
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER 2011 7431

Constant-Weight Gray Codes for
Local Rank Modulation

Eyal En Gad, Michael Langberg, Member, IEEE, Moshe Schwartz, Senior Member, IEEE, and
Jehoshua Bruck, Fellow, IEEE

Abstract—We consider the local rank-modulation (LRM)
scheme in which a sliding window going over a sequence of
real-valued variables induces a sequence of permutations. LRM
is a generalization of the rank-modulation scheme, which has
been recently suggested as a way of storing information in flash
memory. We study constant-weight Gray codes for the LRM
scheme in order to simulate conventional multilevel flash cells
while retaining the benefits of rank modulation. We present a
practical construction of codes with asymptotically-optimal rate
and weight asymptotically half the length, thus having an asymp-
totically-optimal charge difference between adjacent cells. Next,
we turn to examine the existence of optimal codes by specifically
studying codes of weight 2 and 3. In the former case, we upper
bound the code efficiency, proving that there are no such asymp-
totically-optimal cyclic codes. In contrast, for the latter case we
construct codes which are asymptotically-optimal. We conclude
by providing necessary conditions for the existence of cyclic and
cyclic optimal Gray codes.

Index Terms—Flash memory, gray code, local rank modulation,
permutations, rank modulation.

I. INTRODUCTION

I N a recent series of papers [27], [28], [41], [44], the rank-
modulation scheme was suggested as a way of storing infor-

mation in flash-memory devices. Basically, instead of a conven-
tional multilevel flash cell in which the charge level of a single
cell is measured and quantized to a symbol from the input al-
phabet, in the rank-modulation scheme the permutation induced
by the relative charge levels of several cells comprises the stored
information. The scheme, first described in [27] in the context
of flash memory, works in conjunction with a simple cell-pro-
gramming operation called “push-to-the-top”, which raises the
charge level of a single cell above the rest of the cells. It was
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suggested in [27] that this scheme eliminates the over-program-
ming problem in flash memories, reduces corruption due to re-
tention, and speeds up cell programming.

This is certainly not the first time permutations have been
used for modulation purposes. Permutations have been used as
codewords as early as the works of Slepian [39] (later extended
in [2]), in which permutations were used to digitize vectors
from a time-discrete memoryless Gaussian source, and Chad-
wick and Kurz [9], in which permutations were used in the con-
text of signal detection over channels with non-Gaussian noise
(especially impulse noise). Further early studies include works
such as [2]–[4], [8], [12], [13]. More recently, permutations
were used for communicating over powerlines (for example, see
[43]), and for modulation schemes for flash memory [27], [28],
[41], [44].

An important application for rank-modulation in the context
of flash memory was described in [27]: A set of cells, over
which the rank-modulation scheme is applied, is used to sim-
ulate a single conventional multilevel flash cell with levels
corresponding to the alphabet . The simulated
cell supports an operation which raises its value by 1 modulo .
This is the only required operation in many rewriting schemes
for flash memories (see [5], [24]–[26], [45]), and it is realized in
[27] by a Gray code traversing the states where, physically,
the transition between two adjacent states in the Gray code is
achieved by using a single “push-to-the-top” operation.

Most generally, a gray code is a sequence of distinct elements
from an ambient space such that adjacent elements in the se-
quence are “similar”. Ever since their original publication by
Gray [22], the use of Gray codes has reached a wide variety of
areas, such as storage and retrieval applications [10], processor
allocation [11], statistics [14], hashing [18], puzzles [20], or-
dering documents [30], signal encoding [31], data compression
[34], circuit testing [35], and more. For a survey on Gray codes
the reader is referred to [37].

A drawback to the rank-modulation scheme is the need for
a large number of comparisons when reading the induced per-
mutation from a set of cell-charge levels. Instead, in a re-
cent work [44], the cells are locally viewed through a sliding
window resulting in a sequence of small permutations which re-
quire less comparisons. We call this the local rank-modulation
scheme. The aim of this work is to study Gray codes for the local
rank-modulation scheme.

Yet another drawback of the rank-modulation scheme is the
fact that distinct charge levels are required for a group of
physical flash cells. Therefore, restricted reading resolution pro-
hibits the use of large values of . However, when only local
views are considered, distinct values are required only within a
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Fig. 1. Demodulating a ��� �� ��-locally rank-modulated signal.

small local set of cells, thus enabling the use of large groups of
cells with local rank modulation (LRM).

The paper is organized as follows: In Section II the exact
setting, notation, and definitions are presented. In Section III
we construct Gray codes with asymptotically-optimal rates and
weight asymptotically half the length. We turn, in Section IV,
to the more theoretical aspects of local rank-modulation Gray
codes, and explore constructions for codes of low constant
weight. We study, in Section V, necessary conditions for the
existence of Gray codes for our setting with various properties.
We conclude in Section VI with a summary and a set of open
problems.

II. DEFINITIONS AND NOTATION

A. Local Rank Modulation

Let us consider a sequence of real-valued variables,
, where we further assume for all

. The variables induce a permutation , where
denotes the set of all permutations over . The
permutation is uniquely defined by the constraints

for all , i.e., if we sort in descending order,
then for all .

Given a sequence of variables, , we
define a window of size at position to be

where the indices are taken modulo , and also ,
and .

We now define the -LRM scheme, which we do by
defining the demodulation process. Let be positive
integers, with . Given a sequence of distinct real-valued
variables, , the demodulation maps to
the sequence of permutations from as follows:

(1)

Loosely speaking, we scan the variables using windows of size
positioned at multiples of and write down the permutations

from induced by the local views of the sequence.
In the context of flash-memory storage devices, we shall con-

sider the variables, , to be the charge-
level readings from flash cells. The demodulated sequence,

, will stand for the original information which was stored in
the cells. This approach will serve as the main motivation for
this paper, as it was also for [27], [28], [41], [44]. See Fig. 1 for
an example.

Though of no consequence to the rest of the paper, we men-
tion in passing that the sequence of local permutations given in
(1) may be quite a wasteful method of representation. A more
compact form may be defined using the (mixed-radix) factoradic
notation (see [29] for the earliest-known definition, and [27] for
a related use) in which the th most-significant digit counts the
number of elements to the right of the th-from-left element,
which are of lower value. We then represent each of the local
permutations using the most-significant digits in its fac-
toradic notation. Thus, for example, the configuration of Fig. 1
would be represented by .

We say a sequence of permutations over is
-LRM realizable if there exists such that ,

i.e., it is the demodulated sequence of under the -LRM
scheme. Except for the degenerate case of , not every
sequence is realizable.

When , the -LRM scheme degenerates
into a single permutation from . This was the case in most of
the previous works using permutations for modulation purposes.
A slightly more general case, was discussed by Fer-
reira et al. [19] in the context of permutation trellis codes, where
a binary codeword was translated tuple-wise into a sequence
of permutation with no overlap between the tuples. Finally, the
most general case was defined by Wang et al. [44] (though in a
slightly different manner where indices are not taken modulo ,
i.e., with no wrap-around). In [44], the sequence of permutations
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was studied under a charge-difference constraint called bounded
rank-modulation, and mostly with parameters , i.e., an
overlap of one position between adjacent windows.

Finding out the induced permutation from a sequence of
real-valued readings requires at least compar-

isons. Thus, to get the simplest hardware implementation we
will consider the case of throughout the paper. The
only non-trivial case to consider is therefore , i.e., a

-LRM scheme. Demodulated sequences of permuta-
tions in this scheme contain only the permutations and

, and a single comparison between the charge levels of two
adjacent flash memory cells is required to find the permutation.
We will conveniently associate the logical value 1 with the
permutation , and 0 with , thus forming a simple
mapping between length binary sequences and permutation
sequences from the -LRM scheme. It is easily seen that
the only two binary sequences not mapped to -LRM
sequences are the all-ones and all-zeros sequences.

It is interesting to note that in the full rank-modulation
scheme of [27], with a group of cells we store an order of

bits per cell, require about comparisons per cell
to read the permutation, and comparisons with cells
for a single “push-to-the-top” operation. In contrast, in the

-LRM scheme we store about 1 bit per cell, require just
1 comparison per cell for reading, and perform comparisons
with 2 cells for a “push-to-the-top” operation.

B. Gray Codes for -LRM

Generally speaking, a Gray code, , is a sequence of distinct
states (codewords), , from an ambient
state space, , such that adjacent states in the sequence
differ by a “small” change. What constitutes a “small” change
usually depends on the code’s application.

Since we are interested in building Gray codes for flash
memory devices with the -LRM scheme, our ambient
space, which we denote as , is the set of all realizable
sequences under -LRM. This is simply the set of all
the binary sequences of length , excluding the all-ones and
all-zeros sequences, i.e.,

Each of the codewords, , is a string of bits which we
shall denote as . Throughout the paper
we will assume the index in is taken modulo , and when
appropriate, the index is taken modulo .

The transition between adjacent states in the Gray code is
directly motivated by the flash memory application, and was
previously described and used in [27]. This transition is the
“push-to-the-top” operation, which takes a single flash cell and
raises its charge level above all others.

In our case, however, since we are considering a local
rank-modulation scheme, the “push-to-the-top” operation
merely raises the charge level of the selected cell above those
cells which are comparable with it. As the window size is

, these cells are the ones directly before and after the
selected cell. Thus, we define the set of allowed transitions

Fig. 2. Example of a local “push-to-the-top” operation in a ��� �� ��-LRM
scheme. The snapshot (a) presents the system before the change, while
(b) presents the system after the change, which locally pushed � above � and
� , thus changing the first two bits of the demodulated sequence.

as , which is a set of functions,
, where represents a “push-to-the-top” operation

performed on the -th cell. If , then
if

otherwise.

Loosely speaking, a transition is made by selecting a window of
size 2 in the original codeword, and overwriting it with 01. See
Fig. 2 for an example.

Definition 1: A Gray code, , for -LRM (denoted
-LRMGC) is a sequence of distinct length- binary

codewords, , where . For all
, we further require that for

some . If for some , then we say the code is
cyclic. We call the size of the code, and say is optimal if

.
When we perform a “push-to-the-top” operation on the -th

cell, let us denote its initial charge level as , and its resulting
charge level as . We set to , where

. Two important issues of concern are the difference in
charge levels involved in a “push-to-the-top” operation, and cell
saturation. In the former, the higher is, the more risk of
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disturbing neighboring cells, while in the latter, the higher we
set , the less number of updates to the cell before it saturates.
Both concerns benefit from a value of as low as possible. Let
us assume that a limited resolution exists and thus is bounded
from below by a constant, which w.l.o.g., we can assume is 1
(after a proper scaling).

Let us now assume an optimal setting in which a “push-to-the-
top” operation on the -th cell sets .
A general -LRMGC may result in exponential
in , for some transition from to . The same motivation
in the case of -LRM was discussed in [27], where a
balanced variant of Gray codes was constructed to avoid the
problem. We present a different variant of Gray codes to address
the same issue.

First, for any binary string , we call the
number of 1’s in the weight of and denote it as . We
also denote by the set of length- binary strings of
weight . We now define our variant of Gray codes:

Definition 2: A constant-weight Gray code for -LRM
(denoted -LRMGC), , is a
Gray code for -LRM for which for all

.

Definition 3: Let be a -LRMGC of size . We
define the rate of the code as . The efficiency of

is defined as . If then we say
is optimal. If , where denotes a function
that tends to 0 as , then we say is asymptotically
optimal.

The transitions between adjacent states in the constant-weight
variant take on a very simple form: a window of size 2 in
which contains 10 is transformed in into 01, i.e., “pushing”
a logical 1 a single place to the right. Since we are interested in
creating cyclic counters, we will be interested in cyclic Gray
codes. An example of a cyclic optimal Gray code is given in
Table I.

It should be noted that Gray codes with a weaker restriction,
allowing a 01 to be changed into 10 and also 10 to be changed
back into 01, i.e., a 1 may be pushed either to the right or to the
left, have been studied in the past [6], [7], [16], [23], [36].

We can show that under the constant-weight restriction, for
any “push-to-the-top” operation

This is done by first assuming , or else we flip all the
bits and reverse the codewords. We will only use integer charge
levels, and thus for any codeword, , , we can
find a realization by setting if , and

if , where denotes either
or .

It is now easily shown by induction that a “push-to-the-top”
operation on the -th cell preserves charge-level differences be-
tween adjacent cells and only rearranges their order: by the in-
duction hypothesis, initially we have

TABLE I
CYCLIC OPTIMAL ��� �� �� ��-LRMGC

(THE CHANGED POSITIONS ARE UNDERLINED)

and . The “push-to-the-top” operation sets
and then and

.

III. ASYMPTOTICALLY-CONSTANT-RATE CODES

In this section, we construct codes with rates asymptotically
tending to 1, and weight asymptotically half the length, thus
having asymptotically-optimal charge difference between adja-
cent cells. Our construction has the following intuitive flavor.
We start by partitioning the flash cells into about blocks,
each block of size about , treating each block of cells as a
single character in a large alphabet, say for

. Roughly speaking, by this operation, we have re-
duced the problem of finding a Gray code over into
an outer Gray-like code over . Several Gray
codes of rate 1 exist over large alphabets, however, not any outer
code will suffice in our setting. Primarily, it is crucial that we
may move from state to state in the outer code using our el-
ementary pairwise “push-to-the-top” operations. Moreover, in
doing so, we must guarantee that flash cell values obtained be-
tween a single representation of the outer codeword and its suc-
cessor are unique. We achieve these goals using an outer Gray
code based on de-Bruijn sequences. In such codes, the location
of the character that changes between subsequent codewords
over goes a cyclic shift. This cyclic location change between
subsequent codewords lends itself very naturally to our cyclic
“push-to-the-top” operations. Combining this with additional
ideas, that guarantee distinct cell values (of constant weight) in
transition between outer codewords, we obtain our construction.

Construction 1: Fix a positive integer . Let
be a set of distinct binary vectors

of length and weight such that the first and last
bit of each is 1. We also denote .

The next required ingredient in the construction is a de-Bruijn
sequence of order over the alphabet . The se-
quence is of period and we denote it by . We
remind the reader that windows of size in the sequence, i.e.,

, with indices taken modulo , are all dis-
tinct. Such sequences can always be constructed (for example,
see [21]).

We now construct the sequence of binary
vectors of length and weight .
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Each vector is formed by a concatenation of blocks of
length as follows:

...

...

...

...

where denotes the all-zero vector of length , and the
subindices of are taken modulo .

We call the anchor vectors. We note that be-
tween anchors and the block moves posi-
tions to the right (with wrap-around) and is changed to the block

.
Finally, between any two anchors, and , a sequence of

vectors called auxiliary vectors and denoted , is
formed in the following way: The only allowed transition is a 10
changed into a 01. First the rightmost 1 in the block is moved
to the right, step by step, to the position of the rightmost 1 in

. The process then repeats with a sequence of transitions
moving the second-from-right 1 in to the position of the
second-from-right 1 in , and so on, until is moved
one block to the right and changed into (see Example
4). The resulting list of anchor vectors and, in between them,
auxiliary vectors, is the constructed code.

Example 4: Let us take a very simple case of , ,
, and , with , , and , and then

, , and . The list of anchors
is

and, for example, the transition between and is shown in
Table II (the changed positions are underlined).

Theorem 5: The code constructed in Construction 1 is a
cyclic -LRMGC of size

TABLE II
THE TRANSITIONS BETWEEN ANCHORS IN EXAMPLE 4

Proof: That the code contains only valid transitions is ev-
ident by the construction method. We need to show that all the
constructed codewords are distinct which we do with the fol-
lowing reasoning: consider some constructed codeword of
length and weight . Deciding
whether is an anchor is simple, since only anchors have
blocks beginning and ending with a 1, and the remaining block
a . By our choice of , all anchors are distinct since they con-
tain windows of size from a de-Bruijn sequence of order

, each window appearing in distinct
cyclic shifts (which are easily distinguishable by the position of
the block). It then follows that if is indeed an anchor it ap-
pears only once in the code.

Assume we discover is an auxiliary vector. Again, by con-
struction, all auxiliary vectors between and have fixed
blocks. Looking at , an auxiliary vector, exactly blocks are
of weight while the other two blocks have weight strictly
below . The blocks of weight , by construction,
form a window of size from a de-Bruijn sequence of order
starting at , and so their content and position uniquely identify
between which two anchors lies.

Finally, all the auxiliary vectors between adjacent anchors
and are easily seen to be distinct. Thus, given a codeword

from the constructed code, there is exactly one position in
the sequence of generated codewords which equals , and so
all generated codewords are distinct.

To complete the proof we need to calculate the size . There
are exactly anchors. Given an anchor , the number of steps in
the transition to may be readily verified to be

, where is the first moment function
defined in (3). Thus
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as claimed. As a final note, the choice of is easily seen to
ensure the resulting code is cyclic.

We mention in passing that the proof of Theorem 5 hints at
efficient encoding and decoding procedures, provided other ef-
ficient encoding and decoding procedures exist for de-Bruijn se-
quences. Examples of such procedures may be found in [33] and
[42].

We now turn to show the main claim of the section.

Corollary 6: There exists an infinite family of
cyclic -LRMGCs, for all , for which

, and .
Proof: For the code , set , and (i.e.,

and ) and apply Theorem
5 with . The size, , of the code , is bounded by

since

It is well known (see for example [32, p. 309]) that for any
, assuming is an integer

where is the binary entropy function. Since ,
it now easily follows that:

If needed, we can achieve lower asymptotic rates by setting
for some rational , .

IV. LOW-WEIGHT ANALYSIS AND CONSTRUCTIONS

In this section and the following one, we turn to more the-
oretical aspects of LRMGCs. While the codes from Construc-
tion 1 are practical with asymptotically-optimal rate, their effi-
ciency tends to zero since they cover a polynomially decreasing
fraction of the space. We demonstrate the efficiency of LR-
MGCs is interesting by studying -LRMGCs having
low weight, (and by flipping bits and reversing strings,
for all ). In the first trivial case of , there ex-
ists a cyclic optimal code for all . As we show in this section,
the next two cases, namely , behave radically different:
We start with the case of in which we show a non-cyclic
optimal code always exists, but when adding the requirement
that the code be cyclic, no cyclic optimal codes exist and the
efficiency of any cyclic code is asymptotically bounded from
above by . In contrast, we will show that for we
can construct cyclic asymptotically-optimal codes.

Fig. 3. Example of an optimal non-cyclic ��� �� �� ��-LRMGC which results
from Construction 2. Solid arrows represent edges which are part of the code
path, while dotted arrows represent those that are not.

A. The Case of

For the case of a brute-force approach will suffice.
For all , let us define the graph whose vertex set is

and an edge exists iff for some
.

Let us restrict ourselves to odd (since by Theorem 19 cyclic
optimal codes may only exist for this case). We will, however,
specify which results are also valid for even . For convenience,
we index the vertices in the following way: , where

and , denotes the vertex corresponding
to the string having 1’s in positions and , where throughout
the section we take the indices modulo where appropriate. We
shall conveniently refer to the first index as the row index, and
the second index as the column index.

Using this indexing method the graph takes on a simple
form for odd (the case is more degenerate):

• A vertex of the form has a single outgoing edge to .
• A vertex of the form , , has two

outgoing edges to and .
• A vertex of the form has two outgoing edges to

and .
It is now evident that there is a one-to-one correspondence

between simple paths in and Gray codes. A simple construc-
tion for an optimal code which is (in general) not cyclic is the
following.

Construction 2: Let be an odd integer. We construct
the following code . We first set

, and then set as a function of according to
the following rules:

• If is odd and , then .
• If is odd and , then .
• If is even and , then .
• If is even and , then .

Theorem 7: The code from Construction 2 is an optimal
-LRMGC.

Proof: It is readily verifiable that the transitions involved
in the construction are all valid. Furthermore, the construction
is easily seen to first exhaust rows and , where ,
by alternating between them, and then moving to rows
and . If the number of rows is even, this is enough to
cover all the vertices. If the number of rows is odd, then the last
row is covered by transitioning along the row. Since

, is a generator of and the transitions
along row cover all of it.

An example of Construction 2 is shown in Fig. 3. When
, Construction 2 results in a cyclic code (the case was

given in Table I).
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Fig. 4. Example of a cyclic ��� �� ��� ��-LRMGC. Solid arrows represent
edges which are part of the up and down paths, and the shaded vertices are
those which are guaranteed to remain uncovered in the proof of Theorem 8.

Theorem 8: Let be a cyclic -LRMGC, .
Then .

Proof: We will prove the claim for odd . The proof
for even is essentially the same with a slight difference
due to the different structure of the last row of . Let

be cyclic Gray code, and let be the
vertex corresponding to . We say a vertex is covered
if for some . We now denote by
and the smallest and, respectively, largest, row index of
vertices covered by the code .

The code obviously induces a cyclic path in , and there-
fore, there exist two subpaths going “up” and “down” rows,

and , with the following
properties: (indices are taken modulo where appropriate).

• , , and for all
, .

• , , and for all
, .

The two subpaths are obviously vertex disjoint, except
perhaps the first and last vertices of the paths. Furthermore,
one can easily be convinced, that the two paths do not oc-
cupy the same columns, except perhaps the columns of the
first and last vertices of the paths. Along the “up” path, let

be the unique
integers such that is the last vertex along the path at row ,
i.e., and for all , .
It now follows that for each , the vertices

cannot be covered by any of the codewords of . See an illustra-
tion in Fig. 4. The number of such uncovered vertices is exactly

.
In addition to the above-mentioned uncovered vertices, all the

vertices of rows below and above are left uncovered
by definition. Thus, if we denote , the total
number of uncovered vertices is at least

since the minimum is achieved at . Therefore, the effi-
ciency of the code is at most

as claimed.

While the upper bound on the efficiency presented in The-
orem 8 is , computer search results lead us to conjecture
that it actually is .

B. The Case of

In this section we turn to constructing asymptotically-optimal
cyclic -LRMGC. The construction will use a method
originally used for constructing single-track Gray codes in [17]
and later in [38]. In fact, the resulting codes will have the single-
track property as well.

If is a length word over some alphabet,
let denote the cyclic-shift operator defined by its action on :

The orbits under are called necklaces. A necklace is said to be
full period if the smallest positive integer such that
is . A full-period necklace contains distinct strings.

We say a Gray code has the single-
track property if in the matrix whose -th row is , all the
columns are cyclic shifts of each other. A variant of the fol-
lowing method was suggested in [17] for constructing single-
track Gray codes, and it applies equally-well to our set of al-
lowed transitions.

Lemma 9: Let be a
-LRMGC where for all

. If the strings in are representatives of
distinct full-period necklaces, and ,

, then the following is a cyclic single-track Gray
code:

where .
Proof: First, is certainly also a Gray code. Since the

necklaces in all have full cyclic period and since generates
, for the codes and are

disjoint. Finally, it is easy to see that the transition from the last
string of to the first string of is valid.

We define the mapping as follows: for a
binary string of length and weight 3 with 1’s in positions

, let

where subtraction is made modulo . The set
is the set of points

that are on the hyperplane restricted to
. We call the configuration of

. We note that if , then contains only
full-period strings, and otherwise, all strings are full-period
except those with configuration . We denote by

the set of full-period strings from .
Since , , and , (corresponding to a cyclic

rotation of the axes of ), represent strings from the same
necklace, for any , let stand for the unique

for which
and . Thus, there is a simple one-to-one mapping
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Fig. 5. Hyperplane of configurations for � � ��. The set of canonical config-
urations is shown surrounded by a thick frame.

from to the set of full-period necklaces.
We call the canonical configuration of .

A simple counting reveals that there are a total of
configurations, and when there are

canonical configurations which is exactly the number of
weight-3 full-period necklaces. When , there
are canonical configurations. See Fig. 5 for an
illustration.

Lemma 10: Let be a canonical configura-
tion, and assume

is also a canonical configuration. Then for any
such that there exists such that

and for some .
Proof: Assume is a canonical

configuration (the proof for the two other cases is similar). Let
be such that , i.e., there exists some
such that the 1’s in occur in positions , ,

and (all taken modulo ). It is easily verified that
has canonical configuration .

We now intend to find a long cycle over canonical configu-
rations which, by Lemma 10, will result in a Gray code of rep-
resentatives of distinct full-period necklaces. The latter will be
used with Lemma 9 to generate a cyclic -LRMGC.

Construction 3: Let be an integer. We con-
struct the following sequence of canonical configurations

. We first set , and
then set as a function of according to
the following rules:

• If and , then set
.

• Else, if , then set
.

Fig. 6. Path from Construction 3 over the canonical configurations for � � ��.
The unvisited configurations are shown surrounded by a thick frame.

• Else, if and , then set
.

• Else, if and and ,
then set .

• Else, if and , then set
.

• To complete the cycle, if , then set
.

An illustration of the path from Construction 3 is shown in
Fig. 6.

Lemma 11: The path from Construction 3 visits only canon-
ical configurations, each visited no more than once.

Proof: Going over all the transitions in Construction 3 one
can verify that they visit only canonical configurations. Except
for configurations of the form which are part of path
of increasing , the rest of the path is divided according to

: when the path zigzags “down-
ward”, and goes back “up” when (see Fig. 6).
This path structure ensures no vertex is visited more than once
in a cycle.

Lemma 12: The length of the path from Construction 3 is
given by

(2)
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Proof: The path length depends on the number of times it
zigzags “downward” which is . The rest is a careful
and tedious counting.

Lemma 13: Let be a list of strings
from (whose existence is guaranteed by Lemma 10)
such that is the cyclic path
from Construction 3. Let be the string (whose existence is
guaranteed by Lemma 10) such that and

. Then .
Proof: Let us examine for some and suppose we could

distinguish between the three 1’s in by coloring them red,
blue, and green. If , assume w.l.o.g., that

is the distance between the red and blue 1’s, between the
blue and green 1’s, and between the green and red 1’s. If

, then a careful reading of Lemma 10
shows that in , is again the distance between the red and
blue 1’s, between the blue and green 1’s, and between the
green and red 1’s.

Since it follows that is a cyclic shift of
. By the previous argument, to get from to , all the 1’s

had to be pushed an equal number of times to the right and so
.

The following is the main theorem of this section:

Theorem 14: For all such that
, where is given by (2), there exists a cyclic

-LRMGC of size , which is also
single-track.

Proof: By Lemma 10, let
be a list of strings from such that

is the cyclic path
from Construction 3. By Lemma 12, from
(2). According to Lemma 11, contains distinct canonical
configurations, and so contains representatives of distinct
full-period necklaces. Finally, by combining Lemma 13 with
the requirement that , we can use Lemma
9 to construct the desired code.

Lemma 15: There are infinite values of for which
. More specifically, it suffices that sat-

isfies one of the following:
•
•
•
•
•

Proof: We will prove one of the cases and the rest are sim-
ilar. Assume . By Lemma 12, we need

Since divides any integer combination of and , and
since

it follows that

Thus, if we could only make sure that the
claim would necessarily follow. Combining and

, we get that is
sufficient to prove the claim.

We note that the conditions described in Lemma 15 are not
the only cases in which , but are just
the ones easy to derive. For instance, when , we have

.

Corollary 16: There exists an infinite family of
cyclic -LRMGCs, for all , for which

.
Proof: Simply combine Lemma 15 with the fact that

On a final note, the codes from Theorem 14 turn out to be
optimal in the cases of with sizes ,
respectively.

V. NECESSARY CONDITIONS

We conclude the theoretical analysis of LRMGCs with some
bounds on the code parameters. We first present a simple nec-
essary condition for the existence of a cyclic Gray code, and
then expand it in the case of cyclic optimal codes. We use a
coloring argument in the following way: We color the words in

using colors. We then show that in a cyclic Gray code
all colors appear, and do so in equal amounts. We then follow
with an analysis of the distribution of colors in , showing
that in many cases they are not equally distributed, and hence no
cyclic optimal code exists.

Definition 17: For any , we
define the first moment of as

(3)

and the color of as .

Theorem 18: Let be a cyclic -LRMGC of size
. Then .

Proof: If and for some ,
then it easily follows that . Let us
now denote . By the previous argument,

iff . Since the code
is cyclic, necessarily .

We can use Theorem 18 to rule out the existence of cyclic
optimal codes in certain cases.

Theorem 19: If is a prime, then there are no cyclic optimal
-LRMGC for which .
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Proof: By the assumptions, necessarily ,
and so . For any , prime, let us denote by the
exponent of in the factorization of . We can see that

and therefore . But then
as required by Theorem 18.

The divisibility condition set in Theorem 18 is not strong
enough. For example, if we take and , then in-
deed , and the possible existence of a cyclic optimal code
with these parameters is not ruled out. However, by the condi-
tions described in Corollary 20 and Lemma 21 it is ruled out.

Corollary 20: If a cyclic optimal -LRMGC exists,
then there are exactly strings of each color in .

Proof: By Theorem 18 we have . Furthermore, by
the proof of that theorem the code contains an equal number of
codewords of each color. Since the code is optimal, i.e., covers
all the strings of , the claim follows.

To be able to use the last corollary we count the exact number
of strings of each color in . Though a solution may be
deduced from a related theorem due to von Sterneck (see [15,
Ch. II]), we describe a cleaner self-contained solution, which is
an extension of Sloane’s method in [40]. In the following, let

for all . Also, let stand for Euler’s totient
function, and stand for the Möbius function.

Lemma 21: The number of strings from ,
, of color , is given by

Proof: We define the following generating function:

An important observation that follows from the definition of
is that

Let be an -th complex root of unity, then

Using the inverse two-dimensional discrete Fourier transform,
we get

(4)

Let us denote . We can directly calculate

where the third equality follows from the well-known fact that
. It now follows that:

(5)

Since we are interested only in , it follows that
, and therefore

.

Substituting back into (5), we get for all

.

We again substitute the result back into (4) and summing by
divisors of both and , we get

The inner sum is a Ramanujan sum (see [1]) which equals

thus getting

A simple rewriting of the last expression gives the desired result.

Returning to the previous example of and we
can now use Lemma 21 to find that there are
words in colored 0, while there are

words colored 1. Thus, by Corollary 20 no optimal cyclic
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code is possible. The following theorem may be thought of as
an extension of Theorem 19 to the case of not a prime.

Theorem 22: For any there exists
such that for all , there is no cyclic optimal

-LRMGCs unless .
Proof: Fix a weight . We will show that there exists

such that for all , , there is no
cyclic optimal -LRMGC. We will do so by showing
that .

Let denote the smallest prime number such that
. We shall also need the fact that

Now

We shall proceed to show that, for large enough

which will prove our claim. Indeed, set , and then for
all

as we claimed.

It should be noted that a more careful analysis can reduce the
value of in the proof of Theorem 22. We also observe that
when , all strings of length and weight have
full cyclic period. If and is a cyclic shift to
the right of , then . The fact that

also implies that is a generator of , and so
for every string , its cyclic shifts are all distinctly
colored. Thus, has an equal number of strings from each

color and the arguments used in the previous theorems will not
rule out the existence of cyclic optimal codes.

VI. CONCLUSION

We presented the general framework of -local rank
modulation and focused on the specific case of -LRM
which is both the least-hardware-intensive, and the simplest one
to translate between binary strings and permutations. We studied
constant-weight Gray codes for this scheme, which guarantee a
bounded charge difference in any “push-to-the-top” operation.
The Gray codes are used to simulate a conventional multilevel
flash cell.

We started with a construction, where by letting be approx-
imately we obtained cyclic -LRMGCs whose
rate approaches 1.

We then turned to consider the existence of codes covering
an asymptotically-constant fraction of the space by considering
test cases of codes with low weight. While cyclic optimal Gray
codes exist (trivially) for , we showed that for their
efficiency is upper bounded by . In contrast, for

asymptotically-optimal codes exist with efficiency .
The codes we constructed also come with a relatively simple
updating algorithm.

Finally, using coloring and counting arguments we derived
necessary conditions for the existence of cyclic and cyclic op-
timal -LRMGCs.

Several open questions still remain. For the case of
-LRMGCs, a general construction is missing

for constant weights . We also conjecture, based on
computer search results, that for and large enough,
the size of cyclic codes is at most , hence, with efficiency
actually . Of more general interest is the study of codes for
general -LRM and their parameters.
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