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Snake-in-the-Box Codes for Rank Modulation
Yonatan Yehezkeally and Moshe Schwartz, Senior Member, IEEE

Abstract—Motivated by the rank-modulation scheme with
applications to flash memory, we consider Gray codes capable of
detecting a single error, also known as snake-in-the-box codes.
We study two error metrics: Kendall’s -metric, which applies to
charge-constrained errors, and the -metric, which is useful in
the case of limited-magnitude errors. In both cases, we construct
snake-in-the-box codes with rate asymptotically tending to 1. We
also provide efficient successor-calculation functions, as well as
ranking and unranking functions. Finally, we also study bounds
on the parameters of such codes.

Index Terms—Flash memory, permutations, rank modulation,
snake-in-the-box codes.

I. INTRODUCTION

F LASH memory is a nonvolatile storage medium which is
electrically programmable and erasable. Its current wide

use is motivated by its high storage density and relative low
cost. Among the chief disadvantages of flash memories is their
inherent asymmetry between cell programming (injecting cells
with charge) and cell erasure (removing charge from cells).
While single cells can be programmed with relative ease, in
the current architecture, the process of erasure can only be
performed by completely depleting large blocks of cells of their
charge. Moreover, the removal of charge from cells physically
damages them over time.
This issue is exacerbated as a result of the ever-present

demand for denser memory: smaller cells are more delicate,
and are damaged faster during erasure. They also contain less
charge and are, therefore, more prone to error. In addition, flash
memories, at present, use multilevel cells, where charge levels
are quantized to simulate a finite alphabet—the more levels,
the less safety margins are left, and data integrity is compro-
mised. Thus, overprogramming (increasing a cell’s charge
level above the designated mark) is a real problem, requiring a
costly and damaging erasure cycle. Hence, in a programming
cycle, charge levels are usually made to gradually approach the
desirable amount, making for lengthier programming cycles as
well (see [3]).
In an effort to counter these effects, a different modulation

scheme has recently been suggested for flash memories—rank
modulation [12]. This scheme calls for the representation of the
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data stored in a group of cells in the permutation suggested by
their relative charge levels. That is, if repre-
sent the charge levels of cells, then that group of cells is
said to encode that permutation such that

This scheme eliminates the need for discretization of charge
levels. Furthermore, it was suggested in [12] that programming
could be restricted to “push-to-the-top” operations. In this
scheme, one only programs a group of cells by increasing the
charge level of a single cell above that of all others. In this
manner, overprogramming is no longer an issue.
In addition, storing data using this scheme also improves the

memory’s robustness against other noise types. Retention, the
process of slow charge leakage from cells, tends to affect all
cells with a similar trend [3]. Since rank modulation stores in-
formation in the differences between charge levels rather than
their absolute values, it offers more resilience against that type
of noise. It is also worth noting that the advantages of rank
modulation have been experimentally applied to phase-change
memory (see [18]).
Gray codes using “push-to-the-top” operations and spanning

the entire space of permutations were also studied in [12]. The
Gray code [9] was first introduced as a sequence of distinct
binary vectors of fixed length, where every adjacent pair dif-
fers in a single coordinate. It has since been generalized to se-
quences of distinct states such that, for every

, there exists a function in a predetermined set of tran-
sitions such that (see [19] for an excel-
lent survey). When the states one considers are permutations on

elements and the allowed transitions are “push-to-the-
top” operations, Jiang et al. [12] referred to such Gray codes as
-length rank-modulation Gray codes ( -RMGC’s), and it pre-
sented such codes traversing the entire set of permutations. In
this fashion, a set of rank-modulation cells could implement
a single logical multilevel cell with levels, where increasing
the logical cell’s level by 1 corresponds to a single transition
in the -RMGC. This allows for a natural integration of rank
modulation with other multilevel approaches such as rewriting
schemes [4], [10], [11], [24].
Other recent works have explored error-correcting codes for

rank modulation, where different types of errors are addressed
by a careful choice of metric. In [2], [13], and [17], Kendall’s
-metric was considered, since a small charge-constrained error
translates into a small distance in the metric. In contrast, the
-metric was used in [15] and [22], as small distances in this

metric correspond to small limited-magnitude errors.
In this paper, we explore Gray codes for rank modulation

which detect a single error, under both metrics mentioned pre-
viously. Such codes are known as snake-in-the-box codes, and
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have been studied extensively for binary vectors with the Ham-
ming metric and with single-bit flips as allowable transitions
(see [1] and references therein).
This paper is organized as follows. In Section II, we present

basic notation and definitions. In Section III, we review prop-
erties of Kendall’s -metric, present a recursive construction of
snake-in-the-box codes over the alternating groups of odd or-
ders with rate asymptotically tending to 1, then present some
upper bounds on the size of such snake-in-the-box codes in gen-
eral, and conclude by presenting auxiliary functions needed for
the use of codes generated by this construction. In Section IV,
we present a direct construction of snake-in-the-box codes of
every order in the -metric based on results from [12], with
rates that asymptotically tend to 1. We conclude in Section V
with some ad hoc results, as well as some open questions.

II. PRELIMINARIES

Given a permutation on elements (i.e., a bijection from
and into the set ), we shall denote it by

. This form is called the vector no-
tation for permutations. We let be the symmetric group on
(i.e., the group of all permutations on ). For , ,

their composition, denoted , is the permutation for which
for all . It is well known that .

Example 1: One has precisely six ways of organizing the
elements of in a row. These are

These six permutation form the group .

A cycle, denoted , is a permutation mapping
for all , as well as . We shall

occasionally use cycle notation in which a permutation is de-
scribed as a composition of cycles. We also recall that any per-
mutation may be represented as a composition of cycles of size
two (known as transpositions), and that the parity of the number
of transpositions does not depend on the decomposition. Thus,
we have even and odd permutations, with positive and negative
signs, respectively. We let be the subgroup of all even per-
mutations on , called the alternating group of order . Again,
it is well known that .

Example 2: Of the permutations presented in Example 1,
only the following are even:

They form the group . Put in cycle notation, they are

where id denotes the identity permutation.

Definition 3: Given a set and a subset of transformations
, a Gray code over , using transi-

tions , of size , is a sequence
of distinct elements of , called codewords, such that for all

there exists such that .
Alternatively, when the original permutation is known (or

irrelevant), we use a slight abuse of notation in referring to

the sequence of transformations generating the
code (i.e., ) as the code itself.
In the aforementioned definition, when , the

Gray code is called complete. If there exists such that
, the Gray code is called cyclic, is called its

period, and we shall, when listing the code by its sequence of
transformations, include at the end of the list. The rate
of , denoted , is defined as

In the context of rank modulation for flash memories, the
set of transformations comprises of “push-to-the-top” opera-
tions, first used in [12], and later also in [8] and [23]. We denote
by the “push-to-the-top” operation on index ,
i.e.,

and throughout the paper we set . We also
note that in cycle notation

(1)

For ease of presentation only, we also denote by the “push-to-
the-bottom” operation on index , i.e.,

Restricting the transformations to “push-to-the-top” opera-
tions allows fast cell programming, and eliminates overshoots
(see [12]). In the context of flash memory, “push-to-the-top” op-
erations have also been used in [6] and [7]. We also note that
generating permutations using “push-to-the-top” operations is
of independent interest, called “nested cycling” in [21] (see also
references therein), motivated by a fast “push-to-the-top” oper-
ation1 (cycling) available on some computer architectures.
Let be a distance function inducing

a metric over . Given a transmitted codeword and
its received version , we say a single error occurred if

. We are interested in Gray codes capable of de-
tecting single errors, which we now define.

Definition 4: Let be a metric over induced by a dis-
tance measure . A snake-in-the-box code over and , using
transitions , is a Gray code over and using , in which
for every pair of distinct elements , , , one has

.
Since throughout the paper our ambient space is , and the

transformations we use are the “push-to-the-top” operations ,
we shall abbreviate our notation and call the snake-in-the-box
code of size an -snake, or an -snake. We
will be considering two metrics in the next sections: Kendall’s
-metric and the -metric, with their respective -snakes
and -snakes.

1The operations described in [21] are actually mirror images of
“push-to-the-top.” Furthermore, in the permutation-generation scheme,
there is not a Gray code since it repeats some of the previously generated
permutations, also making it inefficient.
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It is interesting to note that the classical definition of snake-in-
the-box codes (see the survey [1]) is slightly weaker in the sense
that is required for distinct , , unless
and are adjacent in . This, however, is a compromise due
to the fact that in the classical codes over binary vectors, the
transformations (which flip a single bit) always create adjacent
codewords at distance 1 apart. This compromise is unnecessary
in our case since, as we shall later see, the “push-to-the-top”
operations allow adjacent words at distance 2 or more apart.

III. KENDALL’S -METRIC AND -SNAKES

Kendall’s -metric [14], denoted , is induced by the
bubble-sort distance which measures the minimal amount of
adjacent transpositions required to transform one permutation
into the other. For example, the distance between the permuta-
tions and is 2, as

is a shortest sequence of adjacent transpositions between the
two. More formally, for , , as noted in [13]

The metric was first introduced by Kendall and Gibbons [14]
in the study of ranking in statistics. It was observed in [13] that a
bounded distance in Kendall’s -metric models errors caused by
bounded changes in charge levels of cells in the flash memory.
Error-correcting codes for this metric were studied in [2], [13],
and [17].
We let Kendall’s adjacency graph of order be the

graph whose vertices are the elements of the
symmetric group , and if and only
if . It is well known that Kendall’s -metric is
graphic [5], i.e., for every , , equals the
length of the shortest path between the two in the adjacency
graph, .

A. Construction

We begin the construction process by restricting ourselves
to Gray codes using only “push-to-the-top” operations on odd
indices. The following lemma provides the motivation for this
restriction.

Lemma 5: AGray code over using only “push-to-the-top”
operations on odd indices is a -snake.

Proof: According to (1), a “push-to-the-top” operation on
an odd index is a composition with an odd-length cycle (which
is an even permutation). Thus, the codewords in a Gray code
using only such operations are all with the same sign.
On the other hand, an adjacent transposition is an odd per-

mutation, thus, flipping the sign of the permutation it acts on. It
follows that in a list of codewords, all with the same sign, there
are no two codewords which are adjacent in , i.e., the Gray
code is a -snake.

Lemma 5 saves us the need to check whether a Gray code is in
fact a -snake, at the cost of restricting the set of allowed tran-

sitions (and the size of the resulting code, although Theorems
15 and 17, presented as follows, work to mitigate this concern).
In particular, if is even, the last element cannot be moved.
By starting with an even permutation, and using only

“push-to-the-top” operations on odd indices, we get a sequence
of even permutations. Thus, throughout this part, the context of
the alternating group is assumed, where .
The construction we are about to present is recursive in na-

ture. As a base for the recursion, we note that three consecutive
“push-to-the-top” operations on the third index of permutations
in constitute a complete cyclic -snake

We shall extend to the next order as a running example
alongside the general construction in the following.
Now, assume that there exists a cyclic

-snake , and let

be the sequence of transformations generating it, where is
odd for all . We also assume that
(this requirement, while perhaps appearing arbitrary, is actu-
ally quite easily satisfied. Indeed, every sufficiently large cyclic
-snake over must, without loss of generality, satisfy it.

We shall make it a point to demonstrate that this holds for our
construction).
We fix arbitrary values for such that

(2)

For all , we define

where the indices are taken modulo , and such that we
indeed have , i.e., is an even permutation (one
simple way of achieving this is to choose them in ascending
order).

Example 6: We recall that is generated by the operations
, which satisfy our requirement. As suggested previ-

ously, we order in ascending order, i.e.,

We define the following permutations as starting points for our
construction:

and readily verify that they are all even.

We now define, for all and , the
permutation
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i.e., we construct cycles corresponding to a mirror view of
on all but the two first elements of (which, as we

recall, are ).

Example 7: In our running example, we define the following
permutations:

and resume our construction.

We now note the following properties of our construction.

Lemma 8: Let , , and , . The
following are equivalent.
1) The permutations and are cyclic shifts
of each other.

2) .
3) and .

Proof: First, if is a cyclic shift of , since

then necessarily

It then follows that

hence . Moreover, since the two permutations’ last
elements agree, and induce a Gray code,
we necessarily have .
Finally, the last statement implies that the first is trivial.

Lemma 9: For all , it holds that

Proof: The transformations induce a
cyclic code, and the claim follows directly.

Therefore, we have constructed cycles comprised of
cyclically nonequivalent permutations (although, at this point,
they are not generated by “push-to-the-top” operations).
It shall now be noted that

Hence, if we define for all , , and
, the permutations

then it holds that

Our observation from the earlier paragraph means that, at this
point, we have disjoint cycles, which we conveniently
denote

for all (for ease of notation, we let

).

Example 10: In our construction, the cycles we produced are

where the permutations in bold are those from Example 7.

Each of the cycles is of size , is generated
by “push-to-the-top” operations, and contains all cyclic shifts
of elements present in our previous version of that cycle. We
merge these cycles into a single cycle in the following theorem.

Theorem 11: Given a cyclic -snake using
only “push-to-the-top” operations on odd indices, and such that
its first transformation is , there exists a cyclic

-snake with the same properties, whose size is
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Proof: Since , it holds for all that
, and we recall . More explicitly

where, again, the indices are taken modulo . Thus, for all
, we have

and .
Let denote the left-shift operator, and so

By the aforementioned observations, we conclude that

is a cyclic -snake, consisting of

permutations. The code obviously uses , and so
some cyclic shift of it has it as its first transition (in fact, for
every , one has , and in particular,

has as its first transition, and so does ).
Finally, it is easily verifiable that all “push-to-the-top” opera-
tions are on odd indices.

Example 12: Our running example ends with the full con-
struction of a -snake from Theorem 11. The
down arrows stand for an omitted sequence of transforma-
tions. The transition from column to column uses a single
transformation

We now turn to consider the size and rate of the constructed
codes, and show that their rate asymptotically tends to 1.

Theorem 13: The size of -snakes constructed in Theorem
11 behaves asymptotically as

which leads to an asymptotic rate of 1.

Proof: Starting from our base case of a complete cyclic
-snake, we define for all the ratio

which is the size of our constructed code over the total size of
. We note that

Therefore, since , we have for all that

Using Stirling’s approximation, one observes

Moreover, one can now readily verify that

Section III-B will focus in exploring the possible size of
-snakes in general.
Before we conclude this part, we recall that Flash memory

cells suffer long-time damage from erasure cycles, and there-
fore, it is desirable to minimize the number of times such cycles
are required.
A property of rank-modulation cell programming is that an

erasure of an entire cell block is required only when a specific
cell is to exceed its maximal permitted charge level. It is there-
fore of interest to analyze the rate with which our constructed
codes increase the charge level of any given cell.
Repeated “push-to-the-top” operations on a given cell will

result in a fast increase in that cell’s charge level, and growing
gaps between it and the charge levels of other cells. It is there-
fore most cost economic, in the sense that it delays the need for
a time-consuming erasure and reprogramming cycle to employ
a programming strategy which retains the charge levels of indi-
vidual cells as balanced as possible. Such balanced Gray codes
were constructed in [12].
In this part’s context, this goal is achieved if and only if every

two subsequent incidents in a cyclic -snake
where a “push-to-the-top” operation is applied to a certain cell
are separated by at most operations on other cells. Our
family of codes nearly achieves this goal.

Proposition 14: For every permutation , in the
-snake constructed in Theorem 11, there exists another

such that , following it by no more than
steps.
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Proof: Recall that

By the nature of our construction, for , every “push-to-
the-top” operation, on all but the last rank in the code, appears
either as part of the pattern

or as

It is therefore the case that there exist and
such that the transformations used in after are of the
following two forms.
1)

2)

In the second case, one notes

Finally, in the first case, we note that

It is of interest to note that, of all cases discussed in the last
proof, the second case where is the only situation in
which another instance of programming to the specific cell fails
to occur in steps, i.e., for the large majority of cases (in
all but of them), the construction of Theorem 11 yields
optimally behaving codes in this respect.

B. Bounds on -Snakes

We now turn our attention to bounding the parameters of
-snakes. We begin by noting a simple upper bound on the size

of -snakes.

Theorem 15: If is an -snake, then:
1) ;
2) if and only if, for all , it holds
that or .

Proof: Every has exactly neighbors in .
When we sum the edges for every vertex in , each edge in

is counted precisely twice, hence

On the other hand, for every , and , such
that and , clearly . It follows that there
are no less than distinct edges in . Hence

Finally, we note that iff , iff
every edge in contains a (unique) element of .

It is worth mentioning, at this point, that this upper bound
might not be tight. Indeed, we know by Theorem 13 that

and no constructions are currently known which attain the upper
bound, except for the trivial case of .
The codes we constructed in the previous part use only “push-

to-the-top” operations on odd indices. We would now like to
show that using even a single “push-to-the-top” operation on
an even index can never result in a code attaining the bound of
Theorem 15 with equality. We first require a simple lemma.

Lemma 16: Let be a -snake over . If , and
there exists a path in of odd length between them, then that
path contains an edge both of whose endpoints are not in .

Proof: Consider such a path of odd length in , con-
necting and . Now, color the vertices of black, and those
of white. Since is a -snake, no edge in has both
its ends colored black. In the aforementioned path, the vertices
cannot alternate in color since and are colored black and
the path has odd length. It follows that there is an edge in the
path with both ends colored white, as claimed.

With this lemma in hand, we can now further bound the size
-snakes employing a “push-to-the-top” operation on an even

index.

Theorem 17: If an -snake contains a “push-to-
the-top” operation on an even index, then

Proof: Let . We take such
that , where . Then, and have
different signs. We will also find it convenient to denote

We shall construct as many distinct paths in Kendall’s adja-
cency graph connecting with , knowing theymust all
have odd lengths, and therefore, by Lemma 16 they each con-
tain an edge completely disjoint from . We will then show
that these edges are all distinct, allowing us to improve upon
the bound of Theorem 15.
One natural such path is generated by subsequently applying

to the adjacent transpositions for
. By taking more care before applying these transposi-

tions, we shall arrive at more paths.
Consider the set of adjacent transpositions that do not involve

the index , namely
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For every subset of size , we generate a new
permutation by applying to the elements of (in some
arbitrary order, say from smallest to largest indices). Naturally,
for two distinct such subsets, and , we have ,
but still .
We can now apply to the aforementioned transpositions

in the following way:

and, for every choice of subset, we have . Clearly,
we can generate from by reversing the effect of
’s elements (the actual transpositions required are altered by

the change of index for , but all other elements retain their
relative positions with respect to each other. Formally, we need
to apply the elements of in the reverse order, but whenever

such that we instead apply the adjacent
transposition ).
Now, note that if , then in particular

hence . Therefore, the induced permutation on
agrees as well. This, however, is impossible unless .
Hence, any two paths of this sort can only intersect in the first
step of obtaining from (or the last step from to

), i.e., in the first (or last) edge of the path.
Finally, by Lemma 16, each path hereby described contains

an edge disjoint from . Note that it cannot be its first or last
edge (since , ); hence, these edges are all distinct. It
follows (in the same manner used in the proof of Theorem 15)
that, where denotes the number of subsets of with cardi-
nality 2 or less, we have

and naturally .

Before concluding this section, we note that the upper bound
of Theorem 17 is still higher than , the size of codes
generated by the construction of Theorem 11. See Section V for
some ad hoc results of codes with optimal sizes.

C. Successor Calculation and Ranking Algorithms

We now turn to present algorithms associated with the codes
we constructed in the previous sections. The algorithms are
brought here for completeness of presentation, and are straight-
forward derivations from the construction. We shall, therefore,
only provide an intuitive sketch of correctness for them, as we
shall later do in the section corresponding to -snakes.
In order to use the codes described in Theorem 11 in the im-

plementation of a logic cell (with levels), importance
is known to the ability of efficiently increasing the cell’s level.
That is, one needs to know, for every given permutation in the
code, the appropriate “push-to-the-top” operation required to
produce the subsequent permutation.

For the code from Theorem 11, the function
takes as input a permu-

tation in the code, and returns as output the index of the
required transformation . It is assumed throughout this part
that the elements from (2), used in our construction,
are known, and we will denote them with superscript to
indicate order when it is not clear from context. Furthermore,
we require a function

which returns the unique index such that . We as-
sume runs in time.2 ne possible way, among many,
of achieving this is by defining

Finally, we naturally assume validity of the input in all proce-
dures.
Our strategy will be to identify the vertices in which

require a transformation other than . Those are either per-
mutations with leading 1’s (those on which we initially per-
formed “push-to-the-bottom” operations in our construction),
or the last permutation in each . In the latter case, we
need only apply , where the former requires translation of the

’s according to their respective positions in the originating
permutation of each , and a recursive run of
to determine the correct “ push-to-the-bottom” operation to be
performed.
It shall be noted at this point that a degree of freedom exists

in the cyclic shift of one applies to construct each
(one only needs to confirm that the first “push-to-the-top” op-
eration shall be on the last index). This shift shall be denoted
by the following bijection for every order and index

:

defined such that the “push-to-the-bottom” operation applied to

matches the “push-to-the-top” operation applied in to

We shall further denote its inverse as . These two bijections
can be implemented in time, for example, by taking as a
starting point ’s -ranked permutation

2Though the integers used throughout are of magnitude , and so may
require bits to represent, we tacitly assume (as in [12]) all simple
integer operations, e.g., assignment, comparison, addition, etc., to take
time.
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and defining accordingly

otherwise
(3)

where is checked modulo , as well as

otherwise.
(4)

Lemma 18: runs in amortized time.
Proof: We first note that by the nature of our construc-

tion, the element 1 appears in the leading index precisely
times, which constitutes of the code’s

size. The pair (3, 1) leads to no more (and in fact strictly less)
permutations.
Therefore, if we let denote the expected number of steps

performed by when called on input of length
, then we note the recursive connection

Developing this inequality recursively, there exists such
that

...

and so .

To use in the implementation of a logic cell, one also
needs a method of computing a given permutation’s rank in
the code. We implement the function
which receives as input a permutation
and returns its rank in

in the order indicated by that notation. The assumptions made in
the previous part are still in effect. Moreover, we will require the
knowledge of the cyclic shift of used in the construction
of each , which we retain in the form of , the rank
of permutation in which was chosen as a starting point.
For example, in the method suggested in (3) and (4), we have

for all .
We use the following method: first identify the position of 1

in the permutation, and the following element, which gives us
both the subcode the permutation belongs to and the cyclic shift
in our mock “push-to-the-bottom” operation. Armed with that
information, we then scan the permutation backward and trans-
late the ’s indices according to the subcode in the same way
we did in . After that, a recursive run of
will give us the permutation’s position in its subcode, which we
will combine with the cyclic shift to produce the correct rank,
taking into account and remembering that is con-

structed of the ’s rather than the ’s.

Lemma 19: The function operates in steps.
Proof: We note that performs operations be-

fore calling upon itself with an order reduced by one. It therefore
operates in time.

—
Unranking permutations, i.e., the process of assigning to a

given rank in the corresponding permutation in
the , might also be needed if one requires the logic cell
to perform as more than a counter. We implement a function

which returns as output the -ranked permuta-
tion in .
Naturally, all the aforementioned assumptions made still

hold. We will follow the same general method used for ,
i.e., we shall compute such that the given rank
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belongs to , then adjust the rank to indicate the

correct position in . It will then remain to compute the
correct permutation in the “push-to-the-bottom” cycle using a
recursive run, and shift it the required number of times.

Lemma 20: The function operates in steps
as well.

Proof: Follows exactly the same lines as our proof to
Lemma 19.

IV. -METRIC AND -SNAKES

The -metric is induced on by the embedding in
implied by the vector notation. More precisely, for , ,
one defines

We use the -metric to model a different kind of noise mech-
anism than that modeled by Kendall’s -metric, namely spike
noise. In this model, the rank of each memory cell is assumed
to have been changed by a bounded amount (see [22]).
Error-correcting and -detecting codes in for the -metric

are referred in [22] as limited-magnitude rank-modulation
codes (LMRM codes). In that paper, constructions of such
codes achieving nonvanishing normalized distance and rate are
presented. Moreover, bounds on the size of optimal LMRM
codes are proven. In particular, it has been shown [22, Th. 20]
that if is an -LMRM, then

Using a simple translation to an extremal problem involving
permanents of (0, 1)-matrices (see [20]), this is also the best pos-
sible bound using the set-antiset method. For our needs, it fol-
lows that the size of every -length -snake is bounded by this
term. We shall present a construction of -snakes achieving
this upper bound by a factor of , which we will show
achieves an asymptotic rate of 1.

A. Construction

In order to use the code constructions presented in [12], we
first prove the following lemma.

Lemma 21: Both constructions in [12, Ths. 4 and 7], when ap-
plied recursively, yield complete cyclic -RMGC’s containing
both “push-to-the-top” operations and .

Proof: The proposition was, while not fully stated, actually
proven in [12, Th. 4].
For [12, Th. 7], we shall assume that the recursive process was

applied to a length- Gray code satisfying these conditions
(as is the case with the base example given in that article). The
resulting code uses by definition.Moreover, since the original
code used , the resulting code uses .

This lemma now allows for the construction of a basic
building block which we will later use.

Lemma 22: Let , , be a set of integers of the
same parity. Let

be a permutation such that the parity of differs from that
of the elements of . Then, there exists a (noncyclic)

-snake starting with and ending with
the permutation

Proof: Let denote the codewords of
the claimed code, and denote by the list of
transformations generating it.
We set . For all , we let , i.e.,

. Quite clearly, any two of these permutations
are at -distance at least 2 apart, since the ’s share parity.
Now, by Lemma 21, there exists a complete cyclic
-RMGC starting with , with its last operation being . We,

therefore, let for represent that code; hence,
and (we then, obviously,

omit the last transformation as well as the repeated codeword
). These permutations, ,

also represent an -snake, for the same reason.
Finally, take and , and observe
and . Suppose . Then, in particular,

. Moreover, if , then , but
then ’s position in correlates to that of in ,
in contradiction. Therefore, , but then ’s position in

( th from left) correlates to that of in , where
, again in contradiction. This concludes

our proof.

Example 23: We shall start this example with the permutation

We will also require a complete 2-RMGC, which clearly com-
prises of two subsequent operations. We are now ready to
present a (noncyclic) -snake

An additional operation is called for by our complete
2-RMGC, but we omit it. We also note that any permutation on
the odd element in this example will not change its properties
as an -snake.

Having this building block in hand, we continue to describe a
construction of a cyclic -snake. The construction follows by
dividing the ranks in a length- permutation into even and odd
elements, and covering permutations on each half separately.

Theorem 24: For all , there exists an
-snake of size
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Proof: To simplify notations, we start by noting that
has odd elements and has even ones. We
shall use that notation throughout this proof.
Using [12, Ths. 4 and 7], we take a complete cyclic -RMGC

using the operations

Moreover, we use Lemma 22 to come by a -snake
of size given by the operations

As the origin for the code we construct, we use

For all and , we define the se-
quence of transformations generating the code as

and where, naturally, the codewords satisfy .
We start by noting that, for all , the permutation

satisfies the requirements of Lemma 22 as a
simple matter of induction. It follows that, for all , the
permutations

are at -distance of at least 2 apart.
Furthermore, for , , , since the code generated

by is indeed a Gray code, we are assured
that, for all , , the last elements
of both and are all odd
and represent two distinct permutations; hence

Finally, we note that

since the code provided by is cyclic and
divides .

Example 25: For this example, using an order of six as the
last example (i.e., ), we refer to [12, Ths. 4 and 7]
for a complete cyclic 3-RMGC as well as the aforementioned
2-RMGC. One such is created by the transitions

Moreover, we have our -snake from the last ex-
ample, generated by (recall that it’s not cyclic)

We start our cyclic -snake in the same permu-
tation as we did the last example, and use the generating tran-

sitions of the code presented in the last example as a building
block

Down double arrows stand for an omitted sequence of transi-
tions generating Example 23, i.e., , , , . One sees that
we indeed have a cyclic -snake of size 30.

We note that by switching the roles of odd and even numbers
in Theorem 24, we can construct an -snake of size

However, the resulting code is strictly smaller for odd .

Theorem 26: The -snakes constructed in Theorem 24 have
an asymptotic rate of 1.

Proof: Let denote the -snake of length constructed
by Theorem 24. Using the crude

the proof is a matter of simple calculation

B. Successor Calculation and Ranking Algorithms

Finding the correct “push-to-the-top” operation to prop-
agate a given permutation to the following one is naturally
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dependent upon one’s ability to do the same with the - and
-RMGC’s used in our construction. We, therefore,

assume to have the function which ac-
cepts as input a permutation and returns
the correct transformation used in the codes we used. Further-
more, we assume to have the function
which returns the respective rank of the input permutation
in that code, where the identity permutation is assumed to
have rank zero. Finally, we shall use an auxiliary function

defined by (which naturally
operates in steps).
The function then returns as

output the index of the required transformation to produce
the subsequent permutation in the code from . It
operates by considering the following cases: in each block of
Lemma 22, one computes the proper index by propagating the
leading element of odd rank as long as that is needed, then
applying to the permutation on the elements of even
ranks (where one distinguishes between blocks in which 2, 4
were switched). Only the last permutation of each block calls
for applying to the permutation on the elements of odd
ranks.

Lemma 27: If the functions , operate in ,
steps, respectively, in the average case, then has
an average runtime of .

Proof: We partition our proof by return cases.
exits at line 3 in precisely of cases, in

which case it returns within a fixed number of operations.
It exits at lines 6 and 9 in of cases, in which case

it operates in at most (depending on the data structures in use)
steps in the average case.

Finally, returns from lines 7 and 10 in
of cases, after performing steps.
In every sensible implementation of (i.e., where we as-

sume ), we then have an amortized runtime of
.

We now note that by [12, Ths. 7 and 10], we may assume
to operate in steps in the average case, and, by

[12, Part III-C] (which also relies on [16]), we assume
runs in steps, yielding an average runtime of for

.
We shall also present the function

that, given a permutation in the -snake presented in

Section IV-A, returns that permutation’s rank in the code. This
function uses the function discussed earlier as well, and
works by considering the same cases discussed earlier.

Lemma 28: If the function operates in steps, then
has a runtime of (in the average or worst

case, respectively).
Proof: We partition our proof by return condition once

more. If the program exits from 4, then it performed
steps.
If it exits from 7 or 8, then it performed

steps.

Again, by results discussed previously, we note that
runs in steps in the average case.
As mentioned previously, unranking permutations in the code

might also be required. For that purpose, we implement the
function , accepting as input the length of the
code and a specific rank and returning the implied permutation.
We will assume the existence of a similar function for the
construction used in Section IV-A, where again we assume the
unit permutation to have rank zero.
Once more, our implementation and estimate of ’s

runtime relies heavily on that of its auxiliary functions.

Lemma 29: If the function operates in steps, then
runs in steps.

Proof: One notes that the only operations in that
take more than a fixed number of steps are calls for (taking

), calls for , and, depending on the data structures in
use, concatenation of indices (at most as well). The claim
follows.

Again, it shall be noted that, relying on Lemma 21 and [12,
Part III-C], can be performed in operations.
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Fig. 1. -snake generated by a computer search. Squiggly arrows stand for a repetition of the transitions defined by the braces.

V. CONCLUSION

In this paper, we explored rank-modulation snake-in-the-box
codes under both Kendall’s -metric and the -metric. In both
cases, we presented a construction yielding codes with rates
asymptotically tending to 1, and implemented auxiliary func-
tions for the production of the successor permutation, as well as
ranking and unranking for permutations in such codes. We also
proved upper bounds on the size of -snakes.
However, it is not presently known whether the upper bounds

presented and referenced in this paper are achievable, and there-
fore, we were unable to show how close the codes generated by
our constructions come to being optimal with respect to their
sizes (rather than their asymptotic rates). A computer search
for cyclic codes, performed on , yielded -snakes
of maximal size (for comparison, the construction
from Theorem 11 yields a -snake). While an abun-
dance of such codes were found (well over 500 nonequivalent
codes), they all were in fact codes over . For completeness,
we present one of those codes in Fig. 1.
Searches of a higher order appear to be infeasible, but we

include one more peculiar result: every maximal code we tested,
skipped three permutations who all agree on 4, 5, i.e., it skipped
a coset of . While we have no optimal codes of a higher order
to test this phenomenon on, the codes generated by Theorem 11
of lengths 7 and 9 display it as well—several cosets of and
were absent, respectively.
It shall be noted that a complete (but not cyclic)

-snake over can easily be constructed from
each cyclic code we tested by generating the skipped coset
of with two operations, followed by a operation and
the given code, in order. However, we do not currently know
whether -snakes over exist for
every length.
These results, along with the bounds we showed in Lemma

17 and Theorem 15, give rise to the following conjecture: for
all , a -snake exists over whose size is no less than
that of every -snake over .
In addition, searches done in a computer for -snakes for

lengths 4, 5, and 6 returned codes of size 6, 30, and 90, respec-
tively, suggesting that perhaps the upper bound of [22, Th. 20] is
achievable. Moreover, in these cases, we were able to find codes
generated only by “push-to-the-top” operations on the last two
indices. A code for each length is presented in Fig. 2 in binary
representation (conveniently written in octal notation), where
zeroes stand for ’s and ones for ’s. Searches for higher
lengths again seem infeasible.

Fig. 2. -, -, and -snakes generated by a com-
puter search. All codes represented by a sequence of “push-to-the-top” opera-
tions, applied in order to the identity permutation, where zeroes stand for ’s
and ones for ’s. The binary strings are given in octal notation and should
be read from left to right.
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