL in the columns.

The rest of the proof is the same.

For the upper bound, let us assume the setting as in Theorem
11 apart from the following: Let be partitioned into disjoint
subsets

such that for any fixed , all have the same
, which we will conveniently name . We also define

. In the setting of Theorem 11 we have

We also need to generalize and .

Lemma 21: Let denote the number of -ary strings
of length with their last positions 0’s, and which
contain exactly runs of 0’s. Let
denote the number of -ary strings of length with their
middle position a zero, and which contain exactly runs of
zeroes. Then

Proof: The lemma uses the same counting arguments used
in Lemma 13 and Lemma 14.

We partition the set of indicators into . It
follows that for an array

which gives us:

Theorem 22: Let be some integers, then

Numerical results for the lower bound of Theorem 20 and
upper bound of Theorem 22 are given in Table II.
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TABLE II
LOWER AND UPPER BOUNDS FOR THE �-ARY ASYMMETRIC ��� � � �� � �-RLL CONSTRAINT

(IN EACH CELL THE UPPER BOUND APPEARS ABOVE THE LOWER BOUND)

V. DISCUSSION

In this work we showed new lower and upper bounds on the
multidimensional capacity of -RLL systems, as well as a
new upper bound on the capacity of -RLL systems. We
examined the rate of convergence to 1 of as .
The best asymptotic bounds for the 2-D case were given in [12]
(Corollary 3) as follows:

for sufficiently large . There are no previously-known bounds
for the multidimensional case. In contrast, our results show
asymptotically-matching lower and upper bounds giving

We conclude with an interesting comparison of the asymp-
totes of our new bounds with those of the best previously-known
bounds for -RLL. While converges to 0 as

(Corollary 4, [12]), just as it does in one dimension, for
-dimensional -RLL the capacity converges to 1 slower

than the 1-D case by a factor of .
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