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Quasi-Cross Lattice Tilings With
Applications to Flash Memory

Moshe Schwartz, Senior Member, IEEE

Abstract—We consider lattice tilings of by a shape we call
a -quasi-cross. Such lattices form perfect error-cor-
recting codes which correct a single limited-magnitude error
with prescribed maximal-magnitudes and of positive error
and negative error respectively (the ratio of which, ,
is called the balance ratio). These codes can be used to correct
both disturb and retention errors in flash memories, which
are characterized by having limited magnitudes and different
signs. For any rational we construct an infinite
family of -quasi-cross lattice tilings with balance ratio

. We also provide a specific construction for an infinite
family of -quasi-cross lattice tilings. The constructions
are related to group splitting and modular sequences. In
addition, we study bounds on the parameters of lattice-tilings by
quasi-crosses, and express them in terms of the arm lengths of
the quasi-crosses and the dimension. We also prove constraints on
group splitting, a specific case of which shows that the parameters
of the lattice tiling by -quasi-crosses are the only ones
possible for these quasi-crosses.

Index Terms—Asymmetric channel, flash memory, lattices, lim-
ited-magnitude errors, perfect codes, tiling.

I. INTRODUCTION

F LASH memory is perhaps the fastest growing memory
technology today. Flash memory cells use floating gate

technology to store information using trapped charge. By mea-
suring the charge level in a single flash memory cell and com-
paring it with a predetermined set of threshold levels, the charge
level is quantized to one of values, conveniently chosen to be
. While originally was limited to be 2, and each cell stored a

single bit of information, current multilevel flash memory tech-
nology allows much larger values of , thus storing bits
of information in each cell. It should be noted that other alterna-
tives have been suggested to the conventional multilevel modu-
lation scheme, such as, for example, rank modulation [3], [13],
[14], [22].
As is usually the case, the stored charge levels in flash cells

suffer from noise which may affect the information retrieved
from the cells. Many off-the-shelf coding solutions exist and
have been applied for flash memory, see, for example, [6], [19].
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However, the main problem with this approach is the fact that
these codes are not tailored for the specific errors occurring in
flash memory and thus are wasteful. A more accurate model of
the flash memory channel is therefore required to design better-
suited codes.
The most notorious property of flash memory is its inherent

asymmetry between cell programming—charge injection into
cells, and cell erasure—charge removal from cells (see [4]).
While the former is easy to perform on single cells, the latter
works on large blocks of cells and physically damages the cells.
Thus, when attempting to reach a target stored value in a cell,
charge is slowly injected into the cell over several iterations. If
the desired level has not been reached, another round of charge
injection is performed. If, however, the desired charge level
has been passed, there is no way to remove the excess charge
from the cell without erasing an entire block of cells. In addi-
tion, the actions of cell programming and cell reading disturb
adjacent cells by injecting extra unwanted charge into them.
Because the careful iterative programming procedure employs
small charge-injection steps, it follows that over-programming
errors, as well as cell disturbs, are likely to have a bounded mag-
nitude of error.
This technological constraint motivated the application of the

asymmetric limited-magnitude error model to the case of flash
memory [5], [15]. In this model, a transmitted vector
is received with error as , where we say that
asymmetric limited-magnitude errors occurred with magnitude
at most if the error vector satisfies

for all , and there are exactly nonzero entries
in . Not in the context of flash memory, it was shown in [1],
and in a systematic manner in [7], how to construct optimal
asymmetric limited-magnitude errors correcting all errors, i.e.,
equals the code length. General code constructions and bounds
for arbitrary were given in [5].More specifically, for , i.e.,
correcting a single error, codes were proposed in the context of
flash in [15], but were also described in the context of semi-cross
packing in the early work [10].
The main drawback of the asymmetric limited-magnitude

error model is the fact that not all error types were considered
during the model formulation. Another type of common error
in flash memories is due to retention which is a slow process of
charge leakage. Like before, the magnitude of errors created by
retention is limited. However, unlike over-programming and
cell disturbs which increase cell charge levels, retention errors
reduce cell charge levels [4].
We therefore suggest a generalization to the error model

we call the unbalanced limited-magnitude error model. In this
model, a transmitted vector is now received with error
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Fig. 1. A (2, 1, 2)-quasi-cross and a (2, 1, 3)-quasi-cross.

Fig. 2. Partial view of a lattice packing of a (3, 2, 2)-quasi-cross with basis
, , and packing density . Lattice points are marked

with dots, and the hatched area is a fundamental region.

as the vector , where we say that unbal-
anced limited-magnitude errors occurred if the error vector

satisfies for all ,
and there are exactly nonzero entries in . Both and
are nonnegative integers, where we call the positive-error
magnitude limit, and the negative-error magnitude limit.
In this paper, we consider only single error-correcting codes.

In general, assuming at most a single error occurs, the error
sphere containing all possible received words forms
a shape we call a -quasi-cross (see Fig. 1). This is a
generalization of the asymmetric semi-cross of [10], [15] which
we get when choosing , and the full cross of [17] which
we get when choosing . To avoid these two studied
cases we shall consider only .
An error-correcting code is a packing of pair-wise disjoint

quasi-crosses. We shall only consider perfect codes, i.e., tilings
of the space, which form lattices, since these are easier to
analyze, construct, and encode, than nonlattice packings (see
Fig. 2).

The paper is organized as follows: In Section II we intro-
duce the notation and definitions used throughout the paper
and discuss connections with known results. We continue in
Section III with constructions of such tilings. We follow in
Section IV with simple bounds on the parameter of lattice
tilings by quasi-crosses, and conclude in Section V.

II. PRELIMINARIES

A. Quasi-Crosses, Tilings, and Lattices

In the unbalanced limited-magnitude-error channel model,
the transmitted (or stored) word is a vector . A single
error is a vector in all of whose entries are 0 except for
a single entry with value belonging to the set

where the integers are the negative-error and
positive-error magnitudes. For convenience we denote this set
as . We define and call it the
balance ratio. Obviously, .
Given a transmitted vector , and provided that at most

a single error occurred, the received word resides in the error
sphere centered at and defined by

where , and denotes the all-zero vector ex-
cept for the th position which contains a 1. We call a

-quasi-cross. By translation, for
all .
Following the notation of [17], let

denote the unit cube centered at the origin. By abuse of termi-
nology, we shall also call the set of unit cubes , a

-quasi-cross centered at for any . Exam-
ples of such quasi-crosses are given in Fig. 1. We note that the
volume of does not depend on the choice of and is
equal to .
A set defines a set of quasi-crosses

by translation: . The set is said to be a
packing of by quasi-crosses if the translated quasi-crosses
are pairwise disjoint. A packing is called a tiling if the union
of the translated quasi-crosses equals . If is an additive
subgroup of with a basis , then we call a
lattice. The integer matrix formed by placing the elements
of a basis as its rows is called a generating matrix of the lattice.
Let be a lattice with a generating matrix

whose rows form a basis . A fun-
damental region of is defined as

It is easily seen, by definition, that tiles with translates of
the fundamental region.
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It is well known that the volume of a fundamental region does
not depend on the choice of basis for and equals . The
density of is defined as and if forms a packing
of -quasi-crosses, then the packing density of is
defined as

which intuitively measures (for a large enough finite area) the
ratio of the area covered by -quasi-crosses centered
at the lattice points, to the total area. It follows that
, and forms a tiling with -quasi-crosses if and
only if , i.e., .

Example 1: If we take the (3, 2, 2)-quasi-cross, one can verify
that the lattice with a generating matrix

is indeed a lattice packing for this quasi-cross (see Fig. 2). The
resulting packing density is

As a final note, it is interesting to point out that the
-quasi-cross (which is in fact a full cross), is also a Lee

sphere of radius 1. The question of whether Lee spheres can be
tiled dates back to the work of Golomb and Welch [9], and can
be found in other more recent works [8], [11], [12], [16].

B. Application to Flash Memory

At this point we stop to ponder our choice for using as the
space of transmitted (or stored) messages. This choice certainly
makes the analysis of tilings simpler. However, a single multi-
level flash cell is only capable of storing a single value from .
Thus, from a lattice we may construct a code

whose codewords can be stored in multilevel flash cells with
levels each.
We note that even if is a tiling by -quasi-crosses,

then is not necessarily a perfect code (in the sense that the
error-spheres around the codewords form a partition of the space
). That is due to the fact that the arms of some quasi-crosses

centered around points outside , may extend into . How-
ever, it is still possible to get a good bound from below on the
rate of the code in the following way: For any vector , the
coset is also a tiling by -quasi-crosses (simply
by virtue of being a geometric translate of ). We now define

and a standard averaging argument guarantees the existence of
some for which

The best rate of some coset of the code is then bounded from
below by

(1)

We say a lattice has period if
whenever , then also for all . Lattices are
always periodic, and the minimal period in the th direction, ,
is the smallest positive integer for which . By taking

, we can say the lattice has period in all
directions.
Finally, assume is a packing of by -quasi-

crosses. Then the code defined above is capable of correcting
a single unbalanced limited-magnitude error. If, in addition, the
number of levels, , is a multiple of a period of , then the
code is capable of correcting a single error with wrap-around,
i.e., the error vector is added to the codeword over (and not
over ).

C. Lattice Tiling via Group Splitting

We continue with our treatment of lattice tilings. An equiv-
alence between lattice packings and group splitting was de-
scribed in [10], [17], which we describe here for completeness.
Let be an Abelian group, where we shall denote the group
operation as . Given some and a nonnegative integer

, we denote by the sum , where
appears in the sum times. The definition is extended in the
natural way to negative integers .
A splitting of is a pair of sets, , called the

multiplier set, and , called the splitter
set, such that the elements of the form , , , are
all distinct and nonzero in . Next, we define a homomorphism

by

If the multiplier set is , then it may be easily
verifiable that

is a lattice packing of by -quasi-crosses. That
is a lattice is obvious. To show that the lattice is a packing

of -quasi-crosses, assume to the contrary two such
distinct quasi-crosses, one centered at and one
centered at , have a nonempty intersection, i.e.,

, where , , then

which is possible only if and , resulting in
the two quasi-crosses being the same one—a contradiction. The
packing is a tiling iff .
A simple representation of the lattice may also be given in a

matrix form: Let be a matrix over
. The lattice is the set of vectors
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such that . Thus, plays the role of a “parity-check
matrix.”

Example 2: Continuing Example 1, let and let
stand for the multiplier set

of the -quasi-cross. A possible splitting of is
, which results in a parity-check matrix for

the packing described in Example 1.

Group splitting as a method for constructing error-correcting
codes was also discussed, for example, in the case of shift-cor-
recting codes [20] and integer codes [21].

D. Lattice Packings and Sequences

It was noted in [15] that there is a connection between the
codes constructed in [15] (which are equivalent to semi-cross
packings) and a certain subcase of sequences called modular

sequences. We detail the nature of the connection relevant
to our case.
A -modular sequence, where , is a

subset1 , whose elements satisfy
that all the sums are distinct, where

, and .
Thus, a -modular sequence is a splitting of de-

fined by and . We stress that these sequences are defined
only by splitting a cyclic group.
As was also described in [15], when we have a -mod-

ular sequence , i.e., a splitting of by and
, and therefore, a resulting parity-check matrix

, we can construct other packings, pro-
vided the elements of are co-prime to . This is done by
constructing any parity-check matrix
containing all distinct column vectors whose top nonzero

element is from . This is equivalent to a splitting of the
noncyclic group by and being the columns of . We
note that if results in a tiling, then so does .

III. CONSTRUCTIONS OF TILINGS BY QUASI-CROSSES

We shall now consider constructions of lattice tilings by
-quasi-crosses. We first examine the case of a

constant balance ratio and show that for any
rational there exist infinitely many triplets such
that and the -quasi-crosses tile. This
is accomplished by constructions for all ,
where is a prime. We then focus on a particular case of

-quasi-crosses and show an infinite family of tilings
for them. We shall conclude this section by describing simple
encoding and decoding algorithms.

A. Constant Balance-Ratio Quasi-Cross Tilings

Construction 1: Let be positive integers such
that , where is a prime. We set the multiplier
set . Consider the cyclic group ,

. We split using a splitter set constructed recursively
in the following manner:

1The actual sequence is the binary characteristic sequence of the subset to be
defined shortly.

The requested set is .

Theorem 3: The sets and from Construction 1 split ,
forming a tiling by -quasi-crosses and
a -modular sequence.

Proof: The proof is by a simple induction. Obviously
and split . Now assume and split . Let us
consider , , and . We now show that if
in , , , , , then and .
In the first case, given any , , and given ,

, , since , it follows that
since they leave different residues modulo .

For the second case, let , , , , and let ,
, where and are not necessarily distinct. If

then since but . We assume then that
. Write and , ,

, then implies (by reduction
modulo ). It then follows that .
But and so , which (due to
the range of and ) implies , i.e., .
For the last case, , . We note that the multiples of
in are isomorphic to , and since and split ,
for all , , if then and .
Finally, , , and so

, implying that the splitting induces a
tiling.

The following construction splits a noncyclic group of the
same parameters.

Construction 2: Let be positive integers such
that , where is a prime. We set the mul-
tiplier set . Consider the additive group of

, . Let be a primitive element,
and define where denotes the
set of all monic polynomials of degree strictly less than
over in the indeterminate .

Theorem 4: The sets and from Construction 2 split the
additive group of and form a tiling by

-quasi-crosses.
Proof: Since is primitive in , the elements

form a basis of the additive group of
over . Since , it is easily seen that

, , , , , implies and
. Again, by counting the size of and , the splitting

induces a tiling.

We point out several interesting observations. In Construction
2, if we take we get . For , write the
elements of as length- vectors over (using the
basis , with a primitive element of ).
The elements of then become the set of all vectors of length
over with the leading nonzero element being 1. We will
get the same set by extending the “matrix-extension” method
implied in [15] to our quasi-cross case.



SCHWARTZ: QUASI-CROSS LATTICE TILINGS 2401

Another interesting thing to note is that, using the same
vector notation as above, the parity-check matrix for the lattice
is simply the parity-check matrix of the
Hamming code over .
Yet another observation is that we can mix Constructions 1

and 2, by taking the -modular sequence resulting from
Construction 1 and applying the “matrix” method of Construc-
tion 2 to form a splitting of which
induces a tiling by quasi-crosses. The latter works since the el-
ements of are all co-prime to .
Finally, as is shown in the next example, we observe that the

lattice tilings resulting fromConstructions 1 and 2 are not equiv-
alent.

Example 5: Consider six-dimensional lattice tilings by
-quasi-crosses. Using Construction 1 we construct

a lattice by splitting and getting a splitter set
, resulting in a parity-check ma-

trix

over . This produces a generating matrix for

We confirm that

making a tiling for (3, 1, 6)-quasi-crosses.
If, on the other hand, we choose to use Construction 2 to

construct a lattice , we split to get a parity-check
matrix

over . A corresponding generating matrix is then

Again, we confirm . On a side note, the code
is none other than the Hamming code over

.
Finally, to show the lattices are not equivalent, it is readily

verified that the minimal period of is (25, 5, 25, 25, 25, 25),
while the minimal period of is (5, 5, 5, 5, 5, 5).

The following shows there are infinitely many tilings by
quasi-crosses of any given rational balance ratio.

Theorem 6: For any given rational balance ratio ,
, there exists an infinite sequence of quasi-crosses,

, such that , ,

and there exists a tiling by -quasi-crosses, for all
.
Proof: Given a rational , let , be

such that . Denote and consider the
arithmetic progression . Since

, by Dirichlet’s Theorem (see, for example, [2]),
the sequence contains infinitely many prime numbers. For any
such prime, , there exists such that

. We can then apply Constructions 1 and 2 to form tilings
by -quasi-crosses with the required balance ratio
and unbounded.

B. Construction of -Quasi-Cross Tilings

We turn to constructing -quasi-cross tilings and their
associated modular sequences. The construction is sim-
ilar in flavor to Construction 1.

Construction 3: Let , , and let the multiplier
set be . We split the group , ,
using a splitter set constructed recursively in the following
manner:

The requested set is .

Theorem 7: The sets and from Construction 3 split
, forming a tiling by -quasi-crosses and a
-modular sequence.
Proof: The proof is by induction. The sets and obvi-

ously split . Assume and split and consider and
. For convenience, denote

It is easily seen that due to the restriction , the ele-
ments of and are distinct, and together they contain
all the odd integers in . The elements of are then
also distinct and contain all the even integers in leaving a
residue of 2 modulo 4.
We are then left with all the multiples of 4 in which

form a group isomorphic to , and thus, by the induction hy-
pothesis, are split by and .
A simple counting argument shows that ,
, and therefore . It follows that and
split and form a tiling.

We observe that in this case, since the elements of are not
co-prime to 4, extending the matrix method from [15] does not
produce a valid tiling or even packing. For example, if we were
to take the trivial 4-modular sequence, and attempt
to create a parity-check matrix over

we would find that together with the columns of is not a
splitting of since over . Hence,
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the lattice formed by the parity-check matrix is not a lattice
packing of (2, 1, 5)-quasi-crosses.

Example 8: To find a tiling by (2, 1, 5)-quasi-crosses using
Construction 3, we construct a lattice by splitting with

. The parity-check and generating matrices
are

Unlike from Example 5, which turned out to be a Hamming
code in disguise, the lattice does not seem to be related to
Hamming codes, or 1-error-correcting codes in the Hamming
metric: Its minimal period is (16, 16, 4, 16, 16), and it contains
a lattice point (2, 0, 0, 0, 2) of Hamming weight 2.

C. Encoding and Decoding Algorithms

We first consider decoding of lattice-based codes. Let be
a tiling by -quasi-crosses constructed from a split-
ting of the Abelian group by and

. Let be a parity-check
matrix for . Assume some was stored as a codeword,
but was received, where is a single-error vector,

for some . Thus, resides in the -quasi-
cross centered around . We define the syndrome of as

Obviously, if then and no correction is required.
In all other cases, while we can calculate , we may
not be immediately aware of its unique representation as
(guaranteed by the splitting). However, once we are able to find
and , then correcting the received word is easily done by

noting that .
In a practical setting we usually have , , and , which are

all constant (depending on the technological constraints of the
implementing hardware), while the code length may vary and
be much larger. In that case, the number of possible syndromes
(also the volume of a -quasi-cross) is . Thus,
exhaustively checking all possible pairs and to find the
unique pair for which , takes time. We cannot
do any better (in terms of complexity) since just calculating the
syndrome itself takes operations.
Despite the fact that we cannot improve upon the decoding

complexity, we briefly present simple algorithms for decom-
posing into . The algorithms differ, depending on the
construction used. We shall use the following notation: for any
, let denote the largest integer such that
but . We shall also use the notation of Constructions
1–3.
• Construction 1: We set

where division by is done over .
• Construction 2: If is written as a length-
vector over using the powers of as a basis, then

is the vector element corresponding to the highest degree
of with nonzero coefficient. After finding , we also find

, where the division is over .
• Construction 3: We set

is odd, and
is odd, and
is even

where division by 2 is over .
Unlike the simplicity of the decoding procedure, encoding is

more complicated. This is mainly due to the fact that finding the
exact intersection or even its size [see the discussion leading to
(1)] is not easy. A brute-force approach can be employed, in
which we list all the elements in and form a codebook
mapping input vectors to codewords. This, however, is imprac-
tical for large values of since the codebook’s size grows ex-
ponentially with .
We now suggest a simple systematic encoding procedure

which is applicable to subcodes of Constructions 1 and 3. The
procedure’s simplicity, however, comes at a price of a lower
code rate. Let the construction split ( being either a prime
in Construction 1, or 4 in Construction 3), and we further
require that . The splitting set in both
constructions always contains the value 1, and w.l.o.g., we
assume . The encoding function

is defined as

where

One can easily verify the image of the encoding function is
contained in , and is therefore a subcode of Construction
1 or 3. Since the encoding is systematic, the reverse mapping
is simple. Finally, the rate of the proposed subcodes is ,
which coincides with (1) when , but is
otherwise lower.

IV. BOUNDS ON THE PARAMETERS OF LATTICE
TILINGS BY QUASI-CROSSES

In this section we focus on showing bounds on the parameters
of -quasi-cross tilings. We first consider the restric-
tions -quasi-cross tilings imply on , , and .
We then continue to study the group being split to create the
tilings, and show restrictions which, in particular, prove that the
parameters of the -quasi-cross tiling of Construction 3
are unique.

A. Dimension and Arm Length Bounds

We first discuss bounds on the parameters of lattice-tilings by
quasi-crosses, expressed in terms of the arm lengths of the quasi-
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crosses and the dimension of the tiling. Some of the theorems
to follow may be viewed as extensions to [18].

Theorem 9: For any , if

then there is no lattice tiling of -quasi-crosses.
Proof: Given an integer , assume a

-quasi-cross lattice tiling exists. Consider
the plane . Translates of this plane
tile . Within this plane, we look at the subset

and

It is easily seen that cannot contain two points from , or else
the arms of two quasi-crosses overlap. Thus, the density of
(which we know is exactly , since is a
tiling) cannot exceed the reciprocal of the volume of , i.e.,

Rearranging gives us the desired result.

Corollary 10: There is no lattice tiling of by
-quasi-crosses.

Proof: It is easily verifiable that for any ,

In the following theorem and corollary we can restrict the arm
lengths of quasi-crosses that lattice-tile .

Theorem 11: For any , if a lattice tiling of by
-quasi-crosses exists, then .

Proof: Let , and let .
Assume there is a splitting of an Abelian group by
and which induces a lattice tiling by

-quasi-crosses, i.e., .
We first claim that for all there are integers and
such that

To prove this, fix and let us look at the integers

and the sums . Since

by the pigeonhole principle there exist two distinct pairs, , ,
and , , such that

Assume w.l.o.g. that and define

We now get , where . In
addition

If then contradicts the fact that
and split . Thus,

which proves our claim regarding the existence of and .
For the rest of the proof we distinguish between two cases.
Case 1: There exist such that . In that case

in which case, . However, ,
and to avoid contradicting the splitting, neces-

sarily . It follows that . We now note
that

are all distinct, and so the order of in is at least
, but has to divide . Hence,

Rearranging the two sides gives us

and since , necessarily .
Case 2: If , then . Thus, the number of distinct
values does not exceed their range, and we get

Rearranging this we get

If then, by the above, . If, however,
, then and obviously .

Corollary 12: For any , if a lattice tiling of by
-quasi-crosses exists and , then

is even,

is odd.

Proof: By Theorem 9, a necessary condition for a lattice
tiling to exist is that

or after rearranging
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If , the left-hand side (LHS) is positive and we get

We need to maximize , and by Theorem 11 we can restrict
ourselves to . The maximum is achieved at
for even, and at for odd. Substituting back into
the bound on gives the desired result.

B. Restrictions on the Split Group

We now turn to examining connections between properties of
the Abelian group being split, , and the multiplier and splitter
sets, and .We shall eventually show, as a special case of the
theorems presented, that the -quasi-cross tiles only
with the parameters of Construction 3. We follow the notation
and definitions of [18].

Definition 13: Let be a finite Abelian group, and let
and be the multiplier and splitter sets forming a splitting of
. We say the splitting is nonsingular if for

all . Otherwise, the splitting is called singular. If for any
prime dividing the order of there is some such that

, then the splitting is called purely singular.
Given a finite and some prime , we denote

by the number of elements of divisible by . The
following is an adaptation of [18, p. 75, Corollary 2] for quasi-
crosses, which is required for Theorem 15.

Lemma 14: Let be the multiplier set of the
-quasi-cross. Assume and are a purely singular

splitting of a finite Abelian group . Then
for any prime divisor of .

Proof: Since the splitting is nonsingular, for any prime di-
visor of , divides some . Neces-
sarily, . Let us assume

where , . We would like, therefore, to prove that

After rearranging, this is equivalent to proving that

This obviously holds since , , and , ,
so

proving the claim.

Having proved Lemma 14, the following theorem from [18]
directly follows with the exact same proof.

Theorem 15 [18, p. 75, Theorem 9]: Let
be the multiplier set of the -quasi-cross. If splits
, then splits .
Theorem 15 is important since now, to show the existence or

nonexistence of a lattice tiling by -quasi-crosses, it is
sufficient to check splittings of .We shall now do exactly that,
and reach the conclusion that -quasi-crosses lattice-tile
only with the parameters of Construction 3.

Theorem 16: Let be the multiplier set of
the -quasi-cross, . If splits a finite Abelian
group , , then .

Proof: By Theorem 15 we may assume . Denote
the splitter set . It is easily seen that if

, then is also a splitter set. Since for
some and , then and . We
can therefore assume, w.l.o.g., that .
Since and split , then . If the claim

of the theorem trivially holds. Assume then that . Let us
consider the unique factorization of , and

. We note that if , then for all
, and so .

If , then as well, and so

and since , we get a contradiction to the splitting.
The only remaining option is that , and .

If we assume to the contrary that , then we can
divide by and get . But then

where , , and we get a contradiction to the splitting
again. It follows that .

Corollary 17: There is no nonsingular splitting of by
.

Proof: Assume such a splitting exists, then
for all , and in particular , contradicting
Theorem 16.

Theorem 18: Let be the multiplier set
of the -quasi-cross, . If splits then

for some .
Proof: By Theorem 16 and Corollary 17, cannot split
nonsingularly and , i.e., is even. Denote

, with , , odd.
Let be the splitter set. Because of the splitting, every odd

number in is represented uniquely as , , ,
where and are odd. There are odd numbers in and

odd numbers in , so implying
and the existence of exactly odd numbers in .
Multiplying the odd numbers in by the elements of

covers exactly numbers in having a residue of
modulo , for all . The only, thus far, uncovered
numbers in are those having 0 residue modulo . These
form a group isomorphic to . We also conclude that all
even numbers in leave a residue of 0 modulo .
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We can therefore take and all the even numbers of
divided by and repeat the argument above. We con-

clude for some . Also, the repetition of the
above argument repeatedly divides by , and stops when
we reach the fact that splits , odd. This is impossible by
Theorem 16 unless , which completes the proof.

As a special case of the above theorems, we reach the fol-
lowing claim.

Corollary 19: The -quasi-cross lattice-tiles only
with the parameters of Construction 3.

Proof: Simply apply Theorem 18 with and compare
with the parameters of Construction 3.

V. CONCLUSION

Motivated by coding for flash memories, we considered lat-
tice tilings of by -quasi-crosses. These lattices
form perfect codes correcting a single error with limited magni-
tudes and for positive and negative errors, respectively.
We showed these lattice tilings are equivalent to certain group
splittings, and in certain cases (when the group is cyclic), to
modular sequences.
We provided two constructions which may be used recur-

sively to build infinite families of such lattice tilings for any
given rational balance ration . We also specif-
ically constructed an infinite family of lattice tilings for the

-quasi-cross.
We followed by studying bounds on the parameters of such

lattice tilings expressed in terms of , , and . We also ex-
amined restrictions on group splitting, and concluded through
a special case of the theorems presented, that -quasi-
crosses lattice-tile only with the parameters of the construc-
tion presented earlier.
We conclude with the following comment. While Construc-

tions 1 and 2 are quite general, Construction 3 appears to ar-
bitrarily fix and . This raises the question
of whether Construction 3, in particular, may be generalized,
and in general, whether there exist tilings by quasi-crosses with
other parameters. We performed a computer search looking for
lattice tilings by -quasi-crosses. It was found that for
all and split group of order

, that only lattice tilings with the parameters of the con-
structions provided in this paper exist.
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