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Abstract—A generalized rewriting model is defined for flash
memory that represents stored data and permitted rewrite op-
erations by a directed graph. This model is a generalization
of previously introduced rewriting models of codes, including
floating codes, write-once memory codes, and buffer codes. This
model is used to design a new rewriting code for flash memories.
The new code, referred to as trajectory code, allows stored data
to be rewritten as many times as possible without block erasures.
It is proved that the trajectory codes are asymptotically optimal
for a wide range of scenarios. In addition, rewriting codes that
use a randomized rewriting scheme are presented that obtain
good performance with high probability for all possible rewrite
sequences.

Index Terms—Codes, flash memory, nonvolatile memory.

I. INTRODUCTION

F LASH memory typically uses discrete states to store dig-
ital information. A flash memory consists of floating-gate

cells, where a cell uses the charge it stores to represent data. The
amount of charge stored in a cell can be quantized into discrete
levels in order to represent up to bits. For , a cell is
called a single-level cell (SLC), and for , a cell is called a
multilevel cell (MLC). We call the levels of a cell: level 0, level

, level . The most common number of levels in flash
cells using current technology is [22]. Using tech-
niques such as rank modulation [17], virtual flash-memory cells
with levels may be created from ordinary flash-memory
cells.
The level of a cell can be increased by injecting a charge into

the cell, and decreased by removing charge from the cell. Flash
memories have the property that it is easy to increase a cell’s
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level, and that it is hard and very costly to decrease a cell’s level.
This follows from the fact that flash-memory cells are organized
as blocks, where every block typically has to cells. To
decrease any cell’s level, the entire block needs to be erased to
remove the charge from all the cells of the block, and then be re-
programmed. Block erasures are slow, energy consuming, and
significantly reduce the longevity of flash memories, because
every block can sustain only to erasures with guaran-
teed quality [3]. Therefore, it is highly desirable to minimize the
number of block erasures.
In general, the hardware state-transition constraints of a

memory can be described by a simple directed graph, where
the vertices represent the memory states and the directed edges
represent the feasible state transitions [5], [8]. Different edges
may have different costs [7]. Based on the constraints, an
appropriate coding scheme is needed to represent the data so
that the data can be rewritten efficiently.
There has been a significant amount of research on mem-

ories with hardware state-transition constraints, including the
work by Kuznetsov and Tsybakov on coding for defective mem-
ories [19], and [10], [12]. Other examples include write-once
memory (WOM) [23], write-unidirectional memory [24]–[26],
and write-efficient memory [1], [7]. Among them, WOM is the
most related to the flash-memory model studied in this paper.
Unlike the fixed hardware constraints, the way input data to

be stored can change its value with each rewrite depends on the
data-storage application and the used data structure. A rewriting
model captures the way data can change its value. Several spe-
cific rewriting models have been studied in the past, including
WOMcodes [4], [5], [8], [21], [23], [27], floating codes [6], [15],
[16], [20], [33], and buffer codes [2], [32]. In WOM codes, with
each rewrite, the data can change from any value to any other
value. In floating codes, variables are stored,
and every rewrite can change only one variable’s value. The
rewriting model of floating codes can be used in many appli-
cations where different data items can be updated individually,
such as the data in the tables of databases, in variable sets of
programs, and in repeatedly edited files. In buffer codes, data
items are stored in a first-in-first-out queue, and every rewrite
inserts a new data item into the queue and removes the oldest
data item. All the above rewriting models can be generalized
with a graph model we introduce in this work, which we call
the generalized rewriting model.
WOM was studied by Rivest and Shamir [23]. In a WOM, a

cell’s state can change from 0 to 1 but not from 1 to 0. Thismodel
was later generalized with more cell states in [5] and [8]. WOM
codes aim to maximize the number of times that the stored data
can be rewritten. A number of WOM code constructions have
been presented over the years, including the tabular codes and
linear codes in [23], the linear codes in [5], the codes constructed
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using projective geometries [21], and the coset codes in [4].
Results on the capacity of WOM have been presented in [8],
[11], [23], and [27]. Furthermore, error-correcting WOM codes
have been studied in [34]. In all the aforementioned works, the
rewriting model assumes no constraints on the data.
With the increasing importance of flash memories, the

flash-memory model was proposed and studied recently in [2],
[14], and [15]. The rewriting schemes include floating codes
[13]–[16] and buffer codes [2], [13]. Both types of codes use
the joint coding of multiple variables for better rewriting capa-
bility. Multiple floating codes have been presented, including
the code constructions in [15] and [16], the flash codes in [20]
and [33], and the constructions based on Gray codes in [6]. The
floating codes in [6] were optimized for the expected rewriting
performance. Several recent papers on WOM codes consider
new applications to flash codes and present improved code
constructions [18], [28]–[31].
We summarize the parameters of the main asymptotically op-

timal constructions known so far. The early works on WOM
codes consider flash-memory cells, input symbols from an al-
phabet of size , and no restriction on the input stream. Proof of
existence was given in [23], where a construction for
was provided in [5]. In a few later works [15], [16], [20], [33],
a new setting was considered, called floating codes, in which
variables, each from an alphabet of size , are stored in the flash
memory. Furthermore, each rewrite operation can change only
the content of a single variable. The constructions described in
[15] and [16] require , , or ,

, while those described in [20] and [33] require
, . A model of floating codes that assumes a

random rewrite sequence was studied in [6] and a construction
requiring , was given. Another variation, called
buffer codes, was described in [2] and [32], in which the vari-
ables store a sliding window of values. In each rewrite, a single
value is pushed into the window, and the oldest value is pushed
out of the window. The constructions of [2] and [32] require

, .
In this paper, we focus on flash memories, and our objec-

tive is to rewrite data as many times as possible between two
block erasures. Note that between two block erasures, the cell
levels can only increase due to the hardware constraints. An-
other main goal of this work is generalizing previous results by
designing rewriting codes for general data-storage applications.
We present a novel rewriting code, called the trajectory code,
which is provably asymptotically optimal (up to constant fac-
tors) for a very wide range of scenarios. The trajectory code in-
cludes WOM codes, floating codes, and buffer codes as special
cases.
We also study randomized rewriting codes and design codes

that are optimized for the expected rewriting performance in
terms of the expected number of rewrite operations the code
supports. A rewriting code is called robust if its expected
rewriting performance is asymptotically optimal (up to a factor
of ) for all rewrite sequences. We present a randomized
code construction that is robust.
Compared to existing codes, the codes in this paper not only

work for a more general rewriting model, but also provide effi-
ciently encodable and decodable asymptotically optimal perfor-

mance for a wider range of cases. Thus, this paper substantially
expands the known results on rewriting codes.
The rest of this paper is organized as follows. In Section II, we

give a formal definition of a flash memory and a specification
of the behavior of its cells. It is shown that the rewriting models
available in the literature can be represented by a single graph
model, referred to as the generalized rewriting model. Further
definitions as well as some notation are introduced to provide
a framework for the presentation of the design of the rewriting
codes proposed in this paper. In Section III, a new rewriting
code for the generalized rewriting model, the trajectory code,
is presented and its optimality is proven. In Section IV, robust
codes optimized for expected rewriting performance are pre-
sented. Section V presents concluding remarks and topics for
further research.

II. PRELIMINARIES

Let us first introduce a mathematical model for the hardware
constraints of flash-memory cells. We shall assume throughout
the paper we are given flashmemory cells, each with discrete
levels representing values from . The hardware constraints
are captured in the following flash-memory model.
Definition 1: The state of a flash memory with -level

cells is specified by , where
is the level of the th cell. The cells can change from state

to state , ,
if and only if for all . In that case, we say
that is above .
We shall distinguish between the state of the memory and

the stored data in the memory. A user may provide an input
data value to be stored in the memory. At some later time, the
user may provide a different data value to be stored, replacing
the older value. This will be called a rewrite operation. The
rewriting model defined below specifies constraints on the way
input data values change during rewrite operations. Such con-
straints may be the result of certain applications or data struc-
tures employed by the user.
Definition 2: The stored data and the possible rewrite opera-

tions are represented by a simple directed graph

The vertices represent all the values that the data can take.
There is a directed edge from to (where

) iff a rewrite may change the stored data from value to
value . The graph is called the data graph, and its number
of vertices—which corresponds to the data’s alphabet size—is
denoted by

Throughout this paper, we assume that the data graph is
strongly connected, i.e., for any , there is a directed
path from to in . A sequence of rewrite values is defined
by such that the rewrite changes the stored
data from to . It is assumed the initial stored value is
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Fig. 1. (a) Complete data graph for a WOM code. (b) Hypercube data graph for a floating code. (c) De Bruijn data graph for a buffer code.

, and that is a directed edge in the data
graph .
Data graphs for different rewriting models are shown in

Fig. 1. In the first example shown in Fig. 1, we see the data
graph for a WOM code. The example shows data that have
an alphabet of size 6. Since a rewrite in a WOM code can
change the data from any value to any other value, the graph
is complete. In Fig. 1(b), we see the data graph for a floating
code. Here, variables of alphabet size are stored.
Since in a floating code every rewrite can change exactly one
variable’s value, the graph is a generalized hypercube of regular
degree (for both out-degree and in-degree) in

dimensions. Finally, in Fig. 1(c), we see the data graph
for a buffer code. In the example, variables of alphabet
size are stored in a queue. Since in a buffer code every
rewrite inserts a new variable into the queue and removes the
oldest variable from the queue, the graph is a De Bruijn graph
of degree .
With more data storage applications and data structures, the

data graph can vary even further to capture a wide variety of
data storage applications and data structures. This motivates us
to study rewriting codes for the generalized rewriting model.
A rewriting code for flash memories can be formally defined

as follows.
Definition 3: A rewriting code for flash memory with
-level cells and a data graph has a decoding

function and an update function . The decoding function

associates a cell state with a vertex . The
update function, representing a rewrite operation, and given by

specifies that for a current state and a new data value
, the rewriting code changes the cell state to .

The following three properties must be satisfied:
1) ;
2) the cell-state vector is above ;
3) .
Note that if , we may set , which corre-
sponds to the case where we do not need to change the stored
data. Throughout the paper, we do not consider such a case as a
rewrite operation.
Given a rewriting code , we denote by the maximal

number of rewrite operations that guarantees to support for
all rewrite sequences. Thus, is a worst case performance
measure of the code. The code is said to be optimal if is
maximized. In addition to this definition, if a probabilistic model
for rewrite sequences is considered, the expected rewriting per-
formance can be defined accordingly.

III. TRAJECTORY CODES

We use the flash-memory model of Definition 1 and the gen-
eralized rewriting model of Definition 2 in the rest of this paper.
We first present the construction of a novel code, referred to as
trajectory code, and then show that this code’s performance is
asymptotically optimal.

A. Outline of the Constructions

Let denote the number of -level flash memory cells. As a
first step, the cells are partitioned into subsets, called
registers, of sizes , where
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Let be the data graph, and denote by the max-
imal out-degree of the graph. We note that the out-degree of
vertices may vary from 1 to .
The proposed encoding method uses the following basic

scheme: we start by using register , called the anchor, to
record the value of the initial data .
For the next rewrite operations, we use a differential

scheme: denote by the next values of the
rewritten data. In the rewrite, , we store in register
the identity of the edge . We do not require

a unique label for all edges globally, but rather require that
locally, for each vertex in , its outgoing edges have unique
labels from .
Intuitively, the first rewrite operations are achieved by en-

coding the trajectory taken by the input sequence starting with
the anchor data. After such rewrite operations, we repeat the
process by rewriting the next input from in the anchor , and
then continuing with edge labels in .
Let us assume a sequence of rewrite operations have been

stored thus far. To decode the last stored value, all we need
to know is . This is easily achieved by using

more cells (not specified in the previous
registers), where is the total number of rewrite operations that
we would like to guarantee. For these cells, we
employ a simple encoding scheme: in every rewrite operation,
we arbitrarily choose one of those cells and raise its level by
one. Thus, the sum of these cells’ charge levels equals .
The decoding process takes the value of the anchor and

then follows edges that are read consecu-
tively from . Notice that this scheme is appealing in
cases where themaximum out-degree of is significantly lower
than the size of the state space .
Note that each register can be seen as a smaller rewriting

code whose data graph is a complete graph of either vertices
(for ) or vertices (for ). We let if is
a complete graph, and describe how to set when is not a
complete graph in Section III-C. The encoding used by each
register is described in the next section.

B. Analysis for a Complete Data Graph

We now present an efficiently encodable and decodable code
that enables us to store and rewrite symbols from an input al-
phabet of size , when is a complete graph. The in-
formation is stored in -level flash-memory cells.
We first state a scheme that allows approximately

rewrite operations in the case in which . We then
extend it to hold for general and . We present the quality
of our code constructions in terms of the number of possible
rewrite operations using the asymptotic notation: , ,

, , and , where tends to infinity.
We shall now describe a code for small values of . This code

is essentially the one presented in [23].
Construction A: Let . This construction produces

an efficiently encodable and decodable rewriting code for a
complete data graph with states, and flash memory with
cells with levels each.
Let us first assume . Denote the cell levels by

. Denote the data alphabet by .

We first use only cell levels 0 and 1, and the data stored in the
cells is

With each rewrite, we increase the minimum number of cell
levels from 0 to 1 so that the new cell state represents the new
data. (Clearly, remains unchanged as 0.) When the code can
no longer support rewriting, we increase all cells (including )
from 0 to 1, and start using cell levels 1 and 2 to store data in
the same way as above, except that the data stored in the cells
uses the formula

This process is repeated times. The general decoding func-
tion is therefore defined as

We now extend the above code to the case of . We di-
vide the cells into groups of size (some cells
may remain unused). We first apply the code above to the first
group of cells. When that group has exhausted its rewrite ca-
pabilities, we apply the code above to the next group of cells.
The process is repeated until all groups are exhausted.
We comment, in passing, that if is odd, there is no need for

cell in our construction. This slight improvement does not
affect the asymptotics of our results.
For completeness, we describe the algorithm from [23] that

finds the cells whose levels should be increased by 1 for the case
of . In this context, . Assume that the current state
decodes to , while we want to store , . We
check whether cell can be increased by 1, i.e.,
we check whether . If so, we increase it by 1.
Otherwise, we go over all pairs of cells ,

, looking for pairs satisfying
. If we find such a pair, we increase cells and by 1.

Otherwise, we declare failure. The complexity of this algorithm
is operations.
Theorem 4: Construction A guarantees that the number of

rewrite operations of a code for -level cells and data alphabet
size is lower bounded by

for any .
Proof: First assume . When cell levels and

are used to store data (for ), by the analysis in
[23], even if only one or two cells increase their levels with each
rewrite, at least rewrite operations can be supported.
So the cells can support at least
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rewrite operations. Now let . When , it is easy
to see that . The groups of cells can guarantee

rewrite operations.
We note that the denominator in the proof of Theorem 4 can

be slightly improved using the results of [9].
We now consider the setting in which is larger than . The

rewriting code we present reduces the general case to that of
the case studied above. The majority of our analysis
addresses the case in which . We start, however,
by first considering the simple case in which .
We note that is used solely for the asymptotic analysis of
the construction. For , we observe that we cannot even
guarantee a single rewrite operation.
Construction B: Consider -level flash-memory cells, a

complete data graph of size , and a data alphabet .
Denote the cell levels by , where
is the level of the th cell. The general decoding function is

given by

where is an integer parameter.
In the th round of rewriting, we use levels to ,

for all , and with each rewrite, we represent
by its -character representation over an alphabet of size

.
The following theorem is immediate.
Theorem 5: Let be a real number. If ,

then the code of Construction B, with , guarantees
.

We now address the case . Let be the
smallest positive integer value that satisfies

Construction C: Consider -level flash-memory cells, and
a complete data graph with states. For all , let
be a symbol from an alphabet of size

We may represent any symbol as a vector of symbols
.

Partition the flash-memory cells into groups, each with
cells (some cells may remain unused). Encoding the

symbol into cells is equivalent to the encoding of each
into the corresponding group of cells. As the alphabet
size of each is at most the number of cells it is to be encoded
into, we can use Construction A to store .
Notice that for and , the aforementioned con-

struction is equivalent to Construction A.
Example 6: Consider a flash memory with cells and

levels per cell. Let , and let the data graph
be a complete graph. To illustrate Construction C, 16 cells are
partitioned into groups denoted by
and .

Let denote the value of the stored data. Let
be defined as

We store in and in using the encoding method de-
scribed in [23], which is essentially an exhaustive search for a
low-weight change in the vector. If the data change as

we get the following changes in the state of the system:

Claim 7: For , it holds that

Proof: Let . Notice that

Thus

We used the fact that to establish the inequality
used in the last step above.

Theorem 8: For , the number of rewrite
operations the code of Construction C guarantees is lower
bounded by

Proof: Using Construction C, the number of possible
rewrite operations is bounded by the possible number of
rewrite operations for each of the cell groups. By Theorem 4
and Claim 7, this is at least
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C. Analysis for a Bounded Out-Degree Data Graph

We now return to the trajectory code from Section III-A when
applied to the case of a data graph with upper bounded out-
degree . We refer to such a graph as -restricted. An example
for such a graph is the De Bruijn graph of order over an
alphabet of size in which there are vertices and the out-
degree of every vertex is . We note that the out-degree of the
vertices may vary from 1 to .
To simplify our presentation, in the theorems below, we will

again use the asymptotic notation freely; however, as opposed
to Section III-A, we will no longer state or make an attempt to
optimize the constants involved in our calculations. We assume
that , since for , Construction A can be used to
obtain optimal codes (up to constant factors). In this section,
we study the case for certain values of . We do not
address the case of larger , as its analysis, although based on
similar ideas, becomes rather tedious and overly lengthy.
Using the notation of Section III-A, to realize the trajectory

code, we need to specify as well as . We con-
sider two cases: the case in which is small compared to , and
the case in which is large.
The following construction is for the case in which is small

compared to .
Construction D: The trajectory code for -level memory

cells with a -restricted graph with vertices of size
, where

is formed using registers, where

The size of the registers is given by

and

for all .
The update function of Construction C is used to store an

“anchor” vertex in register . Each register , where
, is updated using Construction A to store the identities of the
edges taken on the path from the anchor vertex.
Recall that the anchor and the edges stored in

show how the data changes its value with rewrite operations.
That is, they show the trace of the changing data in the data
graph . Every rewrite operations change the data stored in
the register exactly once. After every rewrite operations,
the next rewrite resets the anchor’s value in , and the same
rewriting process starts again.
Suppose that the rewrite operations change the stored data

as . With the rewriting
code of Construction D, the data stored in the register
change as .

For all , the data stored in the register
change as

Here, every edge is locally labeled by the
alphabet .
Theorem 9: Construction D guarantees the construction of a

code for a memory with -level cells with

rewrite operations, where

Proof: It follows from Theorems 4 and 8 that the lower
bound on the number of rewrite operations of register is,
up to a constant factor, equal to the lower bound on , where

. Mathematically, we have

Since there are registers that are used in a round-robin
fashion, the total number of rewrite operations is lower bounded
by . Notice that in order to use Theorems 8 and 4,
we require that and . These two asser-
tions hold for our setting of parameters (we assume throughout
this section that ).
Example 10: Consider a floating code, where variables of

alphabet size are stored in -level cells. When Construc-
tion D is used to build the floating code, we get and

. So if , the code can

guarantee rewrite operations, which is asymptot-
ically optimal.
The next construction applies to the case where .
Construction E: Consider -level flash memory cells, and

a -restricted data graph , with

For the trajectory code, let

Set the size of the registers to

and

for all .
The update and decoding functions of the trajectory code

are defined as follows: use the encoding scheme specified in
Construction C to store an “anchor” in and store an “edge”
in , for all . As for the remaining details, they are
the same as Construction D.
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Theorem 11: Construction E guarantees the construction of a
code for a memory with -level cells with

rewrite operations, where

Proof: It is shown in the Appendix that for the given in-
equalities in Theorem 11, it follows that , and

. Using Theorem 8, it follows that the number
of rewrite operations supported by register satisfies the lower
bound

Similarly, for all , the number of rewrite operations
supported in is lower bounded by

Thus, as in Theorem 9, we conclude that the total number of
rewrite operations in the scheme outlined in Section III-A is
lower bounded by times the bound for each register ,
and so, .

D. Optimality of the Code Constructions

We now prove upper bounds on the number of rewrite op-
erations in general rewriting schemes, which match the lower
bounds induced by our code constructions. They show that our
code constructions are asymptotically optimal.
Theorem 12: Any rewriting code that stores symbols from

some data graph in -level flash-memory cells supports at
most

rewrite operations.
Proof: In the best case, all cells are initialized at level 0,

and every rewrite increases exactly one cell by exactly one level.
Thus, the total number of rewrite operations is bounded by

.
Corollary 13: The codes from Constructions A and D are

asymptotically optimal.
For large values of , we can improve the upper bound. First,

let denote the largest integer such that

We use the following claim.

Claim 14: Let satisfy . The following
inequality holds

Proof: First, it is easy to see that . Now, we may
use the well-known bound for all

where is the base of the natural logarithm. Let . It
follows that

Hence

Thus, it suffices to prove that

We conclude via basic computations that if

then

Theorem 15: Let . When , any rewriting
code that stores symbols from the complete data graph in
-level flash-memory cells can guarantee at most

rewrite operations.
Proof: Let us examine a state of the flash-memory cells,

currently storing a value , i.e., . Having no
constraint on the data graph, the next symbol we want to store
may be any of the symbols , where .
If we allow ourselves operations of increasing a single-cell

level of the flash-memory cells by one (perhaps operating on
the same cell more than once), we may reach at most

distinct new states. However, by our choice of , we have
. In the worst case, we need at least

such operations to realize a rewrite. Since we have a total of
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cells with levels each, the guaranteed number of rewrite
operations is upper bounded by

Corollary 16: Construction C is asymptotically optimal.
Theorem 17: Let . Any rewriting code

that stores symbols from the complete data graph in -level
flash-memory cells can guarantee at most

rewrite operations, where .
Proof: The proof follows from Theorem 15. In this case,

we note that for to be at least of size , we need
.

Corollary 18: Construction B is asymptotically optimal.
Theorem 19: Let . Let .

There exists a -restricted data graph over a vertex set of size
, such that any rewriting code that stores symbols from the
data graph in -level flash-memory cells can guarantee at
most

rewrite operations.
Proof: We start by showing that a -restricted graph with

certain properties does not allow rewriting codes that support

more than rewrite operations. We
then show that such a graph indeed exists. This will conclude
our proof.
Let be a -restricted graph whose diameter is at most

. Assuming the existence of such a graph , consider
(by contradiction) a rewriting code for the -restricted graph
that allows

rewrite operations. We use to construct a rewriting code for
a new data graph which has the same vertex set

but is a complete graph. The code will allow

rewrite operations, a contradiction to Theorem 15. This will
imply that our initial assumption regarding the possible number
of rewriting operations of the code is false.
The rewriting code (defined by the decoding function

and the update function ) is constructed by mimicking (de-
fined by the decoding function and the update function ).
We start by setting . Next, let be some state of the flash
cells. Denote . Consider a rewrite op-
eration attempting to store a new value , where .
There exists a path in of length , where , from to
, which we denote by

We now define

which simply states that to encode a new value , we follow
the updating steps dictated by on a short path from to
in the data graph .
As guarantees rewrite opera-

tion, the code for guarantees at least

rewrite operation. Here, we use the fact that .
What is left is to show the existence of a data graph of

maximum out-degree whose diameter is at most .
To obtain such a graph, one may simply take a rooted bi-directed
tree of total degree and corresponding depth .
Corollary 20: Construction E is asymptotically optimal.

IV. ROBUST REWRITING CODES

In this section, we discuss the design of rewriting codes with a
good expected performance in terms of the number of rewriting
operations.
Let denote a sequence of

rewrite values. As no more than rewrite operations
may be supported, the sequence is limited to
elements.
Let denote a rewriting code, which stores the data from an

alphabet of size in -level cells. The code can only support
a finite number of rewrite operations in the rewrite sequence .
We use to denote the number of rewrite operations in the
rewrite sequence that are supported by the code . That is, if
the code can support the rewrite operations up to
, then .
Let denote the set of all possible rewrite sequences. If we

are interested in the number of rewrite operations that a code
guarantees in the worst case, , then we can see that

In this section, we are interested in the expected number of
rewrite operations that a randomized code can support. Let
be some distribution over rewriting codes and let be a ran-
domized code (namely, a random variable) with distribution .
Let denote the expected value of a random variable . We
define the expected performance of the randomized rewriting
code to be

Our objective is to maximize , namely, to construct a distri-
bution such that for all , will allow many rewrite oper-
ations in expectation. A code whose is asymptotically
optimal is called a robust code. In this section, we will present
a code that uses a randomized rewriting scheme, which has
the property that for any constant ,
which clearly is a robust code.
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A. Code Construction

We first present our code construction, analyze its properties,
and define some useful terms.We then show that the constructed
code is robust.
For a given cell state of a

memory with -level cells, we define the cells’ weight
by

Clearly, . Let be the
decoding function of a rewriting code. The cell state represents
the data .
Construction F: For all and
, let and be parameters chosen from the set . We

define a rewriting code by its decoding function

For every rewrite, the rewrite operation that minimizes the cell
state’s weight is selected.
By default, if , then . When

rewriting the data, we take a greedy approach: For every rewrite,
minimize the increase of the cell state’s weight. (If there is a tie
between cell states of the same weight, break the tie arbitrarily.)
We note that, in general, the cost of looking for the minimal
change may be prohibitively high. However, as we shall later
see in the construction of the robust code, a careful choice of

simplifies the problem considerably.
For simplicity, we will omit the term “ ” in all com-

putations below that concern data values. For example, the ex-
pression for in the above code construction will be simply
written as

and will mean .
Definition 21: Let be a cell

state. For all , we define as

and define as

We also define the update vector of , denoted by , as

and the update diversity of as

The update diversity of a cell state is at most . If it is , it
means that when the current cell state is , no matter what the
next rewrite is, we only need to increase one cell’s level by one
to realize the rewrite. Specifically, if the next rewrite changes
the data from to , we will change from to by
increasing the cell’s level by one such that

For good rewriting performance, it is beneficial to make the up-
date diversity of cell states large.
Lemma 22: Let be a cell-state

vector. Using Construction F, the update diversity of is

Proof: For all , we have

Only the first term depends on . Hence, the update di-
versity of is

Therefore, to make the update diversity of cell states large, we
can make take as many different
values as possible. A simple solution is to let for
all .

B. Robustness

In the following, we present a rewriting code for a memory
with -level cells that uses a randomized rewriting scheme,
where .
We then determine the asymptotic performance of the code

for .
For all , we define

For , we have

We define

where is the cell’s level. For all , we have
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We consider as super cellswhose levels are
. We define the weight of the supercells

as

Construction G: For all , choose a
parameter independently and uniformly at random from .
We define a randomized rewriting code by its decoding

function

(1)

By default, if , then . When
rewriting the data, we take the same greedy approach as in
Construction F.
The code of Construction G may be seen as a rewriting code

that stores the data of alphabet size in supercells, whose
decoding function is (1). Each of the supercells has either

levels or levels.
Lemma 23: Let be a supercell state

where for all . Using Construction G,
the update vector of the supercell state is

and the update diversity of the supercell state is .
Proof: For all

and therefore we have

Therefore, if the current supercell state is
where , for

the next rewrite, we only need to increase one supercell’s level
by one (which is equivalent to increasing one flash-memory
cell’s level by one). It is also easily seen that finding the index
of the supercell to change is extremely simple. If the old value
stored is and the new value is , then we need to
increase the supercell with index where

Thus, the greedy search for the minimal change has a cost of
time.

Lemma 24: Let be a supercell state
where for . Using Construc-
tion G, if is the current supercell state, then no matter which
value the next rewrite changes the data to, the next rewrite will
only increase one supercell’s level by one, and this supercell
is uniformly randomly selected from the supercells. What is

more, the selection of this supercell is independent of the past
rewriting history (that is, independent of the supercells whose
levels were chosen to increase for the previous rewrite opera-
tions).

Proof: Let be the current supercell state, and assume
the next rewrite changes the data to . By Lemma 23, we will
realize the rewrite by increasing the supercell’s level by one
such that . Since the parameter
is uniformly randomly chosen from the set , has a uniform
random distribution over .
The same analysis holds for the previous rewrite opera-

tions. Note that increases with every rewrite. Since
are i.i.d. random variables, the selection

of the supercell for this rewrite is independent of the selection
for the previous rewrite operations.
The aforementioned lemma holds for every rewrite sequence.

We now prove that the randomized rewriting code of Construc-
tion G is robust.
Theorem 25: Let be the randomized rewriting code of

Construction G. Let be any rewrite se-
quence. For any constant , there exists a constant

such that if , then

and therefore is a robust code.
Proof: Consider bins such that the th bin can hold
balls. We use to denote the number of balls in the

bin. Note that every bin can contain at least balls
and at most balls. By Lemma 24, before any bin
is full, every rewrite throws a ball uniformly at random into one
of the bins, independently of other rewrite operations. The
rewriting process can always continue when no bin is full. Thus,
the number of rewrite operations supported by the code is at
least the number of balls thrown until one bin is full.
Suppose that balls are thrown independently

and uniformly at random into bins, and there is no limit on
the capacity of any bin. Here, we set to be for a
sufficiently large constant . For all , let denote
the number of balls thrown into the bin. Clearly

By the Chernoff bound

By the union bound, the probability that one or more of the
bins contain at least balls is upper bounded by

. We thus have .
Therefore, when balls are thrown indepen-

dently and uniformly at random into bins, with high proba-
bility, all the bins have or fewer balls. This
suffices to conclude our assertion. Notice that our proof implies
that with high probability (over ), the value of will be
large. This stronger statement implies the asserted one in which
we consider .
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V. CONCLUDING REMARKS

In this paper, we presented a flexible rewriting model that
generalizes known rewriting models, including those used by
WOM codes, floating codes, and buffer codes. We presented a
novel code construction, the trajectory code, for this general-
ized rewriting model and proved that the code is asymptotically
optimal for a wide range of parameter settings, where the per-
formance is measured by the number of rewrite operations sup-
ported by flash-memory cells in the worst case. We also studied
the expected performance of rewriting codes, and presented a
randomized robust code. It will be interesting to apply these
new coding techniques to wider constrained-memory applica-
tions, and combine rewriting codes with error correction. These
remain as topics for future research.

APPENDIX

We bring here the proof of the claim made at the beginning
of the proof of Theorem 11.

Lemma 26: In the setting of Theorem 11, we have .
Proof: We first note that

(2)

We note that for all real , we have . Since in
our setting , we have (2) become

Thus, it suffices to show that

or equivalently to show that

(3)

In our setting, and so

and . Thus, by our setting

(4)

where the last inequality was achieved by using for
again. Also, we get that .

We return to proving (3). We note that for , the function
is a strictly increasing function, and so, using (4), we

get

It now suffices to prove that the right-hand side of the equation is
at least . Simple manipulation reduces this to showing that

which always holds since for real , and
.

Lemma 27: In the setting of Theorem 11, we have
.

Proof: We have and so

and then

(5)

We note that

Remembering that for real and combining
with (5), we get
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