
6664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

Generalized Gray Codes for Local Rank Modulation
Eyal En Gad, Michael Langberg, Member, IEEE, Moshe Schwartz, Senior Member, IEEE, and

Jehoshua Bruck, Fellow, IEEE

Abstract—We consider the local rank-modulation scheme, in
which a sliding window going over a sequence of real-valued
variables induces a sequence of permutations. Local rank-modu-
lation is a generalization of the rank-modulation scheme, which
has been recently suggested as a way of storing information in
flash memory. We study gray codes for the local rank-modulation
scheme in order to simulate conventional multilevel flash cells
while retaining the benefits of rank modulation. Unlike the limited
scope of previous works, we consider code constructions for the en-
tire range of parameters including the code length, sliding-window
size, and overlap between adjacent windows. We show that the
presented codes have asymptotically optimal rate. We also provide
efficient encoding, decoding, and next-state algorithms.

Index Terms—Flash memory, gray code, local rank modulation,
permutations, rank modulation.

I. INTRODUCTION

W ITH the recent application to flash memories, the rank-
modulation scheme has gained renewed interest as ev-

ident in the recent series of papers [8], [14], [15], [21], [24].
In the conventional modulation scheme used in flash-memory
cells, the absolute charge level of each cell is quantized to one
of discrete levels, resulting in a single demodulated symbol
from an alphabet of size . In contrast, in the rank-modulation
scheme a group of flash cells comprise a single virtual cell
storing a symbol from an alphabet of size , where each symbol
is assigned a distinct configuration of relative charge levels in
the cells. Thus, there is no more need for threshold values
to distinguish between various stored symbols, which mitigates
the effects of retention in flash cells (slow charge leakage). In
addition, if we allow only a simple programming (charge-injec-
tion) mechanism called “push-to-the-top,” whereby a single cell
is driven above all others in terms of charge level (see definition
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in Section II-B), then no overprogramming can occur, a problem
which considerably slows down programming in conventional
multilevel flash cells.
Rank modulation has been studied intermittently since the

early works of Slepian [20] (later extended in [1]), in which
permutations were used to digitize vectors from a time-discrete
memoryless Gaussian source, and Chadwick and Kurz [5], in
which permutations were used in the context of signal detec-
tion over channels with non-Gaussian noise (especially impulse
noise). Other works on the subject include [1]–[4], [6], [7].More
recently, permutations were used for communicating over pow-
erlines (for example, see [23]), and for modulation schemes for
flash memory [14], [15], [21], [24].
One drawback to the rank-modulation scheme is the fact that

we need to reconstruct the permutation induced by the relative
charge levels of the participating cells. If cells are involved,
at least comparisons are needed, which might be too
high for some applications. It was therefore suggested in [8] and
[24] that only local comparisons be made, creating a sequence
of small induced permutations instead of a single all-encom-
passing permutation. This obviously restricts the number of dis-
tinct configurations, and thus, reduces the size of the resulting
alphabet as well. In the simplest case, requiring the least amount
of comparisons, the cells are located in a 1-D array and each cell
is compared with its two immediate neighbors requiring a single
comparator between every two adjacent cells [8].
Yet another drawback of the rank-modulation scheme is the

fact that distinct charge levels are required for a group of
physical flash cells. Therefore, restricted reading resolution pro-
hibits the use of large values of . However, when only local
views are considered, distinct values are required only within a
small local set of cells, thus enabling the use of large groups of
cells with local rank modulation.
An important application for rank-modulation in the context

of flash memory was described in [14]: a set of cells, over
which the rank-modulation scheme is applied, is used to sim-
ulate a single conventional multilevel flash cell with levels
corresponding to the alphabet . The simulated
cell supports an operation which raises its value by 1 modulo .
This is the only required operation in many rewriting schemes
for flash memories (see [12], [13], [25]), and it is realized in
[14] by a gray code traversing the states where, physically,
the transition between two adjacent states in the gray code is
achieved by using a single “push-to-the-top” operation.
The gray code [11] was first introduced as a sequence of dis-

tinct binary vectors of fixed length, where every adjacent pair
differs in a single coordinate. It has since been generalized to
sequences of distinct states such that for
every there exists a function in a predetermined set of
transitions such that (see [18] for an excel-
lent survey). In the context of [14], the state space consisted of
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permutations over elements, and the “push-to-the-top” oper-
ations were the allowed transitions. This operation was studied
since it is a simple programming operation which is both quick
and eliminates the overprogramming problem.We also note that
generating permutations using “push-to-the-top” operations is
of independent interest, called “nested cycling” in [19] (see also
references therein), motivated by a fast “push-to-the-top” oper-
ation (cycling) available on some computer architectures.
Other generalizations of gray codes for rank modulation in-

clude snake-in-the-box codes for rank modulation [26], as well
as gray codes for local rank modulation, which were studied in
[8].
Having considered the two extremes: full rank modulation

with a single permutation of cells, and extreme local rank
modulation with a sequence of permutations over two ele-
ments, the question of whether any middle-road solutions exist
remains open. We address this question by considering the gen-
eralized local rank-modulation scheme. In this scheme, a se-
quence of several permutations of a given size provide the local
views into the ranking of the cells. We construct gray codes for
this scheme which asymptotically achieve the maximum pos-
sible rate, and consider efficient encoding/decoding algorithms,
as well as efficient next-state computation.
The rest of the paper is organized as follows. In Section II,

we give preliminary definitions and notation. In Section III, we
present a new construction for optimal local rank modulation
for general degrees of locality. We conclude with a discussion
in Section IV.

II. DEFINITIONS AND NOTATION

We shall now proceed to introduce the notation and defini-
tions pertaining to local rank modulation and gray codes. We
will generally follow the notation introduced in [8].

A. Local Rank Modulation

Assume we have a set of flash memory cells which we
number . Let us consider a sequence of real-
valued variables, , where de-
notes the charge level measured in the th flash memory cell.
We further assume for all . The variables induce
a permutation , where denotes the set of all permu-
tations over . The permutation is
defined as

Thus, is the rank of the th cell in ascending order. This
ranking is equivalent to the permutation described in [8].
We now turn to consider a larger set of flash

memory cells. Again, we have a sequence of variables,
where denotes the measured

charge level in the th flash memory cell. We define a window
of size at position to be

where the indices are taken modulo , and also ,
and . We now define the -local rank-mod-
ulation (LRM) scheme, which we do by defining the demod-

ulation process. Let be positive integers, with
. Given a sequence of distinct real-valued variables,

, the demodulation maps to the sequence of
permutations from as follows:

(1)

Loosely speaking, we scan the variables using windows of
size positioned at multiples of and write down the permuta-
tions from induced by the local views of the sequence.
In the context of flash-memory storage devices, we shall con-

sider the variables, , to be the charge-
level readings from flash cells. The demodulated sequence
will stand for the original information which was stored in the
cells. This approach will serve as the main motivation for this

paper, as it was also for [8], [14], [15], [21], [24]. See Fig. 1 for
an example of a demodulation of a -locally rank-mod-
ulated signal.
We say a sequence of permutations over is

-LRM realizable if there exists such that ,
i.e., it is the demodulated sequence of under the -LRM
scheme. Except for the degenerate case of , not every
sequence is realizable. For example, if and is the
identity permutation (i.e., ) then for all
we have , but also , which is impossible.
We denote the set of all -LRM realizable permu-

tation sequences as . In a later part of this section,
we show that the number of states representable by an

-LRM scheme, i.e., the size of , is roughly
(this fact is also stated in [24]).

While any may be represented as a sequence
of permutations over , a more succinct representation is
possible based on the (mixed-radix) factoradic notation system
(see [16] for the earliest-known definition, and [14] for a related
use): we can represent any permutation

with a sequence of digits (note
the reversed order of indices), where , and
counts the number of entries for which are of value
lower than , i.e.,

We call the most-significant digit and the least-signifi-
cant digit. If for some , then the factoradic repre-
sentation is easily seen to be equivalent to counting the number
of cells to the right of the th cell which are with lower charge
levels.
Continuing with the succinct representation, we now contend

that due to the overlap between local views, we can represent
each of the local permutations using only the most-sig-
nificant digits in their factoradic notation. We denote this (par-
tial) representation as and call it the condensed factoradic
representation. Accordingly, we define,

and the set of all such presentations as . Thus, for
example, the configuration of Fig. 1 would be represented by

. Since throughout the rest
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Fig. 1. Demodulating a -locally rank-modulated signal.

of the paper, we shall deal with the condensed factoradic repre-
sentation only, we omit from now on the term “condensed.”
Lemma 1: For all ,

Proof: As , we have
that . For the upper bound, assumewe
fix the permutation induced by the first cells, where there
are ways of doing so. It follows that there are at most

ways of choosing , and then the same bound
on the number of ways of choosing , and continuing all
the way up to we obtain the desired bound.
When , the -LRM scheme degenerates

into a single permutation from . This was the case in most
of the previous works using permutations for modulation pur-
poses. A slightly more general case, was dis-
cussed by Ferreira et al. [9] in the context of permutation trellis
codes, where a binary codeword was translated tuple-wise into
a sequence of permutation with no overlap between the tuples.
An even more general case was defined by Wang et al. [24]
(though in a slightly different manner where indices are not
taken modulo , i.e., with no wrap-around). In [24], the se-
quence of permutations was studied under a charge-difference
constraint called bounded rank-modulation, andmostly with pa-
rameters , i.e., an overlap of one position between
adjacent windows. Finally, using the same terminology as this
paper, the case of -LRM was considered in [8].

B. Gray Codes

A gray code, , is a sequence of distinct states (codewords),
, from an ambient state space, ,

such that adjacent states in the sequence differ by a “small”
change. What constitutes a “small” change usually depends on
the code’s application.
Since we are interested in building gray codes for flash

memory devices with the -LRM scheme, the ambient

space is , which is the set of all realizable sequences
under -LRM.
The transition between adjacent states in the gray code is di-

rectly motivated by the flash memory application, and was first
described and used in [14], and later also used in [8]. This tran-
sition is the “push-to-the-top” operation, which takes a single
flash cell and raises its charge level above all others.
In our case, however, since we are considering a local

rank-modulation scheme, the “push-to-the-top” operation
merely raises the charge level of the selected cell above those
cells which are comparable with it.
In Fig. 2, we see the example signal of Fig. 1 after a

“push-to-the-top” operation performed on the ninth cell. The
cells participating with the ninth cell in local permutations are

, i.e., from cell 6 to cell 1 with wrap-around.
Thus, the charge level of the ninth cell was pushed above
that of cells 6 through 1 (with wrap-around). We do note that
the new charge level of the ninth cell is not above that of all
other cells since the third cell still has a higher level. However,
the third cell is incomparable (i.e., does not participate in a
local permutation) with the ninth cell. Fig. 2 also shows the
demodulation and condensed factoradic representation of the
new configuration. By comparing with Fig. 1, we note that a
single “push-to-the-top” operation can change several digits in
the demodulated sequence and in the factoradic notation.
We now provide a precise definition of the “push-to-the-top”

operation in the local rank-modulation scheme. As-
sume we have flash memory cells with charge levels

. We say cell is comparable with cell
if they both participate in some window together. We shall

denote these cells as the cells numbered
where one can easily verify that
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Fig. 2. “Push-to-the-top” operation performed on the ninth cell.

We note that the indices should be taken
modulo . Continuing the example of Fig. 2, for and
we have , and

, i.e., the left-most cell comparable with
cell 8 is cell 6, while the right-most cell comparable with cell
10 is cell 1.
A “push-to-the-top” operation performed on cell changes

the cell levels to defined by

,
,

where denotes a small charge difference which is a pa-
rameter of the physical charge-placement mechanism. Namely,
the charge level of cell is pushed above the charge levels of
cells comparable with it.
We can now move from the physical level to the logical level

of the demodulated signal. With the above notation, was
achieved from by a “push-to-the-top” operation on cell . Let
and stand for the demodulated sequence of permutations

from and , respectively. We then say was achieved from
by a single “push-to-the-top” operation on cell . Thus, we

define the set of allowed transitions as ,
which is a set of functions, , where
represents a “push-to-the-top” operation performed on the
th cell.
Definition 1: A Gray code for -LRM (denoted

-LRMGC) is a sequence of distinct codewords,
, where . For all ,

we further require that for some . If
for some , then we say the code is cyclic. We call

the size of the code, and say is optimal if .
Definition 2: A family of codes, , where is an

-LRMGCof size , , is asymptotically rate-
optimal if

III. GRAY CODES FOR -LRM

In this section, we present efficiently encodable and decod-
able asymptotically rate-optimal gray codes for -LRM.
A rough description of the proposed construction follows. First
we partition the cells into blocks, each containing
cells. To simplify the presentation we set , implying that
we have blocks, each of size . Denote the cells in block
by . For each block , we will use the factoradic representa-
tion to represent permutations, without wrap-around at the
block level (the wrap-around is only for the entire codeword).
Namely, each and every block can be thought of as an element
of an alphabet of a size denoted by .
Now, consider any De-Bruijn sequence of order

over (of period ). Namely, will consist of a sequence
of elements over such that the
subsequences of cover all -tuples of
exactly once, subindices of are taken modulo . We

shall conveniently choose . Such sequences exist,
e.g., [10].
The construction of the gray code will have two phases.

First we construct the so-called anchor elements in , denoted
as . The elements of will consist of a
cyclic gray code over . That is, the difference between each
and in will be in only one out of the characters

(from ) in . Specifically, the code will be derived from
the De-Bruijn sequence as follows: we set to be the first
elements of , and in the transition from to we change
to . The code is detailed below:

...
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where , the subindices of are taken
modulo , and the underline is an imaginary marking
distinguishing the block which is about to change.
With the imaginary marking of the underline, the code

is clearly a gray code over due to the properties of the
De-Bruijn sequence . However, is not a gray code over

, as the transitions between the anchors and re-
quire changing the entries of an entire block, which may involve
many push-to-the-top operations. We thus refine by adding
additional elements between each pair of adjacent anchors from
that allow us to move from the block configuration in to

that in by a series of push-to-the-top operations.
Each block is eventually represented in factoradic notation by

a sequence of digits. For the construction to work, it is crucial to
be able to identify, for each element in , which block is in the
process of being changed. To this end, and for other technical
reasons, we will add some auxiliary digits to each block (by
adding auxiliary flash memory cells). These digits are referred
to as noninformation digits. Loosely speaking, in each block of
size the last digits (approximately1) will be noninforma-
tion digits. The last two digits will be used to mark which block
is being currently changed, while the digits before them
will act as a buffer zone that allows the successful transforma-
tion between anchors. In our setting, the noninformation
digits will be negligible with respect to the remaining
information digits, allowing the code to have asymptotically
optimal rate.
Construction 1: We consider the -LRM scheme,

where

Let be a set of distinct mixed-radix vec-
tors of length . Each vector is representing local per-
mutations, where each permutation is represented by the most-
significant digits of its factoradic notation. Therefore,

Let us denote

The values of the last digits (that represent the last local
permutations) of each do not play a role in the representation
of the stored data and are called noninformation digits. By abuse
of notation, two vectors agreeing on the first digits will
be said to represent the same value. Furthermore, when a block
is said to represent some value , we mean that its first
digits agree with those of . Therefore, we set

We also denote .
Let be a De-Bruijn sequence of order over the al-

phabet ,

1For the exact value see Construction 1.

i.e., is of length and . The gray code of
anchor vectors is a sequence

of mixed-radix vectors of length . Each vector is
formed by a concatenation of blocks of length . For
, we say that block corresponds to the cells with indices

.We set to be the concatenation
of the first elements of , such that for each , block
represent the vector :

Between the anchors and , the block that represents the
vector is transformed into the vector . The resulting
gray code of anchor vectors is therefore

...

where the underline denotes the block that is about to change in
the transition to the following anchor vector.
Within each of the blocks comprising any single anchor,

the nd digit (the next-to-last digit—a noninformation
digit) corresponds to a cell that is pushed-to-the-top in all blocks
except for the “underlined” block (i.e., the block which is about
to change). For brevity, we call this digit the underlined digit.
In the underlined block, the th digit is pushed-to-the-
top. All remaining noninformation digits are initialized to be of
value 0.
Between any two anchors, and , a sequence of vectors

called auxiliary vectors and denoted , is formed
by a sequence of push-to-the-top operations on the cells of the
changing block. The auxiliary vectors are determined by Algo-
rithm 1 described shortly. Thus, the entire gray code con-
structed is given by the sequence

...

In what follows we present Algorithm 1 that specifies the se-
quence that allows us to move from anchor state
to state . As and differ only in a single block

(and this block is changed from representing the value to
), it holds that and will differ only in the block in

which and differ. Thus, it suffices to define in Algorithm
1 how to change a block of length with cell values that repre-
sent into a block that represents using push-to-the-top
operations. However, we call the attention of the reader to the
fact that while the change in represented value affects only one
block (denoted as block ), for administrative reasons, in block
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(modulo ), we also push a noninformation cell. The in-
puts of Algorithm 1 are the vector and the corresponding
cell configuration , and its output
is the order in which those cells are pushed in order to transform
the vector represented in block into . Algorithm 1 also
ensures that the underlined digits of blocks and (modulo
) of an auxiliary vector are both not of maximal value (among

the cells with which they share a window). This allows to iden-
tify whether the vector is an anchor vector or an auxiliary one.
Assuming that

represents the value , then we say that the digit of is

otherwise,

i.e., we always force a 0 for the noninformation digits. Finally,
we restrict and by defining

otherwise

otherwise.

Algorithm 1 Transform Block of Configuration From
to

Input: current cell configuration , block number , new
block value
Output: new cell configuration
Push cell (the last cell) in block (modulo ).

for all

repeat
if and then

if then
Push the cell in block (the cell in position

).
end if

else

end if
until
Push cell (the next-to-last cell) in block .
Output the resulting cell configuration .

Algorithm 1 is strongly based on the factoradic representation
of . Let be the th entry in this representation.

Namely, if is a cell configuration that cor-
responds to , then for each index we let
denote the number of entries in the window corresponding to
that are in a larger position than and are of value lower than .
Roughly speaking, to obtain such a configuration , Algorithm
1, for , marks each cell in after exactly
cells in positions larger than (and participating in the window
corresponding to ) have been marked. Here, in order to keep
track of which cells should not be pushed anymore, we save an
array of bits for each cell in the block (initialized to 0), in-
dicating whether the cell should not be pushed anymore. If

, we say that cell is marked. Furthermore, when the cell
is marked, it is also pushed-to-the-top if its value is lower than
that of a cell that shares a window with it and is already marked
(the value comparison can be inferred from ). Since each time
a cell is changed it is pushed-to-the-top, this will ensure that the
resulting cell configuration will have a factoradic representa-
tion corresponding to .
We note that in order to be able to decode a state, we need to

have someway to knowwhich block is being currently changed,
i.e., the imaginary underline in the anchor. We use the last two
cells of each block for that purpose as described in the example
below.
Example 1: Let us consider the case of -LRM, i.e.,
, , , and . Thus,

and so in each block, the last digits are noninformation
digits, leaving only the first digit in each block to be an infor-
mation digit.
According to the construction, we set

We therefore take a De-Bruijn sequence of order 3 and alphabet
of size 2,

The list of anchors is

.
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The bold bit (the leftmost bit in each group of four) denotes
the information bit, while the rest are noninformation bits. The
underlined vectors are easily recognizable by the next-to-right-
most (next-to-last) bit being 0.
Notice that in this example the information bit is dominated

in size by the remaining bits of each block. This is an artifact of
our example in which we take to be small. For large values
of the overhead in each block is negligible with respect to the
information bits.
As an example, the transition between and is (the

changed positions are underlined):

.

In this example, three cells are pushed. First, the last cell in
block number 1 is pushed, according to the first line of Algo-
rithm 1. The push affects the value of the last two digits of
that block, and in such, signifies that the new vector is not an
anchor. Next, the first cell of block 2 is pushed, affecting the
value of both the last digit of block 1 and the first digit of block
2. Note that the last digit of block 1 is not an information bit,
and it has no meaning in the decoding of the gray code. Finally,
the next-to-last bit of block 2 is pushed, signifying that the new
vector is an anchor.
We now address the analysis of Algorithm 1.
Lemma 2: Assuming the position of the underlined digit is

known, all anchors used in Construction 1 are distinct.
Proof: The proof follows directly from the properties of

the De-Bruijn sequence and the fact that we are taking to
be the .
Lemma 3: Algorithm 1 maintains the correctness of the un-

derlined digit in anchors (that is, the digit signifies correctly
which block is about to change). In addition, between any two
adjacent anchors, Algorithm 1 guarantees that the underlined
digits of the changing block (block ) and its predecessor (block

) are both not of maximal value (among the cells
with which they share a window).

Proof: The proof is by induction. The base case follows
from the construction of the first anchor element . Assume
satisfies the inductive claim. When applying Algorithm 1 to

move from anchor to , we start by pushing the last cell
of block . This implies that the value of the underlined
cell in both block and block (modulo ) are now not
maximal. This state of affairs remains until the end of Algo-
rithm 1, in which we push the next-to-the last cell in the changed
block (block ). At that point in time, the underlined cell in the
changed block obtains its maximal value, while block
(that is to be changed in the next application of Algorithm 1)
is of nonmaximal value. All the other underlined cells remain
unchanged throughout the execution of Algorithm 1.
Lemma 4: All words in the code are distinct.

Proof: First, remember that the words in are permutation
sequences, while the construction is using the factoradic nota-
tion. However, different factoradic vectors always correspond to
different permutation sequences, and thus it is enough to show
that the factoradic vectors are distinct. Next, by Lemmas 2 and
3, we know that all of the anchors in Construction 1 are dis-
tinct. It is left to show that adding the auxiliary vectors resulting
from Algorithm 1, remains a gray code. It is easily seen that a
nonanchor codeword can never be mistaken for an anchor, and
that due to the De-Bruijn sequence, two auxiliary vectors and
can never be the same when .
Thus, it suffices to focus only on the block being changed.

In order to show that every word generated by Algorithm 1
in a single execution is distinct, we will show that every cell
configuration we encounter will never be visited again. Specif-
ically, given a configuration, we let be the next cell that will
be pushed. Since cell is going to be pushed, there exists a cell
such that and . After the push, . But

since , cell will not be pushed anymore, and thus in
all future configurations cell will be higher than cell . There-
fore, all future configurations will differ from the initial one.
Lemma 5: Algorithm 1 terminates, and when it does, all of

the cells are marked exactly once.
Proof: The index is incremented by 1 in the algorithm’s

loop, unless a cell is marked. Since a cell cannot bemarkedmore
than once, the algorithm must terminate.
For each noninformation digit index
, we forced , and therefore each of those cells is

marked the first time that . Now we assume by induction
that for each , all of the cells with indices ,

are marked before the algorithm terminates.
The base case, , was already proved above. For

the induction step, by the induction assumption, we know that
all the cells in are eventually marked, and in par-
ticular, the cells in are eventually marked.
At the point where exactly of them are marked,
the index in the algorithm is guaranteed to be lowered below

, and so, cell will be marked the next time it is vis-
ited. Since the algorithm never marks a cell more than once, the
claim is proved.
Theorem 6: Algorithm 1 changes a block representing

into a block representing .
Proof: When cell is being marked, exactly cells

from are marked with , and thus will
not be pushed anymore. The rest will be pushed after and above
it, and therefore its rank is exactly , as desired.
Lemma 7: The time complexity of Algorithm 1 is .
Proof: Each cell is visited by the algorithm at most times,

once during the first visit of the algorithm, and once following
each of the cells immediately to its right being pushed.
Since each cell is pushed at most once, a full execution of the
algorithm takes steps.
Combining all of the observations up to now, we are able to

summarize with the following theorem for from Construction
1.
Theorem 8: The code from Construction 1 is a gray code

of size at least .
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Corollary 9: For all constants , there exists an
asymptotically rate-optimal family of codes, , where
is an -LRMGC of size , , with

Proof: We set for all , and define and
according to and in Construction 1 (where is the index

of the code in the family of codes). Then, . It
follows that

In order to use the gray codes of Construction 1, we need to
have a way to associate the codewords to their indices. An en-
coding method should allow to identify with any index the cor-
responding codeword , and a decoding method should offer
the reverse functionality. In addition, it is useful to also have a
next-step method, that calculates the next word in the code.
A next-step method for Construction 1 is straightforward

to define. Given a word , consider first the case that it is an
anchor vector. The next-step algorithm first identifies the block
that is about to be changed, according to its nonmaximal under-
lined digit. Similarly, if is an auxiliary vector, the next-state
algorithm identifies the block that is currently being changed.
With that information at hand, the algorithm continues and
finds the De-Bruijn subsequence represented by . According
to the subsequence, the algorithm now finds the next symbol
in the De-Bruijn sequence. Efficient next-state algorithms
for De-Bruijn sequences, as well as encoding and decoding
methods, are described in [17] and [22]. With the knowledge
of the next De-Bruijn symbol, the next-state algorithm runs
Algorithm 1 to find the cell that should be pushed next, and
accordingly, the next state in the gray code.
It is natural to try applying the same idea for encoding and

decoding as well. However, there is an obstacle that makes it
less straightforward in this case. Consider the decoding func-
tion for example. By the same means as before, we can identify
the index in the De-Bruijn sequence quickly. But in order to use
it for identifying the index in the gray code, we would need to
know the distance between each pair of adjacent anchors. The
problem is that this distance, that is determined by the number

of pushed cells in Algorithm 1, is not constant. Therefore, we
would need to calculate it for each of the previous symbols in
the De-Bruijn sequence. Since the length of the De-Bruijn se-
quence is exponential in , this method would be inefficient.
We note that this problem also applies to the construction that
was presented in [8].
To tackle this obstacle, we suggest a slight modification to

Construction 1, that allows for efficient encoding and decoding
in the manner described above. The main purpose of the mod-
ification is to make the distance between the anchors constant.
When this distance is constant, the decoder can simply multiply
it with the De-Bruijn index, and find the index of the nearest
anchor smaller than . From there, applying Algorithm 1 com-
pletes the decoding efficiently. A similar observation holds for
the encoder.
To make the distance between the anchors constant, we take

the approach of using an additional counter. We aim to make the
distance to always be , i.e., exactly auxiliary vectors
between adjacent anchors. Since Algorithm 1 creates between 1
to auxiliary vectors between anchors (not including the
anchors), we use the counter to create between 2 to additional
auxiliary vectors. Therefore, the counter should be able to count
from 0 up to , and needs to be capable of resetting, to
prepare for usage in the next block. To implement the counter,
we add another block to Construction 1.
We start by describing a simple construction for a counter

which we shall later append to Construction 1. Assume we have
flash memory cells indexed 0 to , and with charge levels

. We shall say the counter encodes the integer
, , if is the smallest nonnegative
integer for which . If no such exists, we shall say
the counter encodes the value . Using cells the counter
can assume the value of any integer in . We note
that when , in the -LRM scheme every cell
is comparable with its predecessor and successor. Thus, if the
counter represents the value , increasing it to involves
a single push-to-the-top operation on cell , ensuring both

and (or just the former, if
). Resetting the counter to represent a 0 is equally simple, and
requires a single push-to-the-top operation on cell 0, ensuring

.
Construction 2: The construction is a variation on Construc-

tion 1, so we shall describe it by noting the differences between
them.
We set , and each codeword shall be made up of
blocks of length . The first blocks are those described

in Construction 1. Block , the last block, will implement a
counter. Thus, if is a length codeword from Construction
1, and the counter represents the value , we shall denote the
codeword in the code we now construct as the pair .
Let be the anchor vectors from Construction

1, and assume is the number of auxiliary vectors between
and (indices taken modulo ) in Construction 1. The

new code we construct has anchors

for all .
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Finally, we create auxiliary vectors between adjacent anchors
using Algorithm 2, which is a simple variation on the original
Algorithm 1.

Algorithm 2 Transform Block of Configuration from
to in a Fixed Number of Steps

Input: current cell configuration , block number , new
block value
Output: new cell configuration
Reset the counter.
Push cell (the last cell) in block (modulo ).

for all

repeat
if and then

if then
Push the cell in block (the cell in position

).

end if

else

end if
until
repeat

Increment the counter.

until
Push cell (the next-to-last cell) in block .
Output the resulting cell configuration .

Intuitively, Algorithm 2 is the same as Algorithm 1 except
for the counter reset at its beginning, and the counter incre-
ments at its end. These ensure the number of auxiliary vectors
between anchors is constant. We observe the simple fact that an-
chor codewords have a nonzero counter, and so, when we reset
the counter at the beginning of Algorithm 2 we obtain a dif-
ferent vector. Showing the codewords are distinct follows the
exact same arguments as those used for Construction 1. In con-
trast with Construction 1, in Construction 2 we can give an exact
expression for the size of the code, , since we have
anchors, and the distance between anchors is exactly . It
is also easy to show Corollary 9 also holds for a family of codes
generated using Construction 2.
Finally, the next-state, encoding, and decoding algorithms

may all be implemented efficiently for the codes from Con-
struction 2. The next-state algorithm is essentially the same as
that for the codes from Construction 1. As for encoding and
decoding, the th codeword may be uniquely described using

which is the index of the nearest pre-
vious anchor in the code, and by which
is the distance from the previous anchor.
Decoding is done by identifying the underlined block, and

thus retrieving the correct position in the De-Bruijn sequence

(see [17], [22] for example), which in turn, gives us .
If the codeword is not an anchor, we can run Algorithm 2 on
the anchor until we reach the current codeword, and thus obtain

. The decoded index is therefore .
Encoding is done in reverse, where we use an algorithm for
encoding De-Bruijn sequences to find the appropriate De-Bruijn
subsequence, translate it to the anchor of index , and then
run Algorithm 2 until push-to-the-top operations are made.

IV. CONCLUSION

We presented the framework for -local rank modula-
tion, and studied gray codes for themost general case. The codes
we presented are asymptotically rate-optimal.
Several questions remain open. For the case of

-LRM, a previous work describes asymptotically
rate-optimal codes for which the weight of the codewords is
constant and approaches [8]. That property guarantees a
bounded charge difference in any “push-to-the-top” operation.
Constant-weight codes for the general case are still missing. Of
more general interest is the study of codes that cover a constant
fraction of the space.
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