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On the Labeling Problem of Permutation Group
Codes Under the Infinity Metric
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Abstract—We consider codes over permutations under the in-
finity norm. Given such a code, we show that a simple relabeling
operation, which produces an isomorphic code, may drastically
change the minimal distance of the code. Thus, we may choose a
code structure for efficient encoding procedures, and then optimize
the code’s minimal distance via relabeling. To establish that the re-
labeling problem is hard and is of interest, we formally define it
and show that all codes may be relabeled to get a minimal distance
at most 2. On the other hand, the decision problem of whether a
codemay be relabeled to distance 2 ormore is shown to be NP-com-
plete, and calculating the best achievableminimal distance after re-
labeling is proved to be hard to approximate up to a factor of 2. We
then consider general bounds on the relabeling problem.We specif-
ically construct the optimal relabeling for transitive cyclic groups.
We conclude with the main result—a general probabilistic bound,
which we then use to show both the group and the dihe-
dral group on elements may be relabeled to a minimal distance
of .

Index Terms—Error-correcting codes, group codes, permuta-
tions, rank modulation.

I. INTRODUCTION

C ODES over permutations have a long history, starting
with the early papers of Slepian [38] (later extended in

[2]), in which permutations were used to digitize vectors from
a time-discrete memoryless Gaussian source, and Chadwick
and Kurz [8], in which permutations were used in the context
of signal detection over channels with non-Gaussian noise
(especially impulse noise). Further early studies include works
such as [2]–[4], [7], [9], and [12].
The use of codes over permutations has regained interest re-

cently due to applications in power-line communications (for
example, see, [40]), and rank modulation for flash memories
[17] as well as for phase-change memories [31]. In the latter
two applications, a group of cells (either flash or phase-change
memory cells) is used to store information by means of ranking
the cells according to charge level in the former, or resistance
in the latter. Thus, the stored information is a permutation of

.
To be able to define an error-correcting code over permuta-

tions, a metric needs to be selected. There exists a wide variety
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of metrics over permutations to choose from (see the survey
[11]). In this study, we shall be interested in the -metric,
codes over which have already been studied before: Counting
problems concerning sets of permutations with bounded pair-
wise distance properties under the -metric were studied in
[20], [21], [25], [32], and [37]. Error-correcting codes under this
metric (sometimes also called permutation arrays) may be found
in [5], [22], [26], [36], and [39]. The motivation behind some of
these works is a limited-magnitude error model. Following the
convention of [39], we shall call such codes limited-magnitude
rank-modulation codes (LMRM codes).
A similar error model for flash memory was considered in [6]

(though not over permutations), while a different error-model
(charge-constrained errors for rank modulation) was studied in
[1], [18], and [28]. Codes over permutations have been studied
in the past under different metrics [3], [4], [8], [10], [13], [15],
[40]. We also mention a generalization of the rank modulation
schemewhich uses partial permutations studied in [14] and [33].
A code over permutations, being a subset of the symmetric

group , may happen to be a subgroup, in which case we call it
a group code. Group theory offers a rich structure to be exploited
when constructing and analyzing group codes, in an analogy to
the case of linear codes over vector spaces. Hence, throughout
this paper, we focus on LMRM group codes.
If and are conjugate subgroups of the symmetric group,

then from a group-theoretic point of view, they are almost
the same algebraic object, and they share many properties.
However, from a coding point of view, these two codes can
possess vastly different minimal distance, which is one of the
most important properties of a code. For example, consider
the following two subgroups of , and

, where is the identity permutation and the
rest of the permutations are given in a cycle notation. The
subgroups and are conjugate but the minimal distance of
and is and 1, respectively, which are the highest and

the lowest possible minimal distances in the -metric.
Hence, we conclude that the minimal distance of a code de-

pends crucially on the specific conjugate subgroup. Thus, while
a certain group code might be chosen due to its group-theoretic
structure (perhaps allowing simple encoding or even simple de-
coding), we may choose to use an isomorphic conjugate of the
group, having the same group-theoretic structure, but with a
higher minimal distance. We refer to the problem of finding the
optimal minimal distance among all conjugate groups (sets) of
a certain group (set) as the labeling problem.
Apart from introducing and motivating the labeling problem,

we show that this algorithmic problem is hard. However, we
are able to show the existence of a labeling with high minimal
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distance for a variety of codes, based on the size of the code and
the number of cycles in certain permutations derived from the
code itself.
The rest of this paper is organized as follows. In Section II, we

define the notation, introduce the error model with the associ-
ated -metric, as well as formally define the labeling problem.
We proceed in Section III to introduce two algorithmic problems
related to the labeling problem, and we show their hardness. In
Section IV, we give some labeling results on ordinary groups
and we present our main result of the paper, which gives general
labeling results for arbitrary codes based on a probabilistic ar-
gument. In addition, we give a few corollaries by applying this
result to some well-known groups. We conclude in Section V
with a summary of the results and short concluding remarks.

II. DEFINITIONS AND NOTATION

For any , , , let denote the set
, where we also denote by the set .

Given any we denote by the set of all permutations
over the set .
We will mostly use the cycle notation for permutations

, where denotes the permuta-
tion mapping for . We shall
occasionally use the vector notation whereby a permutation

denotes the mapping , for all
. Given two permutations , , the product is a

permutation mapping for all .
A code, is a subset . Note that sometimes will

also be a subgroup of , in which case we shall refer to as
a group code. For a code and a permutation , we call
the code a conjugate of .
We shall describe the motivating error model using rank-

modulation for flash (as in [39]), though it is the same as for
phase-change memory [31], and for pulse-amplitude modula-
tion with additive white Gaussian noise mentioned in [22]. Con-
sider flash memory cells which we name . The
charge level of each cell is denoted by for all .
In the rank-modulation scheme defined in [17], the information
is stored by the permutation induced by the cells’ charge levels
in the following way: The induced permutation (in vector nota-
tion) is iff for all .
Having stored a permutation in flash cells, a corrupted ver-

sion of it may be read due to any of a variety of error sources
(see [29] and [30]). To model a measure of the corruption in the
stored permutations, one can use any of the well-known met-
rics over (see [11]). Given a metric over , defined by a
distance function , an error-correcting
code is a subset of with lower bounded distance between dis-
tinct members.
In [18], the Kendall- metric was used, where the distance

between two permutations is the number of adjacent transpo-
sitions required to transform one into the other. This metric is
used when we can bound the total difference in charge levels.
In this study, we consider a different type of error—a lim-

ited-magnitude error. Suppose a permutation was
stored by setting the charge levels of flash memory cells to

. We say a single error of limited-magnitude

has occurred in the th cell if the corrupted charge level, ,
obeys . The magnitude depends on the voltage
distribution when reading after programming a target charge
level (see, for example, the distributions in flash memory in
[30, Fig. 9.2, p. 200] and [29, Fig. 14.18, p. 420], as well as
the phase-change memory equivalent in [31, Fig. 4]). The lim-
ited-magnitude error model has also been used for coding in the
context of flash memory (not necessarily over permutations) in
[6], [19], [22]–[24], [34], and [39].
In general, we say errors of limited-magnitude have

occurred if the corrupted charge levels of all the cells,
, obey

Denote by the permutation induced by the cell charge
levels under the rank-modulation scheme. Under
the plausible assumption that distinct charge levels are not
arbitrarily close (due to resolution constraints and quantization
at the reading mechanism), i.e., for some positive
constant for all , an error of limited-magnitude
implies a constant such that

Loosely speaking, an error of limited magnitude cannot change
the rank of the cell (which is simply ) by or more
positions.
We, therefore, find it suitable to use the -metric over

defined by the distance function

for all , . Since this will be the distance measure used
throughout the paper, we will usually omit the subscript.

Definition 1: An LMRM-code with parameters is a
subset of cardinality , such that for all
, , . (We will sometimes omit the parameter .)
We note that unlike the charge-constrained rank-modulation

codes of [18], in which the codeword is stored in the permutation
induced by the charge levels of the cells, here the codeword is
stored in the inverse of the permutation.
Permutation codes under the -metric have been studied

before in [22] and [39]. The size of spheres in this metric has
been studied in [20] and [32], and the size of optimal anticodes
in [35].
For a code , we define its minimal distance and denote it by
as

A labeling function is a permutation . A relabeling of a
code by a labeling is defined as the set . We say
that the code has minimal distance with a labeling function
when



TAMO AND SCHWARTZ: ON THE LABELING PROBLEM OF PERMUTATION GROUP CODES UNDER THE INFINITY METRIC 6597

It is well known (see [11]) that the -metric over is only
right invariant and not left invariant, i.e., for any , , ,

, and usually , thus
we would expect that in many cases . There-
fore, the questions of which labeling permutation leads to the
optimal minimal distance, and what is the optimal minimal dis-
tance, rise naturally in the context of error-correcting codes over
permutations under the infinity metric. Note that is called a
labeling function because for a permutation in cycle notation

, we get

The labeled permutation has the same cycle structure as
but the elements within each cycle are relabeled by .
By virtue of the right invariance of the -metric, we shall

assume throughout the paper that any code contains
the identity permutation, since right cosets of preserve the
distances between codewords, and one of the cosets contains
the identity. Furthermore

where is the identity element of , and where the distance
from the identity shall be called the weight of the permutation.
This makes it easier to calculate the minimal distance of a group
code since simply goes over all the codewords.
More specifically, we will explore the case where is a sub-

group of and ask which conjugate group of has the largest
minimal distance. We denote by the min-
imal (maximal) achievable minimal distance among all the con-
jugates of a code .

III. LABELING PROBLEM IS HARD TO APPROXIMATE

In this section, we define two algorithmic problems regarding
the labeling of codes and show that they are hard to approximate.
We shall begin by showing that for any code , ,
which means that the minimal distance of a code depends cru-
cially on its labeling. We then continue by showing the deci-
sion problem of whether is NP-complete, while
finding out is hard to approximate.
Recall the conjugacy relation over : Two permutations

are said to be conjugate if there exists
such that . Conjugacy is an equivalence relation,
and its equivalence classes are called conjugacy classes. Let

be the set of conjugacy classes of . It
is known that two permutations have the same cycle structure
if and only if they share the same conjugacy class. Denote by

the ball of radius centered at the identity

The following lemma will help us show that any code has a
“bad” labeling, i.e., a labeling with minimal distance 1 or 2.

Lemma 2: For any , there is a permutation composed
of a single -cycle, i.e., , such that

for all .
Proof: The proof is by induction. For , 2, 3, all

-cycles in satisfy the claim. We assume the claim holds for

, and prove it also holds for . By the induction hypothesis
there is that satisfies the claim.
Without loss of generality (w.l.o.g.), we can assume that

, , and ; otherwise would satisfy
these conditions. Set and the permutation

satisfies the claim.

Corollary 3: Let be any conjugacy class of , then

Proof: Every conjugacy class of is uniquely defined
by the set of its cycles’ lengths. Let be the
cycles’ lengths of the permutations in , where .
By Lemma 2, we conclude that there exists some such
that

where for each , the set
and the cycle satisfies Lemma 2. One can
easily check that , thus .

Now we are ready to prove that any code has a “bad”
labeling.

Theorem 4: For any code , , there exists
a labeling of the elements such that the minimum distance is
at most 2, i.e., there exists such that .
Moreover, has a labeling with minimal distance 1 if and only if
the set contains an involution (a permutation
of order 2).

Proof: Let , , be a permutation whose cycles’
lengths are and where

By Corollary 3, there exists with the same cycle
structure as . Let be the permutation that conjugates
to , i.e., . Therefore

We note that the only permutations of weight 1 are involutions
in , and that any involution in may be easily relabeled to
be of weight 1. Hence, has a labeling with minimal distance 1
if and only if the set contains an involution.

After proving that the worst labeling satisfies
for all , we turn to consider the best labeling. We
show that the algorithmic decision problem of determining
whether a certain code has or is
NP-complete.
2-Distance Problem:
1) INPUT: A subset of permutations given as a list
of permutations, each given in vector notation.

2) OUTPUT: The correct Yes or No answer to the question
“Does have a labeling that leads to a minimal distance at
least 2, i.e., is ? ”
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We start with a few definitions. For a code , define its
associated set of involutions as

For any , we define a subset of edges, , of the
complete graph on vertices, , where the vertices are con-
veniently called , as

Example 5: Let us consider the code

We then have

Thus, by definition we get

and if we take , then

i.e., the edge connecting 1 and 3, and the edge connecting 2 and
4, in .

Recall that a Hamiltonian path in an undirected graph is
a path which visits each vertex exactly once. The following
theorem shows an equivalence between the property of a code
having a labeling with minimal distance at least 2 and the exis-
tence of a certain Hamiltonian path in the complete graph .

Theorem 6: Let be a code, then if and
only if there exists a Hamiltonian path in which does not
include all the edges , for any .

Proof: Recall that and
note that any permutation which contains a cycle of length 3 or
more is at distance at least 2 from the identity. Hence, we only
have to make sure the set of involutions, , has distance at
least 2 from the identity.
If such a Hamiltonian path, , exists in , then

use this path as the labeling permutation and label the element
as , i.e., the labeling permutation satisfies

for all . For any , we know that there exists some
which does not belong to the Hamiltonian path in

, and therefore, . From the definition of
, we get that , and so .

For the other direction, let be a labeling such
that . We now consider the Hamiltonian path

in . By our choice of , for any
, there exists such that and

. Hence, the edge does not belong to the
constructed Hamiltonian path in .

By the last theorem, we conclude that any algorithm that finds
a labeling of with minimal distance at least 2 actually finds a
Hamiltonian path in which does not include all the edges

, for any . We are now able to show that the
2-DISTANCE problem is NP-complete.

Theorem 7: The 2-DISTANCE problem is NP-complete.
Proof: First, we show that 2-DISTANCE is in NP. For any

given verifier, , which is a labeling function, we compute
the distance between and all the elements of . Note that

and constructing may be easily done in poly-
nomial time. Thus, the question can be verified in polynomial
time.
In order to verify the completeness, we shall reduce the

HAMILTONIAN-PATH problem (see [16]) to our problem. Let
be a graph on vertices (given as an adjacency

matrix) in which we want to decide whether a Hamiltonian path
exists. Define the code

where is the permutation that fixes everything in place ex-
cept commuting the elements and . Obviously, we can con-
struct from in polynomial time. We then run the 2-DIS-
TANCE algorithm on and return its answer.
We observe that

If is a Hamiltonian path in , then it is also
a Hamiltonian path in not containing all of , for any

. This is true because only contains edges that
are not in .
For the other direction, if there is a Hamiltonian path in

which does not include all the edges of for any ,
then, in particular, this path does not include all of , ,

. Since for any such , , and
, this path is also a Hamiltonian path in .

We now define a harder algorithmic question and deduce by
Theorem 7 that this problem is hard to approximate.
Optimal-Distance Problem:
1) INPUT: A subset of permutations given in vector
notation.

2) OUTPUT: The integer .
For a constant , we say the problem may be -approxi-

mated if there exists an efficient algorithm that for any input
computes which satisfies

Corollary 8: For any constant , the OPTIMAL-
DISTANCE problem cannot be -approximated unless
.
Proof: Assume there exists an efficient algorithm com-

puting which is an -approximation of . If
, then and so . If, however,
, then . Thus, given such an efficient

algorithm exists, we can decide whether , i.e., ef-
ficiently solve the 2-DISTANCE problem. By Theorem 7 we
know that the 2-DISTANCE problem is NP-complete, and so

.
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IV. CONSTRUCTIONS AND BOUNDS

In the previous section, we have shown that the 2-DIS-
TANCE and OPTIMAL-DISTANCE problems are hard. We
are, therefore, motivated to focus on solving and bounding the
latter problem for specific families of codes, and in particular,
codes that form a subgroup of the symmetric group . The
rich structure offered by such codes makes them easier to
analyze, in much the same way as linear codes in vector space.
Furthermore, knowing good labelings for certain groups is of
great interest since one can use them as building blocks when
constructing larger codes (see, for example, the direct and
semi-direct product constructions in [39], or the first recursive
construction of [22]).

A. Optimal Labeling for Transitive Cyclic Groups

The most simple basic groups one can think of are transitive
cyclic groups. Recall that for a cyclic group , there is an ele-
ment such that is generated by the powers of , i.e.,

. We also recall that a group acting on
is said to be transitive if for every , there exists
such that . The following theorem gives an exact op-
timal labeling for transitive cyclic groups over the set .

Theorem 9: Let be a transitive cyclic group over the
set , then the optimal minimal distance for is

Proof: Let be a generator1 of
, and let be an achievable minimal distance, i.e., there is a
labeling such that . Denote , then

is a generator of .
Define

From the minimal distance of , we know that for any ,
, . Hence, there is at least one pair

such that . We note that

On the other hand, is cyclic and transitive and so is , so
for any pair there is exactly one such that

. It follows that

Solving the inequality and remembering that is an integer, we
get

In order to show the upper bound is achievable, conveniently
denote and define the sets

1A single-cycle generator must exist since is transitive.

We define the following labeling :
1) First set for all .
2) Then set for all .
3) Finally set for all , where is chosen
arbitrarily from the left-over indices.

We will show that for any , .
Note that it is enough to show the claim for since
if then by the right invariant property

.
Let , and note that

However, since is an integer, we get that

Thus, let be the smallest integer such that

Hence

(1)

From labeling rule 2, we get that

and from labeling rule 1

and so

(2)

where (2) follows from (1).



6600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 10, OCTOBER 2012

Since the labeling of indices in is arbitrary, we actually
have different good labelings resulting from the the-
orem.

Example 10: Applying Theorem 9 for the case we
get that , and the optimal minimal distance is

. Moreover, such a labeling is ,
, , , , , and one of the cycles

that generates the cyclic group of minimal distance 7 is

B. Neighboring-Sets Method

In this section, we present a general method that we call the
neighboring-sets method. With this method, lower and upper
bounds on may be obtained provided certain neigh-
boring sets of indices exist. We shall first describe the general
method, and then apply it, using further probabilistic arguments,
to show strong bounds on where is the
affine general linear group of order , as well as ,
where is the dihedral group of order .
We start by recalling the definitions of and and

dispensing with small parameters, for which we can give exact
bounds.

Definition 11: For , the dihedral group of order ,
denoted is the group generated by the two permutations

The group contains permutations and is the group of
symmetries of a regular polygon with sides, containing both
rotations and reflections.

Example 12: For

We refer to the labeling of described in the definition
above as the natural labeling of .

Definition 13: Let be a prime; then is defined
by the subgroup of permutations that acts on the set
and is generated by the permutations and
, where all calculations are over and is a primitive

element in (a generator of the multiplicative group of
).

Throughout we shall consider only for . Like
before, we refer to the natural labeling of as the la-
beling derived from the permutations and described pre-
viously. For example, the natural labeling of is the
group generated by the permutations (in cycle notation)

and . The following theorem gives
us the minimal distance of the natural labeling of .

Theorem 14: For any prime , with the natural
labeling has minimal distance .

Proof: Because is a group and the metric is right
invariant it suffices to check only the distances from the identity
permutation. Let be the permutation for some

. If , then .
Otherwise, . Thus, in any
case, .
Let be an arbitrary permutation of the kind

where . Both of the permutations
and represent lines in the affine plane with dif-

ferent slopes, and so there exists such that
. Hence, and

then , which concludes the proof.

The next theorem shows that the natural labeling is optimal
for any prime .

Theorem 15: For any prime

Proof: Let be the set of involutions of . It is easy
to verify that any permutation is of the form

for some , and so . We note also
that for any , , there is exactly one involution

such that (finding is by solving the equation
).

Assume that we have a labeling of with minimal
distance more than the natural minimal distance. In particular,
with this labeling, every involution has minimal distance at least

from the identity permutation. Let

Now, for any , there is at least one unordered pair
such that . It follows that

Solving the inequality, we get .

We can get a very similar result (which we omit) regarding
the distance of the natural labeling of the dihedral group ,
showing it to be approximately .
It is tempting to assume that for large and we can get

labelings for and with normalized distance tending
to 1, by virtue of their size alone: and

, both vanishing in comparison to the size of and ,
respectively. However, a simple example of a code

dispels this thought since , ,
and for any we have , so relabeling does not
change the code’s distance. Thus, we turn to describe the neigh-
boring-sets method which will attain better results for
and .

Definition 16: Let be any set of permutations acting
on . Two disjoint subsets , are called -neigh-
boring sets if for any , , the following holds:
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We define to be the smallest integer ,
where and are -neighboring sets. If there are no such sets
then we define .
First we show that if is a group then, is closely related

to its optimal minimal distance.

Theorem 17: Let be a group that acts on with
, then

Moreover, if , then also

Proof: Since , there exist -neighboring sets
, such that . Let the labeling
function be such that , and

. It is trivial to check that has minimal
distance .
For the other inequality, assume that the labeling of gives

the optimal minimal distance, . It
follows that , so

, and , are two disjoint sets. We
will show that and are -neighboring sets.
For any , if such exists at

all, and for any , , we have .
However, and so necessarily

. Thus, and are -neighboring sets. Hence,
, and the result follows.

It is pointed out in the definition that some groups
might have , e.g., . The following the-
orem shows that for any prime , is finite
while also showing a lower bound.

Theorem 18: If , 5, then . For any
prime

For primes , we also have

Proof: We first start with the lower bounds. It is well
known that is 2-transitive, i.e., for any ,

, , , there exists
such that . If and and
are -neighboring sets then, w.l.o.g., we can assume

that . Hence, there exists , , such
that which contradicts the fact that and are

-neighboring sets. As a consequence, we also get that
.

The second lower bound is based on a counting argument.
contains a permutation composed of one cycle of

length . For any , there exists at least one
such that . On the other hand,

for any , there exists only one
such that . Thus

(3)

and the result follows because the minimum of
given by (3) is .

For the upper bound, we will show that there are
-neighboring sets , of sizes

and , respectively, and thus . We note
that and of the appropriate sizes are neighboring sets if and
only if for all . We shall, therefore, try to bound
the number of such “bad” subsets . Assume ,

, and , . Then, iff is
a union of cycles of . We define a polynomial which is related
to the cycle-index polynomial of as

where is the number of cycles of of length . It
follows that the number of “bad” sets for is the coeffi-
cient of in . Summing over all permutations

except the identity permutation will upper bound
the number of such “bad” sets in .
The group is a disjoint union (except for the identity)

of groups which are the cyclic group of order generated
by , and cyclic groups generated by a
permutation of the form . Since, in a
cyclic group of order , for each there are elements of
order , where is Euler’s totient function, we can define the
polynomial and readily verify that

We shall now upper bound the coefficient of
in

where the upper bound is derived by upper bounding ,
upper bounding the central binomial coefficient using [27], and
taking at most summands.
On the other hand, the number of subsets of of size

is exactly . One can easily verify that

for all primes . Thus, there are sets such that
, as required.

Example 19: Let . By Theorem 18, we have
the lower bound , and indeed the
sets , are -neigh-
boring sets. Furthermore, by Theorem 17, we get that

. However,
by Theorem 15, we know that .
The following theorem is our main result of this section. It

gives a generic labeling result for a code over the set based
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solely on the size of the code and the number of cycles in the
set of permutations .

Theorem 20: Let be a code. If there exist , ,
, and , such that

(4)

where is the number of cycles in the permutation , then
there exists a labeling such that

Proof: We use a probabilistic argument to show such a
labeling exists. We partition the set into three disjoint sets,
, , and , according the probabilities ,

, and , where elements are placed
independently.
Assume first that is a single cycle, i.e.,

. We define the events

for each , and where the indices are taken modulo
.Where it is clear from context, we shall write for short. We
also define the event to be that and are -neighboring
sets.
We would like to evaluate the probability that and
are not -neighboring sets, i.e., the probability

. It is easy to calculate that

Furthermore, for all , we denote

We find the following recursion, for all :

In addition

It follows that for all

It is easily seen that for all , , and so for
all

Furthermore, since

Combining the above, we get that

since for all .
Let be a general permutation, with cycles’ lengths

, and ; then the probability that and
are not -neighboring sets is

Let , where is
the indicator random variable for the event . By the
union bound

where was upper bounded using Hoeffding’s
inequality.
Therefore, with positive probability neither of these events

occur, i.e., there is a labeling for such that for any ,
, and are -neighboring sets and

, and the result follows.

Note that when forms a subgroup of , the summation in
(4) is done only over the elements of . Theorem 20 easily
gives us achievable-labeling results for any subgroup of only
by knowing the number of cycles in each of its elements.
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We say that is a fixed point of a permutation
if . The minimal degree of a subgroup is
the minimum number of nonfixed points among the nonidentity
permutations in . The following corollary connects the min-
imal degree of a group and an achievable distance by applying
Theorem 20.

Corollary 21: Let be a subgroup of with minimal degree
, such that there exist , , satisfying

then has a labeling with

Proof: If has minimal degree , then the number of cy-
cles of any , , is at most and the claim follows
by Theorem 20.

We now proceed to show strong bounds on
and .

Theorem 22: For , a large enough prime

Proof: For the upper bound, we simply note that a transi-
tive cyclic group of order is a subgroup of , and then
use Theorem 9. For the lower bound, we recall that
is sharply 2-transitive; hence, its minimal degree is . By
Corollary 21

For and , we get

We note that for large enough, . It follows that

Theorem 23: For the dihedral group, ,

Proof: For the upper bound, again we note that a transitive
cyclic group of order is a subgroup of and then use The-
orem 9. For the lower bound, we know that , and that

has minimal degree (it is for even , and
for odd ). We use Corollary 21 with

and get

It is easy to verify that for all . Thus

Wewould like to note that at first glance, all the codes
discussed so far have size polynomial in . This is vanishingly
small compared to . However, these codes may be
used as building blocks in constructions such as the first recur-
sive construction of [22], or Construction 2 of [39], to produce
codes of size exponential in , and improved minimal distance
compared with a trivial use of the original constructions.

Example 24: Let be a constant, and consider a tran-
sitive cyclic group of order , . For simplicity of pre-
sentation, assume is even. Without relabeling, using the cus-
tomary generator , its minimal distance is .
Let be some integer such that . By using Con-

struction 2 of [39] or the first recursive construction of [22],
we can get a code of length , size , and minimal distance

.
However, if we relabel the component cyclic codes according

to Theorem 9, we can get the same code of length , size ,
but with minimal distance

If we compare this with the best infinite family of codes from
[39], then the codes of Construction 1 of [39] with the same
minimum distance have size . Thus, the size
of the codes of this example exceed that of [39] for all ,
not a power of 2.

V. SUMMARY

In this paper, we examined the relabeling of permutation
codes under the infinity metric. While relabeling preserves the
code structure, producing an isomorphic code, it may drasti-
cally reduce or increase the relabeled code’s minimal distance.
We formally defined the relabeling problem and showed

that all codes may be relabeled to get a minimal distance of
at most 2. Deciding whether one can relabel a given code
to achieve minimal distance 2 or more was shown to be an
NP-complete problem. In addition, calculating the best minimal
distance achievable after relabeling was shown to be hard to
approximate.
We then turned to bounding the best achievable minimal dis-

tance after relabeling for certain groups, and in particular, tran-
sitive cyclic groups, dihedral groups, and affine general linear
groups. For transitive cyclic groups, an exact solution and rela-
beling was shown. For the other two families of groups, a prob-
abilistic method was used to give a general bound which turned
out to provide strong bounds on the relabeling distance.
Finding out how the best achievable minimal distance after

relabeling depends on certain group properties, and finding
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its exact value for other well-known groups, is still an open
problem.
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