
Journal of Combinatorial Theory, Series A 97, 27�42 (2002)

Codes and Anticodes in the Grassman Graph
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Perfect codes and optimal anticodes in the Grassman graph Gq(n, k) are
examined. It is shown that the vertices of the Grassman graph cannot be parti-
tioned into optimal anticodes, with a possible exception when n=2k. We further
examine properties of diameter perfect codes in the graph. These codes are known
to be similar to Steiner systems. We discuss the connection between these systems
and ``real'' Steiner systems. � 2001 Elsevier Science
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1. INTRODUCTION

In his pioneer work on association schemes Delsarte [2] proved the
following result.

Theorem 1. Let X and Y be subsets of the vertex set V of a distance
regular graph 1, such that the nonzero distances occurring between vertices
in X do not occur between vertices of Y. Then

|X| |Y|�|V|. (1)

In particular, Theorem 1 holds when X is a code C with minimum dis-
tance D+1, and Y is an anticode A with maximum distance D. An
anticode with diameter D is a set of codewords such that the distance
between any two codewords of the anticode is at most D. An anticode A

is called optimal if it is the largest anticode among all the anticodes with
the same parameters (length and maximal distance) as A. If A is a sphere,
where D=2e, then (1) becomes the well known sphere packing bound, and
the code C is called an e-perfect code. Recently, Ahlswede et al. [1] have
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generalized the notion of perfect codes, and called any code C, which meets
the bound (1), a D-diameter perfect code. This definition is a generalization
of the e-perfect code notion since any e-perfect code is a 2e-diameter perfect
code.

Ahlswede et al. examined three distance regular graphs, which they con-
sidered to be the most interesting graphs in this discussion. These graphs
are the Hamming graph, the Johnson graph, and the Grassman graph.
Nontrivial diameter perfect codes are known in all these graphs. In the
Hamming graph, in addition to the Hamming and Golay codes, the
extended Hamming and extended Golay codes are diameter perfect, as well
as all MDS codes. In the Johnson graph no nontrivial e-perfect codes are
known [3], but all Steiner systems are diameter perfect codes.

Let [ V
k ] denote the set of all k-dimensional subspaces of a vector space

V over GF(q). The vertex set of the Grassman graph Gq(n, k) consists of
all k-dimensional subspaces of GF(q)n, i.e., [ V

k ], where V=GF(q)n. Two
such subspaces are adjacent, i.e., connected by an undirected edge, if and
only if they intersect in a (k&1)-dimensional subspace. Martin and Zhu
[6] proved that there are no nontrivial e-perfect codes in the Grassman
graph. The size of optimal anticodes in the Grassman graph was deter-
mined by Frankl and Wilson [5] in their work on t-intersecting families.
Ahlswede et al. [1] have observed that the results of Frankl and Wilson
together with Theorem 1 imply that in Gq(n, k) only ``Steiner system type''
diameter perfect codes can exist. Here F�[ V

k] is called a Steiner structure
S[t, k, n]q if the elements of F are k-dimensional subspaces (called
blocks), and each t-dimensional subspace of V is contained in exactly one
block from F. Trivial Steiner structures in Gq(n, k) are S[t, t, n]q and
S[t, n, n]q . Ahlswede et al. [1] mentioned that S[1, k, n]q exists when k
divides n. Other Steiner structures are not known.

If an e-perfect code exists then we can partition the corresponding graph
into optimal anticodes with diameter 2e (spheres with radius e centered
around the codewords). Ahlswede et al. [1] asked the following natural
question: Does the existence of a D-diameter perfect code in all cases
implies a partition of the graph by optimal anticodes as for e-perfect codes?
In the Hamming graph this is certainly true as implied by [1]. Ahlswede
et al. [1] proved that the Johnson graph cannot be partitioned into
optimal anticodes of diameter D, if the optimal anticode is not a sphere. All
Steiner systems are diameter perfect codes in the Johnson graph [1] and
only trivial e-perfect codes are Steiner systems [3]. Hence, for all known
diameter perfect codes which are not e-perfect codes, in the Johnson graph,
there is no partition of the graph into the corresponding optimal anti-
codes.

The remainder of this paper is organized as follows. In Section 2 we dis-
cuss Steiner structures in the Grassman graph. Necessary conditions for the
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existence of such structures are derived, some constructions of systems from
known systems are given, and interesting connections with the well known
Steiner systems are presented. In Section 3 we examine partitions of the
Grassman graph into optimal anticodes. We first summarize the results of
Frankl and Wilson [5] concerning optimal anticodes. Later we show the
main result. There is no partition of the Grassman graph Gq(n, k) into
optimal anticodes, unless n=2k. When n=2k, Frankl and Wilson conjec-
tured that there can be only two different types of optimal anticodes. If
their conjecture is correct then also in this case there is no partition of the
Grassman graph Gq(n, k) into optimal anticode. Finally, we show that
if a D-diameter perfect code exists in Gq(n, k), where k�2D if n�2k,
then there exists a tiling with maximal anticodes of another Grassman
graph.

2. STEINER STRUCTURES

For a real number b{1, and all nonnegative integers k, the b-ary Gaussian
binomial coefficient [ x

k]b is defined by

_x
0&b

=1

_x
k&b

=
(bx&1)(bx&1&1) } } } (bx&k+1&1)

(bk&1)(bk&1&1) } } } (b&1)
, k=1, 2, ... ,

where x is a real number. In our discussion, b is a power of a prime, and
x is an integer, x�k.

Recall that F�[ V
k ] is called a Steiner structure S[t, k, n]q if the blocks

of F are k-dimensional subspaces, and each t-dimensional subspace of V
is contained in exactly one block from F. The first three results generalize
the known results on Steiner systems to Steiner structures.

Lemma 1. The total number of blocks in an S[t, k, n]q is

_n
t&q

_k
t&q

.
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Proof. The total number of t-dimensional subspaces of an n-dimen-
sional subspaces is [ n

t ]q . Each block of S[t, k, n]q contains [ k
t ]q t-dimen-

sional subspaces. Since each t-dimensional subspace is contained in exactly
one block, it follows that the total number of blocks in S[t, k, n]q is

_n
t&q

_k
t&q

. K

Theorem 2. If S[t, k, n]q exists, t�2, then S[t&1, k&1, n&1]q exists.

Proof. Let Un be an n-dimensional vector space over GF(q) and let
S�[ Un

k ] be an S[t, k, n]q . Un can be written as Un=Un&1+U1 , where
Un&1 # [ Un

n&1] is an (n&1)-dimensional subspace and U1 # [ Un
1 ]. We claim

that the set S$ defined below is an S[t&1, k&1, n&1]q ,

S$=q [W & Un&1
| W # S, U1 �W].

Clearly, S$�[ Un&1
k&1 ] and for Y # [ Un&1

t&1 ], Y+U1 is a t-dimensional sub-
space. Hence, Y+U1 is contained in exactly one block W # S. Therefore, Y
is contained in exactly one element of S$, the subspace W & Un&1 . Thus S$
is an S[t&1, k&1, n&1]q . K

Corollary 1. If S[t, k, n]q exists, then for all 0�i�t&1,

_n&i
t&1&q

_k&i
t&1&q

,

must be integers.

Trivial Steiner structures S[t, n, n]q and S[t, t, n]q exist for all t�n. The
only known nontrivial structures are S[1, k, n]q , where k divides n. These
structures are partitions of the n-dimensional space V (excluding the allzero
vector) into k-dimensional subspaces (excluding the allzero vectors). Such
partitions are obtained from any q, k, and n, such that k divides n. One
method to construct such partitions may be deduced from perfect byte
correcting codes [4]. Let n=sk and let ! # GF(qn) be a root of a primitive
polynomial of degree s over GF(qk). Denote

r=
qn&1
qk&1

=1+qk+q2k+ } } } +q(s&1) k,
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and for each i, 0�i�r&1, we define

Hi=[!i, !r+i, !2r+i, ..., !(q k&2) r+i].

One can easily verify that H0 _ [0]=GF(qk) and that the Hi 's, when
viewed as sets of length n vectors over GF(q), form the desired partition.
Each such set is a block in S[1, k, n]q .

Next, we show two intervals in which only trivial Steiner structures exist.

Lemma 2. If n�2k&t, then only trivial Steiner structures S[t, k, n]q

exist for which k=n.

Proof. Let S be an S[t, k, n]q and n�2k&t. Assume that S contains
two different elements, W1 , W2 . Since W1 and W2 are two different blocks
in the structure, it follows that dim(W1 & W2)�t&1. Hence,

dim(W1+W2)=dim(W1)+dim(W2)&dim(W1 & W2)�2k&t+1>n,

a contradiction. Therefore S contains at most one element, i.e. k=n. K

Theorem 3. If 2k&t<n<2k, then only trivial S[t, k, n]q exist for
which t=k.

Proof. Let S�[ V
k ] be an S[t, k, n]q and 2k&t<n<2k. For two sub-

spaces W1 and W2 of dimension k, if dim(W1+W2)�2k&t then
dim(W1 & W2)�t and hence each Y # [ V

2k&t] contains no more than one
block of S.

On the other hand, each block of S is contained in exactly [ n&k
k&t]q

(2k&t)-dimensional subspaces of V. The number of (2k&t)-dimensional
subspaces of V is [ n

2k&t]q . Therefore,

_n&k
k&t&q

} |S|=_n&k
k&t&q

_n
t&q

_k
t&q

�_ n
2k&t&q

,

which implies

>n&k
i=1 (qi&1) >2k&t

i=1 (qi&1)
>k

i=1 (qi&1) >n&t
i=1 (qi&1)

�1.
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Since 2k&t<n<2k, we have

(qn&t+1&1)(qn&t+2&1) } } } (q2k&t&1)
(qn&k+1&1)(qn&k+2&1) } } } (qk&1)

�1,

which can hold only if k=t and the structure is trivial. K

We can summarize the previous two theorems in the following bound.

Corollary 2. If a nontrivial S[t, k, n]q exists, then n�2k.

The bound of Corollary 2 is tight for t=1 as the construction given
before shows. This bound will be useful later when we turn to deal with
tiling optimal anticodes in the Grassman graph.

It is well known that if S(t, k, n) and S(t, n, v) exist then by substitution
of S(t, k, n) on each block of S(t, n, v) we obtain an S(t, k, v), Similarly we
have

Theorem 4. If S[t, k, n]q and S[t, n, v]q exist, then S[t, k, v]q exists
also.

The next theorem provides a tool to obtain new Steiner systems from
Steiner structures.

Theorem 5. Let S be an S[t, k, r]q and let H be the set of column vectors
of the r_n parity check matrix of an [n, k$, d] code over GF(q), where
r=n&k$ and d&1�t. If there exists an integer v�t such that

S$=q [B & H | B # S, |B & H |�t]�\H
v + ,

then S$ is a Steiner system S(t, v, n).

Proof. Every d&1 columns in the parity check matrix of an [n, k$, d]
code are linearly independent. Therefore, each set of t columns from H is
contained in exactly one block of S and thus, also in exactly one block of
S$. Since all the blocks of S$ are of the same size v, it follows that S$ is a
Steiner system S(t, v, n). K

Theorem 5 can be used to obtain some Steiner systems. In particular it
can be used to obtain the Steiner systems related to projective and affine
geometries.

Theorem 6. If S[2, k, n]q exists, then S ( 2, ( qk & 1 ) � (q & 1), ( qn & 1 ) �
(q&1)) exists.
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Proof. We take H to be the set of columns from the parity check matrix
of the [(qn&1)�(q&1), (qn&1)�(q&1)&n, 3] Hamming code over GF(q)
and use Theorem 5. K

Corollary 3. For all n�2 and, q, a power of a prime, a Steiner system
S(2, q+1, (qn&1)�(q&1)) exists.

Proof. Use Theorem 6 with S[2, 2, n]q . K

Theorem 7. If S[2, k, n]q exists, then S(2, qk&1, qn&1) exists.

Proof. We take H to be the set of columns from the parity check matrix
of the [qn&1, qn&1&n, d�3] code over GF(q), whose columns consist of
all the vectors ending with a 1, and use Theorem 5. K

Corollary 4. For all n�2 and a power of a prime q, a Steiner system
S(2, q, qn&1) exists.

Proof. Use Theorem 7 with S[2, 2, n]q . K

Theorem 8. If S[3, k, n]2 exists, then S(3, 2k&1, 2n&1) exists.

Proof. We take H to be the set of columns from the parity check matrix
of the [2n&1, 2n&1&n, 4] binary extended Hamming code and use
Theorem 5. K

The existence of the trivial S[3, 3, n]2 systems for all n�3, together with
Theorem 8 produces another set of well known systems.

Corollary 5. For all n�3, a Steiner system S(3, 4, 2n&1) exists.

3. NONEXISTENCE OF TILINGS WITH OPTIMAL ANTICODES

3.1. The Size of an Optimal Anticode

Let V be an n-dimensional vector space over GF(q) and let n�k�t.
A family, F, of k-dimensional subspaces of V, i.e., F�[ V

k ] is said to be
t-intersecting if dim(F & F $)�t holds for all F, F $ # F. It is easy to verify that
every anticode of diameter D in the Grassman graph Gq(n, k) is equivalent to
a (k&D)-intersecting family.

There are two types of trivial t-intersecting families.

v If n�2k&t then a t-intersecting family is of size [ n
k]q and contains

all the k-dimensional subspaces of V.

33CODES AND ANTICODES



v If t=k or k=n then a t-intersecting family contains just one block
of dimension k.

Tiling Gq(n, k) with trivial t-intersecting families is simple. Therefore,
from now on we assume, t<k<n and n>2k&t.

The size and structure of nontrivial optimal t-intersecting families were
determined almost completely by Frankl and Wilson [5].

Theorem 9. Let F�[ V
k] be a t-intersecting family. Then

|F|�max {_n&t
k&t&q

, _2k&t
k &q= .

Frankl and Wilson [5] have analyzed the two possible solutions implied
by Theorem 9. They proved that the bound is attained with equality by
optimal anticodes.

v If 2k&t<n<2k then the bound is

|F|�_2k&t
k &q

,

and it is attained in a unique way by taking some Y # [ V
2k&t] and defining

F={F # _V
k & } dim(F & Y)�k= .

These anticodes will be called anticodes (t-intersecting families) of type I.

v If 2k<n then the bound is

|F|�_n&t
k&t&q

,

and it is attained in a unique way by taking some Y # [ V
t ] and defining

F={F # _V
k & } dim(F & Y)�t= .

These anticodes will be called anticodes (t-intersecting families) of type II.

v If 2k=n then the bound is

|F|�_n&t
k&t&q

=_2k&t
k &q

,
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and it is attained by both type I and type II anticodes. Frankl and Wilson
[5] have conjectured that no other anticodes attain this bound.

For the two types of anticodes we call Y, the center of the anticode, and
denote it by 0(F)=q Y.

3.2. Tilings with Anticodes of Type I

Let P(Y ) denote the power set of a set Y.

Theorem 10. There is no tiling of Gq(n, k) for 2k&t<n�2k with nontrivial
type I anticodes.

Proof. Assume the contrary, that

[F0 , F1 , ..., Fm]�P \_V
k &+ ,

is a set of optimal type I t-intersecting families, which forms a tiling of
Gq(n, k). We will now examine the set,

S=q [0(Fi) | 0�i�m]�_ V
2k&t& .

Since [F0 , F1 , ..., Fm] is a partition of [ V
k ], it follows by the definition of

type I anticodes that for every F # [ V
k ] there is exactly one index i such that

F�0(Fi). Therefore, S is an S[k, 2k&t, n]q .
k>t implies that k{2k&t and since also 2k&t{n, we have that S is

not a trivial structure. Therefore, by Corollary 2,

n�2(2k&t),

and since we also have n�2k it follows that

2k�2(2k&t),

or

t�k

which is a contradiction. Thus, there is no tiling of Gq(n, k) for 2k&t<
n�2k with nontrivial type I anticodes. K

3.3. Tilings with Anticodes of Type II

Lemma 3. Any nontrivial tiling of the graph Gq(n, k), n�2k, with
optimal anticodes, requires at least three anticodes.
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Proof. We need only consider type II anticodes since they attain the
bound on an anticode size when n�2k. The number of t-intersecting
families in a tiling is

_n
k&q

_n&t
k&t&q

=
(qn&t+1&1)(qn&t+2&1) } } } (qn&1)
(qk&t+1&1)(qk&t+2&1) } } } (qk&1)

.

Since 1�t<k<n and q�2 we have

(qn&t+1&1)(qn&t+2&1) } } } (qn&1)
(qk&t+1&1)(qk&t+2&1) } } } (qk&1)

>2t,

which implies

_n
k&q

_n&t
k&t&q

�3. K

Theorem 11. There is no set of W[ n
k]q �(2 } [ n&t

k&t]q)X pairwise disjoint
nontrivial type II anticodes in Gq(n, k) for n�2k.

Proof. Assume

[F0 , F1 , ..., Fm&1]�P \_V
k &+ ,

is a set of pairwise disjoint type II anticodes in Gq(n, k), n�2k, where

m�
1
2

}
_n

k&q

_n&t
k&t&q

.

By Lemma 3 we have that m�2.
Let S be the set of centers of the anticodes in the tiling, i.e.,

S=q [0(Fi) | 0�i�m&1]�_V
t & .
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If k�2t then there exists F # [ V
k] such that

0(F0)�F and 0(F1)�F.

Therefore, by the definition of type II anticodes we have that F # F0 &

F1 , which contradicts the fact that F0 & F1=<. Thus, k�2t&1.
Assume now that for some 0�i<j�m&1,

dim(0(Fi) & 0(Fj))�2t&k.

Hence,

dim(0(Fi) + 0(Fj))

=dim(0(Fi))+dim(0(Fj))&dim(0(Fi) & 0(Fj))

�t+t&(2t&k)=k,

which implies that there exists some F # [ V
k ] such that

0(Fi)+0(Fj)�F.

Therefore, F # Fi & Fj , which again contradicts the fact that Fi & Fj=<.
Hence, k�2t&1 and for all 0�i<j�m&1 we have

dim(0(Fi) & 0(Fj))�2t&k&1.

Each element of S contains exactly [ t
2t&k]q elements of [ V

2t&k]. Since
dim(0(Fi) & 0(Fj))�2t&k&1, we have that each F # [ V

2t&k] is contained
in at most one element of S. Therefore,

|S| } _ t
2t&k&q

�_ n
2t&k&q

. (2)

Recall that

|S|� 1
2 }

_n
k&q

_n&t
k&t&q

, (3)

and hence by Eqs. (2) and (3) we have that

(qn&t+1&1)(qn&t+2&1) } } } (qn+k&2t&1)
(qt+1&1)(qt+2&1) } } } (qk&1)

�2. (4)
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Hence

n+k&2t�k.

and therefore,

n�2t<2k,

a contradiction. Thus, the theorem is proved. K

Corollary 6. There is no tiling of Gq(n, k), for n�2k, with nontrivial
type II anticodes.

The proof of Corollary 6 may be obtained by using the previous section
and the duality presented in the next subsection. But we cannot omit the
proof as we still need Theorem 11 in the next subsection.

3.4. Tilings with Anticodes of Type I and II

When n=2k at least two types of optimal anticodes exist. We have
already proved that no tilings exists when n=2k which consist only of type
I anticodes or only of type II anticodes. We will now prove that there is
no tiling of Gq(n, k), n=2k, which uses any combination of the two types
of anticodes.

We first examine the set of dual subspaces of the elements of a t-inter-
secting family. Given F�[ V

k ] a t-intersecting family, we define

F==q [F = | F # F]�_ V
n&k& .

Lemma 4. If F is a t-intersecting family of either type I or type II then
F= is a (n&2k+t)-intersecting family of the other type.

Proof. Given F =

1 , F =

2 # F= we know that

dim(F1 & F2)�t.

Thus,

dim(F1+F2)�2k&t.

One can easily verify that (F1+F2)==F =

1 & F =

2 and hence

dim(F =

1 & F =

2 )�n&2k+t,

which proves the first part of the lemma, i.e., F= is a (n&2k+t)-intersecting
family.
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We distinguish now between two cases.

Case 1. If F is of type I, then for all F # F,

F�0(F).

Therefore, for all F = # F=,

0(F)=�F=.

Clearly, F= has dimension k$=n&k and 0(F)= has dimension t$=n&
(2k&t). Therefore, 0<t$<k$ and hence F= is a t$-intersecting family of
type II in Gq(n, k$), and by the construction of type II anticode 0(F)= is
the center of F=, i.e.,

0(F)==0(F)=.

Case 2. If F is of type II then by a similar argument we have that F=

is an intersecting family of type I. K

Note that if n{2k then F is an optimal anticode if and only if F= is
an optimal anticode.

Lemma 5. Let T be a tiling of Gq(n, k), n=2k, with r1 type I anticodes
and r2 type II anticodes. There exists a tiling of Gq(n, k) which consists of
r2 type I anticodes and r1 type II anticodes.

Proof. Let T=[A0 , A1 , ..., Ar1&1 , A$0 , A$1 , ..., A$r2&1]. We claim that
the set

T==q [A=

0 , A=

1 , ..., A=

r1&1 , A0$
= , A1$

=, ..., A=

r2&1 ].

is also a tiling of Gq(n, k), where Ai
= , A$j

= stand for a set of all the dual
vector spaces of the elements in the respective anticodes for all i and j.

Let B # T be some anticode. Clearly, B is a t-intersecting family, and by
Lemma 4, B= is also a t-intersecting family of the opposite type.

Both types of anticodes are exactly of the same size when n=2k. To
prove that T= is also a tiling of Gq(n, k) we have to show that the elements
of T= are pairwise disjoint.

Let B1
= , B2

= # T= be two anticodes of any of the two types. We denote
their intersection by

C=q B1
= & B2

= �_ V
n&k& .
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If C{<, then let F # C be some (n&k)-dimensional subspace of V. By
definition, F= # B1 & B2 which contradicts the fact that T is a tiling. K

Corollary 7. There is no nontrivial tiling of Gq(n, k), n=2k, which
consists only of type I and type II anticodes.

Proof. Let us assume that such a tiling T exists. In either T or T=, at
least half of the elements are type II anticodes, which is impossible by
Theorem 11. K

4. TILINGS WITH MAXIMAL ANTICODES

An anticode C, over a space V, with diameter D is called maximal if for
each u # V"C there exists a codeword c # C such that the distance between
u and c is greater than D. In other words, any addition of a word to C will
destroy the maximum distance. Note, that type I anticodes when defined
for n>2k are also maximal, as are type II anticodes when defined for
n<2k.

In this section we will assume that k�2D if n�2k.

Definition 1. Let C be a diameter perfect code in Gq(n, k) with mini-
mal distance D+1. For each X # C we define the following set,

1(X )=q [0(A) | X # A, A # AD],

where AD is the set of all the optimal anticodes of diameter D in Gq(n, k),
which are all of either type I or all of type II.

Note that for n{2k, the set AD is unique, while for the case of n=2k
there are two sets, A I

D and AII
D which are sets of anticodes of type I and

II, respectively.

Theorem 12. For all X # C, 1(X) is a maximal anticode in Gq(n, f (k)).
where

f (k)={k&D,
k+D,

n�2k, k�2D
n�2k.

In addition,

0(1(X ))=X,

and 1(X) is of the opposite type of the anticodes in the set AD which created it.
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Proof. If n�2k the anticodes in AD are of type II and for all X # C,

1(X )={W # _V
t & } W�X= ,

where t=k&D= f (k). This is exactly a maximal anticode of type I in
Gq(n, f (k)), i.e., a t$-intersecting family in Gq(n, k$), with k$=t=k&D and
t$=2t&k=k&2D. It is also obvious that 0(1(X ))=X. The case where
n�2k is handled similarly. K

In the next theorem we use the following result from [1].

Theorem 13. C is a D-diameter perfect code in Gq(n, k) with minimum
distance D+1 if and only if each optimal anticode, with diameter D, in
Gq(n, k) contains a codeword.

Theorem 14. The set 1=q [1(X)]X # C is a partition of Gq(n, f (k)) into
maximal anticodes.

Proof. We first want to prove that if 1(X1), 1(X2) # 1, 1(X1){1(X2),
then 1(X1) & 1(X2)=<. Let us assume the contrary, that is, that there
exist 1(X1), 1(X2) # 1, 1(X1){1(X2) such that 1(X1) & 1(X2){<.

Let 0(A) # 1(X1) & 1(X2), then X1 # A and also X2 # A. Since A is of
diameter D, the distance between X1 and X2 is at most D which contradicts
the minimum distance of the the code C.

To finish the proof, we also have to show that

.
X # C

1(X)=_ V
f (k)& .

If Y # [ V
f (k)], then Y=0(A) and hence A is an optimal anticode in

Gq(n, k) with diameter D. By Theorem 13, the code C is diameter perfect
in Gq(n, k) with minimal distance D+1 if and only if each optimal
anticode in Gq(n, k) with diameter D contains a codeword. Therefore, there
exists a codeword X # C such that X # A, and then Y=0(A) # 1(X) as
required.
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