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Gray Codes and Enumerative Coding
for Vector Spaces
Moshe Schwartz, Senior Member, IEEE

Abstract—Gray codes for vector spaces are considered in two
graphs: the Grassmann graph, and the projective-space graph,
both of which have recently found applications in network coding.
For the Grassmann graph, constructions of cyclic optimal codes
are given for all parameters. As for the projective-space graph,
two constructions for specific parameters are provided, as well
some nonexistence results. Furthermore, encoding and decoding
algorithms are given for the Grassmannian Gray code, which
induce an enumerative-coding scheme. The computational com-
plexity of the algorithms is at least as low as known schemes,
and for certain parameter ranges, the new scheme outperforms
previously known ones.

Index Terms—Enumerative coding, Grassmannian, Gray codes,
projective-space graph.

I. INTRODUCTION

G RAY codes, named after their inventor, Frank Gray
[16], were originally defined as a listing of all the binary

words, each appearing exactly once, such that adjacent words in
the list differ by the value of a single bit. Since then, numerous
generalizations were made, where today, a Gray code usually
means a listing of the elements of some space, such that each
element appears no more than once, and adjacent elements are
“similar.” What constitutes similarity usually depends on the
application of the code.
The use of Gray codes has reached a wide variety of areas,

such as storage and retrieval applications [2], processor alloca-
tion [3], statistics [5], hashing [10], puzzles [15], ordering docu-
ments [20], signal encoding [21], data compression [23], circuit
testing [24], measurement devices [26], and recently also mod-
ulation schemes for flash memories [6], [17], [35]. For a survey
on Gray codes the reader is referred to [25].
In the past few years, interest has grown in -analogs of com-

binatorial structures, in which vectors and subsets are replaced
by vector spaces over a finite field. Two prominent examples
are the Grassmann graph , and the projective-space
graph . The former contains all the -dimensional sub-
spaces of an -dimensional vector space over , and is
the -analog of the Johnson graph, whereas the latter contains
all the subspaces of an -dimensional vector space, and acts as
the -analog of the Hamming graph.
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Examples of such -analogs structures are codes and anti-
codes in the Grassmann graph [11], [27], Steiner systems [1],
reconstruction problems [34], and the middle-levels problem
[7]. But what has begun as a purely theoretical area of research
has recently found an important application to network coding,
starting with the work of Koetter and Kschischang [19], and
continuing with [8], [9], [13], [14], [29]–[31], [33].
In this paper, we study -analogs of Gray codes, which

are Hamiltonian circuits in the projective-space graph, and
-analogs for constant-weight Gray codes, which are Hamil-
tonian circuits in the Grassmann graph. For the former, we
present nonexistence results (both for cyclic and noncyclic
codes), as well as constructions for specific parameters based
on the middle-levels problem discussed in [7]. For the latter,
we provide constructions for cyclic optimal Gray codes for all
parameters, as well as encoding and decoding functions. The
construction has many degrees of freedom, resulting in a large
number of Gray codes, which we bound from below.
As a side effect of the Gray-code construction and the

encoding and decoding algorithms we provide, we obtain an
enumerative-coding scheme for the Grassmannian space. A
general enumerative-coding algorithm due to Cover [4] was
recently used as the basis for an enumerative-coding scheme
specifically designed for the Grassmannian space by
Silberstein and Etzion [28], who provided encoding and de-
coding algorithms with complexity , where
denotes the number of operations required for multiplying two
numbers with digits each. Another work by Medvedeva
[22] suggested only a decoding algorithm with complexity

. We provide encoding and decoding algorithm
that not only arrange the subspaces in a Gray code, but also
operate in time, the same complexity as the al-
gorithms of [28]. We provide another decoding algorithm of
complexity , which outperforms the decoding
algorithm of [28] when (for example, when

for some ), and outperforms the
decoding algorithm of [22] when .
The paper is organized as follows. In Section II, we provide

the basic definitions and notation used throughout the paper.
In Section III, we construct Grassmannian Gray codes, as well
as provide encoding and decoding functions. We continue in
Section IV by studying subspace Gray codes. We conclude in
Section V with a summary and open problems.

II. PRELIMINARIES

Throughout the paper, we shall maintain a notation consisting
of uppercase letters for vector spaces, sometimes with a su-
perscript indicating the dimension. We shall denote vectors by
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lower-case letters, and scalars by Greek letters. For a vector
space over some finite field , we let denote
the dimension of . For two subspaces, and ,
will denote their sum. If that sum happens to be a direct sum,
we will stress that fact by denoting it as . For a vector

, we shall denote the space spanned by as .
Let be some fixed -dimensional vector space over

. For an integer , we denote by the set
of all -dimensional subspaces of .
Definition 1: The Grassmann graph is de-

fined by the vertex set , and two vertices

are connected by an edge iff .
It is easy to verify that the graph metric for has the

distance function

(1)

This is the -analog of the Johnson metric over constant-weight
binary vectors. If are two binary vectors of
length , each with weight , i.e., , then
the Johnson distance is defined by

where is a bit-wise AND.
More generally, (1) is a special case of the injection distance

(see [29])

This is the -analog of the asymmetric Hamming distance de-
fined for as

The -number of is defined as

By abuse of notation, we denote

The Gaussian coefficient is defined for , , and as

It is well known that the number of -dimensional subspaces of
an -dimensional space over is given by . Further-
more, the Gaussian coefficients satisfy the following recursion:

as well as the symmetry

for all integers (for example, see [32]).

Another graph of interest is the following.
Definition 2: The projective-space graph is

defined by the vertex set , and two vertices
are connected by an edge iff

One can easily see that the graph metric of has the
distance function

for any two subspaces . We would like to note
that this distance measure as an exact -analog of the Ham-
ming distance measure over binary vectors. Indeed, if

are two binary vectors of length , then the Hamming
distance between the two is

where is a bitwise OR.
Equivalently, two vertices, and are connected in

iff , and either or
.

We now provide the definitions for the Gray codes that we
study in this paper.
Definition 3: Let be an -dimensional vector space over

. An -Grassmannian Gray code is a sequence
of distinct subspaces

where , and where and are neighbors in

, for all . We say is the size of the
code . If and are neighbors in then is said
to be cyclic and is its period. If , then is called
optimal.
A similar definition holds for the graph .
Definition 4: Let be an -dimensional vector space over

. An -subspace Gray code is a sequence of distinct
subspaces

where , and where and are neighbors

in for all . We say is the size of the code
. If and are neighbors in then is said to be
cyclic and is its period. If , then is called
optimal.

III. GRASSMANNIAN GRAY CODES

In this section, we will study Grassmannian Gray codes. We
will first describe a construction, and later introduce and analyze
encoding and decoding algorithms. These algorithms may be
used as an enumerative-coding scheme.

A. Construction

The construction we describe is recursive in nature.
We will be constructing an -Grassmannian Gray
code by combining together an -code with an
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-code. We start by introducing two useful
lemmas.
Lemma 5: Let be an -dimensional vector space over

. Let and be -dimensional and
-dimensional subspaces of , respectively, where

Then, there are vectors such
that
1) .
2) The subspaces are distinct.
Proof: To maintain the first requirement, it is obvious that

. We have

vectors to choose from. However, having chosen a vector
, to maintain the second requirement we cannot

choose vectors of the form , where and
. Since there are distinct choices

of and , resulting in distinct forbidden vectors, the maximal
number of vectors we can choose which maintain the two re-
quirements is given by

A closer look at the proof of Lemma 5 reveals that
induces an equivalence relation on the vectors of ,
where are equivalent if there exist

and such that . A set of
vectors whose existence is guaranteed by Lemma 5 is merely
a list of representatives from each of the equivalence classes
induced by . For such a vector and a subspace ,
we shall denote the equivalence class of induced by as

.
Lemma 6: Let and be as in Lemma 5. Assume

and are two distinct -dimensional sub-
spaces of . Then, for any we have

Proof: We observe that

Let us assume to the contrary that

We therefore have

which is a contradiction.

Intuitively speaking, Lemma 6 states that the equivalence
classes that partition and are induced by distinct

-dimensional subspaces of , do not contain two
identical classes. This fact will be used later in the construction.
We shall now build an -Grassmannian Gray code by

combining an -code with an -code.
Construction A: Let be an -dimensional vector space

over .We canwrite as the direct sum
, where and .
Let us assume the existence of two cyclic optimal Grassman-

nian Gray codes: an -code , and an
-code . In both cases, we assume the ambient vector

space is . For convenience, let us denote the code se-
quences as

From these two codes, we shall construct a new -Grass-
mannian Gray code.
We start with , and choose equivalence-class repre-

sentatives by Lemma 5. Continuing
to , again we choose equivalence-class representatives,

, where we make sure

i.e., that the last equivalence class chosen for , and the first
equivalence class chosen for , have a nonempty intersection.
We continue in the same manner, where for we choose

equivalence-class representatives , where
also

Finally, for , the last subspace in , we need both a
nonempty intersection of

as well as a nonempty intersection of

i.e., with the first equivalence class induced by the first subspace
. Since, by Lemma 6, has a nonempty intersection

with at least two equivalence classes induced by , we can
always find a suitable set of representatives.
We now construct the auxiliary sequence as follows:

...

In a more concise form,
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is a sequence of length in which the th element is the
subspace

We now turn to use the code . Let us choose an arbitrary
index , and denote , where the
indices are taken modulo . We observe that is a

-dimensional subspace.
Since contains all the -dimensional subspaces of

, let be the index such that . Finally, we also
choose an arbitrary index .
We now construct the code by inserting a shifted version of
into the auxiliary as follows:

(2)

Theorem 7: The sequence of subspaces from Construction
A is a cyclic optimal -Grassmannian Gray code.

Proof: We start by showing that the subspaces in the code
are all distinct. We first note that the subspaces in are distinct
from those in , since all the former intersect in a
-dimensional subspace, while all the latter intersect in

a -dimensional subspace. To continue, the subspaces of are
distinct by virtue of being aGrassmannianGray code. Finally,
we show that the subspaces of are distinct. Assume

Then,

Since is a Grassmannian Gray code, we must have .
We thus have

Since the vectors were chosen from dis-
tinct equivalence classes, we again must have . Hence,
all the subspaces of are distinct.
Next, we show that any two subspaces which are adjacent

in the list, intersect in a -dimensional subspace. This is
certainly true for adjacent subspaces in since they form an

-Grassmannian Gray code. For , we have

and so the intersection is -dimensional. Furthermore,
and intersect in a -dimensional subspace, since they
come from a -Grassmannian Gray code. Since,
by construction,

we have

Let , , and , be as in (2). We can also easily verify that at the
insertion points of into , we have

and thus, all adjacent subspaces in the sequence are also adjacent
in the graph . This also proves the code is cyclic.
Finally, to show that the code is optimal we need to show that

it contains all the -dimensional subspaces of . Since and
are optimal, we have

Theorem 8: For every and there exists a
cyclic optimal -Grassmannian Gray code.

Proof: Because of the recursive nature of Construction A,
the only thing we need to prove is that the basis for the recursion
exists. This is trivially true since -Grassmannian Gray
codes and -Grassmannian Gray codes which are cyclic
and optimal are the unique sequence of length 1 containing the
full vector space, and the trivial space of dimension 0, respec-
tively.
We can get a lower bound on the number of distinct

-Grassmannian Gray codes that result from this con-
struction, thus getting a lower bound on the number of such
codes in general. The counting requires the following lemma.
Lemma 9: Let and be as in Lemma 5, and let

be two -dimensional subspaces such
that . Then, for any ,
there exist exactly distinct subspaces of the form ,
for some , such that

Proof: Let be a basis for . Let
us further denote

Given , in order to obtain a subspace
with the desired intersection dimension we must choose

such that the equation
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holds for some choice of scalar coefficients
, with . We thus choose

Since multiplying by a scalar does not change the subspace
, we may conveniently choose . Hence,

Finally, we note that adding a vector from to does not
change the subspace . We may therefore eliminate any
linear combination of from . By denoting

, we are left with choosing

and there are exactly choices for which result in
distinct subspaces as required.
We are now ready to state the lower bound on the number

of distinct -Grassmannian Gray codes resulting from
Construction A. We note that codes which are cyclic shifts of
one another are still counted as distinct codes.
Theorem 10: The number of distinct -Grassmannian

Gray codes resulting from Construction A is lower bounded by

Proof: Let us denote the number of -Grassman-
nian Gray codes by . If either or , then

, which agrees with the claimed lower bound. Let
us therefore consider the case of .
During the construction process, we first choose an
-code, which can be done in ways. We

then need to choose the vectors to obtain the subspaces
. For , we can arrange the subspaces in

ways. For subsequent values of , , we can

choose the first subspace in one of ways, according
to Lemma 9. The rest of the subspaces may be chosen arbitrarily
in any one of ways. Finally, for ,

both the first subspace and last subspace are chosen from a set of
subspaces. At the worst case, we can choose them both in one
of ways, and the rest of the subspaces in .
We then choose an -code, which can be done

in ways. We rotate and insert it into the code
constructed so far. However, since we already count cyclic shifts
of codes as distinct, we shall assume we do not rotate it, to avoid
overcounting. We, thus, only have to choose where to insert it,
in one of ways.
Combining all of the above, we reach the recursion

Solving the recursion, with the base cases of and
, gives the desired lower bound.

B. Algorithms

We now describe algorithms related to Grassmannian Gray
codes. The algorithms we consider are as follows.
1) Encoding—Finding the th element in the code.
2) Decoding—Finding the index in the list of a given element
of the code.

We will specialize Construction A to allow for simpler algo-
rithms.
We require some more notation. Throughout this section, we

denote by the th standard unit vector, i.e., the vector all of
whose entries are 0 except for the th one being 1. The length of
the vector will be implied by the context. The entries of a length
vector will be indexed by . The identity

matrix will be denoted by , and the all-zero matrix
by .
A -dimensional subspace of an -dimensional space

can be represented by a matrix whose rows form a basis
for . Many choices for such a matrix exist, and we shall be
interested in a unique one. We will first describe the reduced
row echelon formmatrix, which is known to be unique, and then
transform it to obtain our representation.
In a reduced row echelon form matrix, the leading coefficient

of each row is 1, and it is the only nonzero element in its column.
Furthermore, the leading coefficient of each row is strictly to the
right of the leading coefficient of the previous row.
Assume is a matrix of rank in reduced row ech-

elon form, . We denote the set of indices of columns
containing leading coefficients as .
We apply the following simple recursive transformation to :
If then is the degenerate empty matrix with 0 rows.
Otherwise, assume . If the last column of is all zeros,
then , where is the matrix
obtained from by deleting the last column. If the last column
of is not all zeros, let be the index of the first row from the
bottom which does not contain a zero in the last column. We
multiply the th row by a scalar such that its last entry is 1. We
then subtract suitable scalar multiples of the th row from other
rows of so that the resulting matrix has a single nonzero
entry in the last column (a 1 located in the th row). We then
delete the th row and the last column to get the
matrix . We recursively take , append a column of 0s
to its right, and reinsert the th column which we previously re-
moved. The result is defined as .
Example 11: Let be the 3 5 reduced row echelon form

matrix

where the entries are from . We then have
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It is easily seen that is in row echelon form, but not
in reduced row echelon form, i.e., the leading coefficient of
each row is nonzero (but not necessarily 1), the entries below
a leading coefficient are 0 (but not necessarily 0 above it), and
the leading coefficient of each row is strictly to the right of the
leading coefficient of the previous row. We note that

.
Thus, for a -dimensional subspace , and the unique re-

duced row echelon form matrix whose rows form a basis for
, we shall call the canonical matrix representation of
. To avoid excessive notation, we shall refer to both the sub-

space and its canonical matrix as . We say is simple if

We now start with specializing Construction A. First, during
the construction we require a choice of and . We
choose both to be simple subspaces.
Next, in the construction we have , and

for each , a -dimensional subspace of , we find
vectors from , denoted .

We make this choice explicit: let be a
canonical matrix. Let
be the elements in . We note that
is not in the subspace , for all . For an integer

, let denote its th digit when written in base , i.e.,

where . For convenience, we also de-
note the elements of as , in some fixed
order, where gives the reverse mapping, i.e., . We
now choose

In Construction A, when inserting a shifted version of ,
a parameter is chosen. We shall call this
parameter the insertion offset. In this instance, we will always
choose .
Finally, we say a cyclic optimal -Grassmannian Gray

code, , is simple, if is simple, and
is simple.

Lemma 12: Let be a simple cyclic optimal
-Grassmannian Gray code, and be a simple cyclic

optimal -Grassmannian Gray code. Let
be the cyclic optimal -Grass-

mannian Gray code created by Construction A, with an insertion
offset . Then its shifted version,

is a simple cyclic optimal -Grassmannian Gray code.
Proof: The fact that is a cyclic optimal -code is

trivial. It remains to prove the code is simple. Let us denote

Since is simple, we have that is simple, and that
is simple. The latter intersection determines where is

inserted in , i.e., between the subspaces derived from
the simple -dimensional space. Since is also simple,
it is inserted in the first set of subspaces derived from .
By using an insertion offset , we have that , and
that . Thus, is simple.
We are now in a position to state simple encoding and de-

coding functions. The encoding function

maps an index to the th subspace in the -Grassman-
nian Gray code constructed above. Using the observations so
far, we can easily state that

or ,
,

otherwise,

where

We also note, that in the last case, where the vector is ap-
pended as another row to the generating matrix, the vector is
inserted between the correct rows such that the resulting matrix
is canonical.
The decoding function,

is defined as the reverse of the encoding function, i.e.,

for all .
To describe the decoding function we need some preparation

work. Assume the input to the decoding function is a -dimen-
sional subspace , which will also denote a canonical matrix
whose row span is .
Since is simple, checking whether

amounts to checking whether the last column of contains
only 0s. If this is not the case, then ,
and by construction there is a unique rowwith a nonzero entry in
the last coordinate.We denote this row , and its last coordinate
must be 1. Furthermore, we remove this row and the last column
from and denote the resulting canonical matrix by .
Finally, like before, let
be elements of .
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With this notation, we can now easily find that

or ,
,

otherwise,
(3)

where

We also note that in the case of , when applying
to we remove the last column of , which is an

all-zero column.

C. Complexity Analysis

The goal of this section is to bound the number of operations
required to perform the encoding and decoding procedures de-
scribed in the previous section.
For our convenience, we assume throughout this section that

integers are represented in base . Thus, multiplying and di-
viding by amount to simple shift operations on the list of digits.
Another simplification is enabled by the following lemma.
Lemma 13: Let be an

-Grassmannian Gray code. Then the dual code,

is an -Grassmannian Gray code. If is cyclic, then
so is . Also, if is optimal, then so is .

Proof: Obviously for all . Since
, the elements of are all distinct. To verify that

adjacent elements in are also adjacent in we
use simple linear algebra. For all ,

Since , we have

It then follows that

hence, and are adjacent in . If we take
all indices modulo , then is cyclic if is cyclic. Finally,

implies that is optimal if is optimal.

In light of Lemma 13, we will assume throughout that
, and in particular, that .

An important ingredient in the analysis is the complexity of
multiplying two numbers, each with digits. We denote this
number as . Using the Schönhage-Strassen algorithm, we
have (for example, see [18]).
We can alternatively use the more recent algorithm due to Fürer
[12], for which . We also note
that division of two numbers with digits each also requires

operations [18].
We now turn to the analysis of the decoding algorithm. We

observe that all the integers involved require at most digits
to represent. As a first step, we compute . It was shown
in [28] that the complexity of this is .1 As was also
shown in [28], from this Gaussian coefficient we may derive

and by

(4)

(5)

with additional operations.
As we examine the algorithm as given in (3), even though it

is presented as a recursive algorithm, it is a tail recursion, and
so, may be considered as an iterative process. At the beginning
of each iteration, we check the last column of the matrix to see
if it is all 0s. This takes time.
For the second case of (3), when , we delete

the last column, taking time. For the third case of (3),

we need to compute and from , taking

operations. Multiplication by amounts to a simple
shift operation, and addition and subtraction of numbers with
digits takes time. We note that finding the numbers
for is easily seen to take at most

time. Deleting a row and a column takes time. Finally, we
note that the sole purpose of the modulo operation is to trans-
form a possible outcome into whichmay be

done in time (since we have already computed ).

The total number of operations for the last case of the decoding
procedure is therefore bounded by . Since the total
number of rounds is at most , the entire algorithm may be run
in time . The same analysis holds for the encoding
algorithm.
Theorem 14: The computation complexity of the encoding

and decoding algorithms is .
The complexity of the algorithms from [28] is the same as

those presented in this paper. However, the algorithms here also
provide a Gray ordering of the subspaces. We also mention [22],
in which only a decoding algorithm was suggested, without
Gray coding, achieving complexity of .
We can, however, improve the complexity of the decoding

procedure for a certain asymptotic range of by changing the

1To be more precise, it was shown in [28] that computing takes
operations. To facilitate a comparison with the

complexity analysis we perform, and by taking due to Lemma
13, we may rewrite the result of [28] as . We will implicitly per-
form this translation whenever comparing with [28], and later, with [22].
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way we compute (3). We start by changing the way we compute
the Gaussian coefficients. By definition,

Our strategy to compute this value is to compute separately the
numerator and denominator, and then perform division. To com-
pute the numerator, we partition the parentheses into pairs and
compute their product, partition the results into pairs, and
so on. For ease of presentation, we can assume is a power of
2 to avoid rounding, and this has no effect on the overall com-
plexity. Initially, each of the numbers in the numerator may be
represented by digits in base . Thus, the total number of op-
erations to compute the numerator is

where the last inequality is due to the fact that is a
nondecreasing function. The same analysis applies to the de-
nominator. Finally, we need to divide the numerator and de-
nominator, each with at most digits, thus requiring additional

operations. It follows that computing requires
.

The analysis of the remaining part of the algorithm is nearly
the same. The only difference is that we do not use (4) and (5) at
every iteration. Instead, whenever we find ourselves in the third
case of (3) we compute the necessary Gaussian coefficients from
scratch.We nowmake the crucial observation that the algorithm
takes at most iterations, at most of which take the third
case of (3). Thus, the total number of operations for a decoding
procedure is .
Theorem 15: The decoding algorithm may be run using

operations.
We note that when (for example, when

for some ) the decoding algorithm we pre-
sented outperforms the decoding algorithm of [28], including
the decoding algorithm of [28] for the smaller range
of . Furthermore, when , the de-
coding algorithm we presented outperforms the decoding algo-
rithm of [22].

IV. SUBSPACE GRAY CODES

This section is devoted to study of subspace Gray codes. Un-
like optimal Grassmannian Gray codes, which exist for all pa-
rameters, the case of subspace Gray codes appears to be more
complicated.We begin with a nonexistence result, and then con-
tinue to constructing subspace Gray code for a limited set of
cases.

A. Nonexistence Results

The next theorem shows that for half of the parameter space,
optimal subspace Gray codes do not exist.
Theorem 16: There are no optimal -subspace Gray

codes (cyclic or not) when is even, except for the
noncyclic case with and .

Proof: Let , . Assume to the contrary such a
code exists, and . By the definition of

the code, every time an -dimensional subspace appears in the
sequence, it is followed by an -dimensional subspace or
an -dimensional subspace, except if it is the last in the
sequence and the code is not cyclic. Since the code is optimal,
all subspaces appear and so we must have

(6)

If the code is cyclic, a stronger inequality must hold, since the
last subspace is followed by the first subspace, and so

(7)

However,

(8)

for all , and thus, (7) never holds, and no cyclic optimal
code exists.
Continuing with the noncyclic case, in light of (8), the only

way for (6) to hold is that

Using (8), we therefore need

(9)

When , and for all , we have

and so the RHS of (9) is not an integer.
When , for similar reasons, the RHS of (9) is not an

integer except when , but then

Finally, when , (9) becomes

We observe that

For , we have
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Thus, to complete the proof we only need to check the case of
, for which we find that

We note that there does indeed exist an optimal noncyclic
-subspace Gray code:

B. Constructions

We now turn to the question of whether cyclic optimal
-subspace Gray codes exist when is odd. The answer

is trivial when . We also answer this in the positive
for the cases of by using the -analog solution to
the middle-level problem given in [7]. We first describe the
-analog of the middle-level problem, and then show how a
solution there gives a cyclic optimal subspace Gray code.
Let be an odd positive integer, and let be

a vector space over . We consider the following graph

: the vertex set of the graph is , and
two vertices and are connected by an edge iff
or . An -subspace Gray code for the middle
levels is a Hamiltonian path in , and it is cyclic if it is a
Hamiltonian circuit.
Etzion [7] proved the following theorem.
Theorem 17 [7]: For any , a power of a prime, there exists a

cyclic optimal -subspace Gray code for the middle levels.
Using Theorem 17, we can prove the following theorem.
Theorem 18: For any , a power of a prime, there exists a

cyclic optimal -subspace Gray code.
Proof: Let be the code guaranteed by Theorem 17,

where

We note that is even. Since this code contains all the sub-
spaces in the middle levels, the only two vertices of not
covered are , the entire space, and , the 0-D trivial sub-
space.
Since is cyclic, let us assume, without loss of generality,

that . We now pick an arbitrary odd integer
, and construct the sequence

We contend that is a cyclic optimal -subspace Gray
code. Trivially, contains all the subspaces of exactly once.
Furthermore, since originally iff is even, and

iff is odd, the resulting sequence is indeed a
cyclic subspace Gray code.
For the construction of -subspace Gray codes, we re-

quire a more in-depth view of Etzion’s construction from [7].
Let be a vector of length over . Since

may be viewed as the vector space , by abuse
of notation, we may identify with its equivalent element in

. Thus, from now on, if is some element,
we denote by the product, in , of with the equiv-
alent of in .
Let and be two -dimensional subspaces of over

some finite field . We say and are equivalent if
there exists some such that

It is easy to see that this is indeed an equivalence relation, and
the equivalence classes were called necklaces in [7]. As also
noted in [7], if then the size of any equivalence
class is , and in particular, does not depend of .
Etzion proved the following two theorems, which will be the

starting point for our next construction.
Theorem 19 [7]: Let and let be an -dimen-

sional vector space over , with a primitive
element. Assume

is a sequence of distinct necklaces representatives such that

and

If with , then

is a cyclic -subspace Gray code for the middle levels.
Theorem 20 [7]: For any , a power of a prime, and ,

there exists a sequence as in Theorem 19, resulting in a cyclic
optimal -subspace Gray code for the middle levels.
While Theorem 19 refers to subspaces in the middle levels, it

can be easily generalized.
Theorem 21: Let be an -dimensional vector space over

, and let be a primitive element. Assume
is a path in visiting only repre-

sentatives of distinct necklaces. If all the visited necklaces are
of equal size , and are adjacent in , and

, then

is a cyclic -subspace Gray code.
Proof: It can be easily verified that all adjacent elements

in are adjacent in (including the first and last one), and
since all necklaces are of equal size, all the elements of are
distinct.
We are now in a position to state and prove a construction for
-subspace Gray codes.

Theorem 22: For any , a power of a prime, there exists a
cyclic optimal -subspace Gray code.

Proof: Let be a 5-D vector space over . Since 5
is prime, the sizes of necklaces of dimensions 1 through 4 are all
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the same and equal to . In particular, this means that there is
exactly one necklace of dimension 1, and exactly one necklace
of dimension 4.
Let

be a sequence of necklaces representatives, ,
, as in Theorem 20, where

We construct by reversing the order of and , and
inserting two new necklaces

Since , while ,
, and , we must have

Furthermore, , and , hence

The sequence clearly satisfies the requirements of The-
orem 21. Let be the cyclic -subspace Gray code con-
structed in Theorem 21 using . It is easily seen that contains
all of the subspaces of except for and , the trivial
0-D subspace. We use a series of subsequence reversals, similar
to the above reversal, to make room to insert and .
The code is comprised of subsequence blocks of the form
,

There are such blocks, each of length .

We now zoom in on the first two blocks, and . First, in
the block , we reverse the order of the third, fourth, and fifth
elements, thus obtaining

We do the same in and obtain . We note that except
for and , any two adjacent elements in the
sequence are also adjacent in .
Next, in the combined two blocks , we reverse the

sequence of elements starting from and ending with
, and then insert and to obtain

It is now easy to verify that describes a path in , and
that replacing the first two blocks in with gives

which is indeed a cyclic optimal -subspace Gray code.
We remark in passing that the choices for which subsequences

to reverse in the proof were made specific for ease of presenta-
tion. A similar more general construction can be described, in
which the reversal process allows for more choices of reversal
positions.

V. CONCLUSION

We studied optimal Gray codes for subspaces in two settings:
the Grassmann graph, and the projective-space graph. In the
first case, we were able to construct cyclic optimal Gray codes
for all parameters using a recursive construction. In addition,
simple recursive encoding and decoding functions were pro-
vided. These algorithm induce an enumerative-coding scheme,
which is at least as efficient as known schemes, and for certain
parameters, surpasses them.
In the case of the projective-space graph, it was shown that

there are no optimal Gray codes (cyclic or not) in the projective-
space graph of even dimension. For odd dimensions, we were
able to show a construction for dimensions 3 and 5, which are
derived from constructions for the middle-levels problem of the
same dimension.
Some related open questions arise. The first is whether there

exist cyclic optimal subspace Gray codes for all even dimen-
sions. The second question is whether a reverse connection ex-
ists which derives optimal codes for the middle-levels problem
from a subspace Gray code. Even in three dimensions the an-
swer to the latter is not clear.
We also note that Gaussian coefficients obey another recur-

sion, namely,

While Construction A uses the former, it is unclear whether a
different construction may use the latter, perhaps resulting in
other more efficient enumerative-coding schemes.
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